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ABSTRACT With 5-year survival rates below 5%, small cell lung carcinoma (SCLC) has very poor
prognosis and requires improved therapies. Despite an excellent overall response to first-line therapy,
relapses are frequent and further treatments are disappointing. The goal of the study was to improve second-
line therapy of SCLC.

The effect of chemotherapeutic agents was evaluated in cell lines (apoptosis, reactive oxygen species, and
RNA and protein expression) and in mouse models (tumour development).

We demonstrate here that valproic acid, a histone deacetylase inhibitor, improves the efficacy of a
second-line regimen (vindesine, doxorubicin and cyclophosphamide) in SCLC cells and in mouse models.

Transcriptomic profiling integrating microRNA and mRNA data identifies key signalling pathways in
the response of SCLC cells to valproic acid, opening new prospects for improved therapies.
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Introduction
Lung cancer is the leading cause of cancer-related death worldwide. The outcome of small cell lung
carcinoma (SCLC) patients is the poorest of any histological subtype, with 5-year survival rates of <25%
and <5% for limited- and extensive-stage disease, respectively [1]. Despite overall first-line response rates
ranging between 60% and 80% (extensive), and 80% and 90% (limited), most tumours relapse. The
prognosis remains very poor, with median survival rates of only 8–13 months (extensive) and
14–20 months (limited) [2]. Although significant efforts to develop new therapeutic strategies have been
made during the last decade, results are still disappointing [2–5]. Future improvements in outcomes will
require clarification of the molecular basis of this disease [1].

Epigenetic errors contribute to the initiation, progression and response to therapy of cancer (reviewed by
BARNES et al. [6] and PETTA et al. [7]). We and others previously proposed a working hypothesis
postulating that histone deacetylase (HDAC) inhibitors induce antitumor activity by reversing epigenetic
errors [8–11]. In particular, valproic acid (VPA) is an inhibitor of HDACs displaying appropriate
pharmacokinetic properties, and yielding only moderate toxicity that is acceptable in the context of an
anticancer treatment [12–14]. By modulating a broad range of activities, including proliferation, apoptosis
and differentiation, VPA has antitumoural properties in several cancers, including SCLC [15–21].

Although there is no standard second-line therapy for SCLC, possible treatments most often comprise a
combination of three chemotherapeutic agents: a DNA crosslinking agent (e.g. cyclophosphamide), an
inhibitor of topoisomerase II (e.g. doxorubicin) and a mitotic spindle poison (e.g. vindesine) (here referred
to collectively as “VAC”). With the aim of improving the treatment of extensive SCLC, we evaluated the
capacity of VPA to increase the anticancer effect of the VAC regimen in cell cultures and in xenograft
mouse models. The mechanisms involved in chemotherapeutic response to VPA were then studied by
transcriptomic analyses.

Materials and methods
Cell culture conditions
Human SCLC cell lines (H146, H526 and H69) were purchased from the ATCC (Manassas, VA, USA) and
cultivated as detailed previously [19]. Cells were incubated with VPA (Sigma-Aldrich, Diegem, Belgium),
mafosfamide (Baxter, Braine-l’Alleud, Belgium), cyclophosphamide (Baxter), doxorubicin (Pfizer, Elsene,
Belgium) and vindesine (Lilly, Brussels, Belgium), alone or in combination. Since cyclophosphamide needs
to be activated in vivo by the hepatic metabolism, its active form, mafosfamide, was used for in vitro
experiments. Optimal drug concentrations were determined by MTS viability assays.

Detection of apoptosis
Apoptosis was quantified by flow cytometry after ethanol fixation and propidium iodide incorporation, as
outlined previously [22]. A synergy index was calculated using the formula:

Synergy index ¼ specific apoptosis upon combined treatment
sum of specific apoptosis of single agent treatment

The percentage of specific apoptosis was determined using the formula:

Specific apoptosis ¼ drug induced apoptosis� spontaneous apoptosis
100� spontaneous apoptosis

� 100%

When the synergy index was >1, 1 or <1, the effects were defined as synergistic, additive or antagonistic,
respectively.

To assess the role of caspases in apoptotic pathways, 5×105 cells were incubated with or without: 20 μM
Z-Val-Ala-Asp(OMe)-CH2F (Becton Dickinson, Erembodegem, Belgium), a total pan-caspase inhibitor;
20 μM negative control (Z-FA-fmk) (Becton Dickinson); 40 μM Z-Ile-Glu(OMe)-Thr-Asp(OMe)-CH2F
(Calbiochem, Overijse, Belgium), a caspase-8 specific inhibitor; or 40 μM Z-Leu-Glu(OMe)-His-Asp
(OMe)-CH2F (Calbiochem), caspase 9 specific inhibitor; all compounds being diluted in
dimethylsulfoxide.

Quantification of reactive oxygen species
Reactive oxygen species (ROS) were detected using 5,6-chloromethyl-2′,7′-dichlorodihydrofluorescein
diacetate acetyl ester (CM-H2DCFDA; InVitrogen, Ghent, Belgium). After 30 min of pre-incubation with
5 μM CM-H2DCFDA, the different drugs were added alone or in combination. After 24 h of culture,
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SCLC cell lines (5×105 cells per mL in 24-well plates) were harvested, washed with PBS and analysed by
flow cytometry (FACS Aria; Becton Dickinson). ROS production was quantified using the fluorescence
intensity of chloromethyldichlorofluorescein. 10000 events were collected and analysed with the FACS
Diva software (Becton Dickinson). Cells were also treated with 100 μM hydrogen peroxide or 10 mM
N-acetylcysteine (Calbiochem), a free-radical scavenger, as positive and negative controls, respectively.

Immunoblot analysis
Protein expression levels and intracellular translocations were assessed using cytosolic and nucleic buffers,
and standard protocols for western blotting as detailed previously [19]. The antibodies used were:
anti-acetylated histone H3 (Upstate, Overijse, Belgium), anti-actin, anti-Erk (both Sigma-Aldrich),
anti-Bax, anti-Bcl-2 (both Dako Cytomation, Heverlee, Belgium), anti-Bid, anti-cytochrome c (Becton
Dickinson), anti-BclxL, anti-phospho-Erk, anti-caspase 8, anti-caspase 9 (Cell Signaling, Leiden, the
Netherlands), anti-γH2AX and anti-VDAC1 (Abcam, Cambridge, UK).

Evaluation of regimen efficacy in severe combine immunodeficiency mice
The Institutional Animal Care and Usage Committee of the University of Pennsylvania (Philadelphia, PA,
USA) and the University of Liege (Liege, Belgium) approved all animal protocols in compliance with the
Guide for the Care and Use of Laboratory Animals, according to the Declaration of Helsinki. The severe
combined immunodeficiency (SCID) mice (BALB/c HanHsd-Prkdc; Jackson Laboratories, Sacramento,
CA, USA) or NOD/SCID mice received a standard research diet throughout the experiment. H146 and
H69 cells (2×106), embedded in 50% Matrigel Basement Membrane Matrix High Concentration (BD
Biosciences, Erembodegem, Belgium), were implanted subcutaneously into the flanks of 7-week-old female
SCID mice. When tumours reached a volume of 300–400 mm³, mice were administered with daily
intraperitoneal injections of VPA (400 mg·kg−1·day−1) or PBS as a control. 3 days after the first VPA
administration, intraperitoneal injections of cyclophosphamide (40 mg·kg−1), vindesine (0.5 mg·kg−1) and
doxorubicin (3 mg·kg−1) were performed (at days 14 and 17, and days 8, 13, 25 and 34 for H69 and H146,
respectively). The schedule of drugs injections was first determined in preliminary dose response
experiments. Tumour volumes were calculated twice a week using the formula:

Tumour volume ¼ pDd2

6

where D is the largest diameter and d the smallest. Groups of at least six mice were tested under each
experimental condition.

RNA extraction
Cell lines were cultivated for 4 h in presence of 1 mM VPA. RNA was then extracted after two washes in
PBS and lysis Trizol RNA Isolation Solution (Ambion, Ghent, Belgium), according to the manufacturer’s
protocol. For microarray analysis, a second separation between the aqueous and organic phases was
performed on Phase Lock Gel (5 Prime, Leuven, Belgium) to optimise RNA recovery and purity. All the
extracted RNAs were assessed for quantity and purity using a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, Temse, Belgium) and stored at −80°C until the amplification step.

Microarray analysis
The details of the microarray analysis have been described previously [19]. Briefly, reference RNAs were
obtained by pooling equal amounts of total RNAs from three different SCLC cell lines (H146, H526 and
H69). RNAs were reverse-transcribed with Moloney murine leukaemia virus reverse transcriptase using a
polydeoxythymidine primer and amplified by PCR. The cDNAs were transcribed into copy RNAs
(cRNAs) transcribed and labelled with Cy3 (reference) or Cy5 (sample) dyes using the Low Input RNA
Linear Amplification Plus kit (Agilent Technologies, Diegem, Belgium). After quality checking, the
labelled cRNAs and RNAs spiked in were hybridised on an Agilent oligonucleotide microarray
(two-colour Whole Human Genome 4×44K arrays) and analysed according to manufacturer’s protocol
(GE2_v5_95_Feb07; Feature Extraction software, version 9.5.3.1). The statistical analyses were performed
with Genespring GX, version 7.3.1 (Agilent Technologies). Additional normalisation steps were performed
(per spot: division by the control signal; per array: normalisation to the 50th centile; per gene:
normalisation to the median). Transcripts that were not present in at least one sample were excluded from
additional analyses. Welch’s t-test was used to assess the statistical significance, excluding genes whose
expression varied by a factor inferior to 2 across the sample set of interest. The threshold for statistical
significance after Benjamini’s correction for multiple testing was 0.05.
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Real-time reverse transcription PCR
mRNA levels were analysed by real-time quantitative reverse transcription PCR (qRT-PCR) as described
previously [19], using the primers in table 1.

MicroRNA analysis
MicroRNA (miRNA) expression was determined in triplicates using the TaqMan Low Density Array
method (DNAVision, Gosselies, Belgium). Fluorescence data (Bioanalyzer 2100 Nano chip; Agilent
Technologies) were normalised by means of two endogenous controls (RNU44 and RNU48). Results were
expressed as fold change (2−(mean(ΔCT(VAC+VPA))–mean(ΔCT(VAC)), where CT is the cycle threshold). The
Benjamini and Hochberg method was used for multiple testing corrections.

Statistical analysis
All cell culture experiments were performed at least three times and data are presented as mean±SD.
Statistical significance was calculated using Student’s t-test and data were considered statistically significant,
very statistically significant or highly statistically significant when p<0.05, p<0.01 and p<0.001, respectively.

Results
VPA increases apoptosis in SCLC cells treated with VAC in vitro and in vivo
To evaluate the synergism between VPA and the second-line regimen VAC, VPA, at a concentration
achievable in patients (1 mM) [23], was combined with therapeutically relevant doses of mafosfamide
(10 μM), doxorubicin (0.3 μM) and vindesine (20 nM). After 24 h of culture, the combination of VPA and
VAC significantly increased apoptotic rates in three SCLC cell lines (H146, H69 and H526; p<0.01 by
Student’s t-test) (figure 1). In fact, the effect of VPA on the combined VAC treatment was synergistic
(synergy index of 2.9, 2.4 and 1.6 in H146, H69 and H526 cells, respectively).

We next determined the involvement of specific caspases using pharmacological inhibitors of caspases 3, 8
and 9 (figure 2). To facilitate comparison between treatments, control results (Z-FA-fmk) were arbitrarily
normalised to 1. All three inhibitors significantly reduced apoptosis of SCLC cells, indicating that the
mechanism is caspase-dependent, and involves both extrinsic and intrinsic pathways.

To evaluate the role of reactive oxygen species in the apoptotic process, intracellular ROS levels were
monitored by flow cytometry in H146, H69 and H526 cells cultivated for 24 h in presence of VPA and/or
VAC. VPA, but not VAC, significantly increased ROS production in all three cell lines (p<0.05) (figure 3a,
c and e). Despite significantly decreasing ROS levels, the free-radical scavenger N-acetylcysteine was not
sufficient to inhibit apoptosis (figure 3b, d and f).

TABLE 1 Real-time quantitative reverse transcription PCR primers

Target Forward primer Reverse primer

BAG3 5′-ACAACAGCCGCACCACTAC-3′ 5′-GAGCACAGGAATGGGAATGT-3′
BBC3 5′-CCTGGAGGGTCCTGTACAATCT-3′ 5′-GCACCTAATTGGGCTCCATCT-3′
C17orf59 5′-AGGGATGTTGCTCTGCTTGT-3′ 5′-AGGGATGTTGCTCTGCTTGT-3′
C18orf4 5′-TGGAACCCACAATCACAAGA-3′ 5′-CTTGAGTGCCCAAACCAAAT-3′
C4orf24 5′-GCGTTTTTGGTGTTGCTGT-3′ 5′-TTTCCGCGAATGATGAAAGT-3′
C6orf204 5′-GAGGACGGACGTGAGGAGT-3′ 5′-CAGGTAGCCATGCTGATGAA-3′
C6ST 5′-AGACCTGATTCCCTGTGGTG-3′ 5′-TGCCTTTTCTTAGGGGTGTG-3′
C20orf29 5′-TCTTCGGTGCTGAGAAGTCA-3′ 5′-CTGGAAAGGGTTCTCTGCTG-3′
DLH2 5′-GCACATGGGTTCCTACCAGT-3′ 5′-TCCTTCTCAGGCTCGTTGTT-3′
EFL4 5′-TTCTCTCCTCGACTGTGAAGC-3′ 5′-CGTAGTGGGGGCAGACAAT-3′
EPH2 5′- GACCCTTATGTTGCCTTTCG-3′ 5′-TCACCACCATAGTCTCCCAAA-3′
FOXO1A 5′-AAGAGCGTGCCCTACTTCAA-3′ 5′-CACCCTCTGGATTGAGCATC-3′
FZD7 5′-CGACGCTCTTTACCGTTCTC-3′ 5′-GCCATGCCGAAGAAGTAGAG-3′
GPCR37 5′-GCATCTCCAACTCCCTCTTG-3′ 5′-GTGGTGACTCCCAGAGAAGC-3′
HEY1 5′-CGAGGTGGAGAAGGAGAGTG-3′ 5′-CTGGGTACCAGCCTTCTCAG-3′
HPRT 5′-GGTCAGGCAGTATAATCCAAAG-3′ 5′-AAGGGCATATCCTACAACAAAC-3′
HSC40 5′-GCCTTGAAGTACCACCCAGA-3′ 5′-CAAAGAAGGAGGCAAAGGTG-3′
IER5 5′-CAGCATCTTCGGTTCCAGTT-3′ 5′-TCCAGGGGTTCATGTCTCTC-3′
RAB43 5′-GGACGAGCAGTACGATTTCC-3′ 5′-GCGGTAGTAGCTCTGGGTGA-3′
SLIT 5′-GGCCCAGCAATTAACAAAAA-3′ 5′-AAGGGTGGATATGTGGTGGA-3′
TNFRSF19 5′-GCTGAACGGAACTCTCCAAC-3′ 5′-CCGAAGCCACATTCCTTAGA-3′
WIPI1 5′-GCCTGGTGGTGGTAGTCAGT-3′ 5′-TCCAGGAGGGTCTTCAACAG-3′
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We next evaluated expression of a series of proteins involved in the cell cycle and apoptosis (figure 4).
Western blot analysis demonstrated that VPA-induced apoptosis involved hyperacetylation of histone H3
and phosphorylation of Erk1/2. Double-stranded DNA breaks in the presence of VPA were revealed by
γH2AX blotting. VPA created an imbalance between pro- and anti-apoptotic modulators: a decrease in
cytoplasmic Bcl-2 and BclxL; cleavage of Bid (into t-Bid); processing of caspase 8 and caspase 9; the
appearance of a cleaved form of Bax in the mitochondria; and release of cytochrome c into the cytoplasm.

Based on the proapoptotic synergy between VPA and VAC in SCLC cells, we investigated the ability of
VPA to improve antitumor efficacy in mouse models. Therefore, SCLC cells (H69 and H146) were injected
subcutaneously into the flanks of SCID mice, and the mice were treated with VPA, cyclophophamide
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(40 mg·kg−1), doxorubicin (3 mg·kg−1) and vindesine (0.5 mg·kg−1), as described in the materials and
methods section. Although partial responses were observed with VPA or VAC, tumours eventually
relapsed (figure 5). In contrast, tumour growth was restricted in both SCID mouse xenograft models when
VPA was combined with VAC (p<0.001 and p<0.05 by Student’s t-test, for H69 and H146, respectively).

We conclude that, in two preclinical models of SCLC, VPA improves the efficacy of VAC.

VPA modulates key cellular pathways in SCLC, including cell death and tumour invasion
To better characterise the molecular mechanisms involved, we analysed the transcriptome of H526 cells
treated for 4 h with VPA and/or VAC using Agilent microarrays. Bioinformatic analyses revealed a list of
genes that were significantly up- or down-regulated by a factor >2 in presence of VPA. Among these, 138
were also specifically identified in cells treated with VPA+VAC compared to VAC (online supplementary
material). Expression of the most significantly modulated genes was confirmed by qRT-PCR in three
SCLC cell lines (table 2).

With 54 genes involved, cell death was the top scored biological function affected, as revealed by Ingenuity
(Qiagen, Venlo, the Netherlands) (figure 6). The network related to this function included several genes
involved in apoptosis: BBC3 (Puma, a pro-apoptotic member of the Bcl2 family), TNFRSF19 and TNFRSF12A
(upstream effectors of apoptosis). To extend this transcriptomic analysis, we next analysed expression of
miRNAs [24, 25]. After correction for multiple testing, only two miRNAs were significantly modulated when
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adding VPA, both of them being involved in tumour invasion: miR-589 (fold increase of 441 with VPA,
corrected p-value <0.01) and miR-575 (fold decrease of 0.018, corrected p-value <0.05) (table 3).

Discussion
The preclinical evidence provided in this report indicates that VPA synergistically increases the apoptotic
rates of three different cell lines in response to a second-line therapy for SCLC (figure 1). The mechanism

FIGURE 4 Protein expression
profiling of small cell lung
carcinoma treated with valproic
acid (VPA) and VAC (mafosfamide,
doxorubicin and vindesine). Cell
lines were cultivated for 24 h with
or without VPA (1 mM) in
combination with mafosfamide
(10 μM), vindesine (20 nM) and
doxorubicin (0.3 μM). After culture,
the cytosolic and mitochondrial
fractions were analysed by Western
blotting with the indicated
antibodies. Protein concentrations
were normalised according to actin
levels. The purity of mitochondrial
and cytosolic fractions was
assessed by expression of VDAC1.
Results are shown for the H146 cell
line. Similar results were obtained
with H69 and H526 cell lines. As
expected for a histone deacetylase
inhibitor, VPA induced hyper-
acetylation of histone H3 when
added alone or in combination with
VAC. In the presence of VPA, the
proapoptotic protein Bid was
cleaved, generating the processed
and active t-Bid isoform (lower
band), and cytochrome c was
released from the mitochondria
into the cytoplasm (compare upper
and lower panels). Under these
conditions, Bax was concentrated
into mitochondria, generating a
cleaved 18-kDa isoform (lower
band), and expression of BclxL was
strongly reduced, while there was
only slightly reduction of the level
of Bcl-2. VPA induced
phosphorylation of H2AX (γH2AX)
and Erk1/2 independently of VAC
treatment.
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is caspase-dependent, and involves both extrinsic and intrinsic pathways (figure 2). VPA increases the level
of ROS, and modifies the balance between pro- and antiapoptotic modulators (figures 3 and 4). The new
regimen of VPA+VAC efficiently reduces tumour growth in SCID mouse models engrafted with human
SCLC cells (figure 5). This evidence spurred the European Lung Cancer Work Party to launch a phase I/II
clinical trial to assess the combination of VPA with VAC in patients presenting with relapsing or refractory
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injected subcutaneously into severe combined immunodeficiency mice in 50% matrigel. Groups of at least six
mice were tested in each experimental condition. When tumours reached a volume of 300–400 mm³, mice
were administered with daily intraperitoneal injections of VPA (400 mg·kg−1·day−1) or PBS as a control. 3 days
after the first VPA administration, intraperitoneal injections of cyclophosphamide (40 mg·kg−1), vindesin
(0.5 mg·kg−1) and doxorubicin (3 mg·kg−1) were performed (at days 14 and 17, and days 8, 13, 25 and 34 for
H69 and H146, respectively (arrows)). The tumour volume (in cubic millimetres) is presented as means±SD and
was calculated at regular intervals of time. There is a statistical significant difference according to the
Student’s t-test: **: p<0.01 for VAC+VPA versus VAC only treatments.

TABLE 2 The 21 most significantly modulated genes were selected from microarray analysis
comparing treatment with valproic acid plus VAC versus VAC alone

Name Common name Genbank accession number H69 H526 H146

BAG3 BAG3 NM_004281 2.3 2.2 2.0
BBC3 PUMA NM_014417 2.8 5.2 2.3
C17orf59 PRO2472 NM_017622 1.8 3.1 3.0
C18orf4 C18orf4 NM_032160 13.8 4.2 1.3
C20orf29 FLJ11168 NM_018347 0.3 0.4 3.6
C4orf24 C4orf24 NM_152618 10.8 4.6 2.6
C6orf204 C6orf204 BC045657 2.0 2.0 1.6
C6ST C6ST NM_004267 1.4 5.7 4.2
DLH2 TES1 NM_004405 9.1 4.1 1.0
EFL4 EFL4 NM_005227 8.7 5.4 14.3
EPH2 DKFZP566F2124 NM_015630 0.4 0.3 3.8
FOXO1A FOXO1A NM_002015 4.6 3.4 67.2
FZD7 FzD7 NM_003507 3.2 17.9 7.5
GPCR37 PAELR NM_005302 2.1 3.6 20.0
HEY1 HERP2 NM_012258 0.7 2.4 1.9
HSC40 HSC40 NM_012266 2.0 3.4 24.9
IER5 SBBI48 NM_016545 1.5 1.9 4.4
RAB43 RAB41 NM_198490 10.5 5.3 6.1
SLIT LRRC12 NM_052910 3.3 3.4 1.8
TNFRSF19 TROY NM_148957 1.1 2.0 3.5
WIPI1 WIPI49 NM_017983 1.7 2.7 1.0

Data are fold changes obtained by quantitiative revserse transcription PCR of transcripts isolated from
three small cell lung carcinoma cell lines (H69, H526 and H146). VAC: mafosfamide, doxorubicin and
vindesine.
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FIGURE 6 Valproic acid (VPA)
modulates expression of genes
involved in cell death pathways.
Genes transcriptionally modified by
VPA extrated from the online
supplementary material were
analysed with the Ingenuity software.
The most significantly affected
molecular and cellular function was
cell death (p<3.89×10−0.5, with 54
genes modulated: ADRB2, ALX3,
ARC, BAG3, BBC3, BCL6, CNN2,
CYP26B1, DLL1, DLX2, DUSP10,
EGR1, EGR4, EPHA2, FBXO32,
FOXO1, GAS2, GDF15, GFI1, GJB2,
GPC3, GPR37, HEY1, IER3, IL9R,
JAG1, KLF2, KLF5, LATS2, MERTK,
MITF, NKX3-2, NR4A2, NTF3,
NUAK2, PAX6, PDGFRA, PPARA,
RASD1, RASSF4, RUNX1, RUNX1T1,
S100A10, SGK1, SIRT4, SOCS3,
SSTR2, TNFRSF19, TNFRSF12A,
TSLP, USE1, VIPR2, WNT11 and
ZFP36). Red and green indicate up-
and down-regulated genes,
respectively.
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TABLE 3 MicroRNAs modulated by valproic acid

TaqMan target miRBase number Fold change p-value by t-test Corrected p-value

hsa-miR-589 hsa-miR-589* 441.31735 0.000015 0.005305
hsa-miR-575 hsa-miR-575 0.01787 0.000175 0.031945
hsa-miR-200a* hsa-miR-200a* 4.23666 0.001085 0.112437
hsa-miR-345 NA 5.41671 0.001232 0.112437
hsa-miR-124a hsa-miR-124 0.27756 0.002318 0.120889
hsa-miR-16 hsa-miR-16 0.38224 0.001808 0.120889
hsa-miR-616 hsa-miR-616* 0.06316 0.002145 0.120889
hsa-miR-182* hsa-miR-182* 0.28658 0.003472 0.154357
hsa-miR-376a* NA 0.04461 0.004229 0.154357
hsa-miR-130b hsa-miR-130b 0.46074 0.005376 0.165957
hsa-miR-9 hsa-miR-9 3.51174 0.005456 0.165957
hsa-let-7a hsa-let-7a 3.52777 0.008200 0.201666
hsa-miR-106b hsa-miR-106b 0.49053 0.008288 0.201666
hsa-miR-142-3p hsa-miR-142-3p 4.82212 0.007863 0.201666
hsa-miR-200c hsa-miR-200c 2.30733 0.010624 0.212291
hsa-miR-29c hsa-miR-29c 0.43967 0.011632 0.212291
hsa-miR-564 hsa-miR-564 4.74989 0.011571 0.212291
hsa-miR-9* hsa-miR-9* 0.43287 0.010819 0.212291
hsa-miR-99b hsa-miR-99b 0.49626 0.011479 0.212291
hsa-miR-324-5p hsa-miR-324-5p 0.49551 0.014315 0.237493
hsa-let-7g hsa-let-7g 2.60556 0.017417 0.264876
hsa-miR-181b hsa-miR-181b 2.16330 0.019021 0.272956
hsa-miR-594 NA 0.40264 0.019443 0.272956
hsa-let-7d hsa-let-7d 2.82868 0.022429 0.303208
hsa-miR-572 hsa-miR-572 0.30744 0.029794 0.362498
hsa-miR-335 hsa-miR-335 0.38050 0.038849 0.386740
hsa-miR-565 NA 0.40463 0.044928 0.395449
hsa-miR-99a hsa-miR-99a 0.45290 0.049659 0.421521

Expression of microRNAs was determined by TaqMan Low Density Array in H526 cells treated with
valproic acid+VAC or VAC alone. For fold changes <0.5 or >2, the uncorrected p-value was <0.05 (common
microRNAs when normalised to RNU44 and RNU48). NA: not applicable; VAC: mafosfamide, doxorubicin
and vindesine.
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SCLC (registered at www.elcwp.org with identifier number 01081). Results presented in the accompanying
article by BERGHMANS et al. [26] indicate that the new regimen induces a significant response in relapsing/
refractory SCLC patients. However, since the treatment does not translate into a significant
progression-free survival, it is not recommended for second-line therapy.

Our transcriptomic data provide some evidence to better understand the mechanisms involved and to give
insights for novel regimen. VPA modulates key genes modulating pathways linked to cell cycle and
apoptosis. Among these, Puma (BBC3, Bcl-2 binding component 3), TNFRSF12A (TWEAK/Fn14),
sodium/potassium ATPase and HEY1 (a mediator of Notch signalling) are significantly upregulated by
VPA. In particular, the sodium/potassium ATPase is involved in sensitivity to platinium [27] and could be
a major factor involved in VPA efficacy. Puma is able to interact with Bax and BclxL, promoting
translocation of Bax to the mitochondria and competitive binding to BclxL, impeding the latter’s ability to
inhibit Bax proapoptotic activity [28]. Parallel analyses of miRNA expression identified two particular
miRNAs whose expression is tightly correlated with VPA treatment. When the VAC+VPA regimen is
compared to VAC alone, miR-589 is increased 441-fold while miR-575 expression is reduced to 0.018.
miRNA-589 modulates epithelial–mesenchymal transition in human mesothelial cells [29] while miR-575
promotes growth and invasion of lung cancer cells [30]. Causal involvement of these microRNAs in
treatment efficacy could be further investigated by antagomiRs and miRNA mimics.

VPA also regulates expression of modulators of DNA damage response such as Bcl-6, which inhibits TP53
and modulates DNA damage-induced apoptotic responses [31]. Most important is the concomitant
modulation of several genes involved in the Wnt pathway, including FZD2, FZD5, FZD7, FZD10 and
WNT11. In this context, our preliminary data show that VPA activates TCF/LEF transcription factors in
SCLC cells (data not shown). Furthermore, two general Wnt inhibitors (quercetin and ethacrynic acid)
impair VPA-induced apoptosis. At first glance, involvement of Wnt in the therapeutic response may
appear surprising, since this pathway has been directly correlated with tumorigenicity. For example,
overexpression of FZD7 was associated with aberrant activation of the Wnt canonical pathway in
oesophagus and colorectal cancers [32, 33]. However, the complexity of the Wnt pathways is clearly less
well-understood or at least heterogenous in lung cancer [34]. In fact, expression of WNT7A, which targets
FZD7, has been shown to be downregulated in lung cancer [35]. However, SCLC is characterised by
overexpression of Wnt inhibitors such as NLK, Sox11 and TCF-4 [36]. In contrast, a tumour suppressor
role of the Wnt pathway in SCLC has also been reported [37]. In this perspective, our results indicate that
Wnt signalling is associated with a chemotherapeutic response. Similarly, there is a relationship between
hyperinduced canonical Wnt activity and enhanced apoptosis in HDAC inhibitor-treated colorectal
tumour cells [38].

In conclusion, this report provides preclinical evidence for the use of VPA in second-line therapy of SCLC
and opens new prospects for improvement using Wnt activators [39, 40].
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