Skip to main content
Log in

Autonomic cardiovascular control in children with obstructive sleep apnea

  • Research Paper
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Autonomic cardiorespiratory control changes with sleep-wake states and is influenced by sleep-related breathing disorders. Power spectrum (PS) analysis of instantaneous fluctuations in heart rate (HR) is used to investigate the role of the autonomic nervous system (ANS) in cardiorespiratory control. The two spectral regions of interest are the low frequency component (LF) and high frequency component (HF).

The aim of the present study was to investigate the autonomic cardiorespiratory control in children with obstructive sleep apnea (OSA) syndrome. We studied 10 children with OSA versus 10 normal children. All subjects underwent whole night polysomnography. Spectral analysis of the HR and breathing signals was performed for 256 second long, artifact-free epochs in each sleep-wake state. The LF power was higher in the OSA group compared with control subjects for all states, reflecting enhanced sympathetic activity in OSA subjects. The results indicated sympathetic predominance during REM sleep in all subjects and parasympathetic predominance in slow wave sleep only in controls. The autonomic balance (LF/HF) was significantly higher in OSA patients than in control subjects, at all stages during night sleep, and while awake before sleep onset. An index of overall autonomic balance (ABI) was computed for each subject and correlated well with the measured respiratory disturbance index (RDI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Parish JM, Shepard JW. Cardiovascular effects of sleep disorders.Chest 1990; 97:1220–1226.

    CAS  PubMed  Google Scholar 

  2. Carlson JT, Hedner JA, Ejnell H, Peterson L-E. High prevalence of hypertension in sleep apnea patients independent of obesity.Am J Respir Crit Med 1994; 150:72–77.

    CAS  Google Scholar 

  3. Carlson JT, Hedner J, Elam M, Ejnell H, Sellgren J, Wallin G. Augmented resting sympathetic activity in awake patients with obstructive sleep apnea.Chest 1993; 103:1763–1768.

    CAS  PubMed  Google Scholar 

  4. Parmeggiani PL, Morrison AR. Alterations in autonomic function during sleep. In: Lowey AD, Spyer KM. Eds.Central Regulation of Autonomic Functions. Oxford, UK: Oxford University Press; 1990:367–386.

    Google Scholar 

  5. Parmeggiani PL. The autonomic nervous system during sleep. In: Kryger MH, Roth T, Dement WC, Eds.Principles and Practice of Sleep Medicine. Philadelphia: WB Saunders; 1993:194–203.

    Google Scholar 

  6. Snyder F, Hobson JA, Morrison DF, Goldfrank F. Changes in respiration, heart rate, and systolic blood pressure in human sleep.J Appl Physiol 1964; 19:417–422.

    CAS  PubMed  Google Scholar 

  7. Cocagna G, Mantovani M, Lugaresi E. Arterial blood pressure changes during sleep in man.Electroenceph Clin Neurophysiol 1971; 31:277–281.

    Google Scholar 

  8. Homyak M, Cejnar M, Elam M, Matousek M, Wallin G. Sympathetic muscle nerve activity during sleep in man.Brain 1991; 114:1281–1295.

    Google Scholar 

  9. Somers VK, Phil D, Dyken ME, Mark AL, Aboud, FM. Sympatheticnerve activity during sleep in normal subjects.N Engl J Med 1993; 328:303–307.

    Article  CAS  PubMed  Google Scholar 

  10. Takeuchi S, Iwase S, Mano T, Okada H, Sugiyama Y, Watanabe T. Sleep-related changes in human muscle and skin sympathetic nerve activities.J Auton Nervous System 1994; 47:121–129.

    CAS  Google Scholar 

  11. Okada H, Iwase S, Mano T, Sugiyama Y, Watanabe T. changes in muscle sympathetic nerve activity during sleep in humans.Neurology 1991; 41:1961–1996.

    CAS  PubMed  Google Scholar 

  12. Kay A, Trinder J, Bowes G, Kim Y. Changes in airway resistance during sleep onset.J Appl Physiol 1994; 76:1600–1607.

    CAS  PubMed  Google Scholar 

  13. Sauerland ED, Harper RM. The human tongue during sleep: electromyographic activity of genioglossus muscle.Exp Neurol 1976: 51:160–170.

    Article  CAS  PubMed  Google Scholar 

  14. Tangel DT, Mezzanotte WS, Sandberg EJ, White DP. The influence of sleep on tensor palatini EMG and upper airway resistance in normal subjects.J Apple Physical 1991; 70:2574–2581.

    CAS  Google Scholar 

  15. Hudgel DW, Martin RJ, Johnson B, Hill P. Mechanics of the respiratory and breathing pattern during sleep in normal humans.J Appl Physiol 1984; 56:133–137.

    CAS  PubMed  Google Scholar 

  16. Tabachnik E, Muller NL, Bryan C, Levison H. Changes in ventilation and chest wall mechanics during sleep in normal adolescents.J Appl Physiol 1981; 51:557–564.

    CAS  PubMed  Google Scholar 

  17. Kuna ST, Sant'Ambrogio G. Pathophysiology of upper airway closure during sleep.JAMA 1991; 266:1384–1389.

    Article  CAS  PubMed  Google Scholar 

  18. Tal A, Leiberman A, Margulis G Sofer S. Ventricular dysfunction in children with obstructive sleep apnea: radionuclide assesment.Pediat Pulmunol 1988; 4:139–143.

    CAS  Google Scholar 

  19. Laks L. Pulmonary arterial pressure in sleep apnea.Sleep 1993; 16:S41-S43.

    CAS  PubMed  Google Scholar 

  20. Chaouat A, Weitzenblum E, Krieger J, Oswald M, Kessler R. Pulmonary hemodynamics in the obstructive sleep apnea syndrome. Results in 220 consequtive patients.Chest 1996; 109:380–386.

    CAS  PubMed  Google Scholar 

  21. Worsnop CJ, Pierce RJ, Naughton M. Systemic hypertension and obstructive sleep apnea.Sleep 1993; 16:S48-S49.

    Google Scholar 

  22. Somers VK, Abboud FM. Hypertension and sleep apnea. Chemoreflexes-responses, interactions and implications for sleep apnea.Sleep 1993; 16:S30-S34.

    CAS  PubMed  Google Scholar 

  23. Hyndman BW, Kitney RI, Sayers BM. Spontaneous rhythms in physiological control systems.Nature 1971; 233:339–341.

    Article  CAS  PubMed  Google Scholar 

  24. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger RD, Cohen RJ. Power spectrum analysis of heart rate fluctuations: a quantitative probe of beat-to-beat cardiovascular control.Science 1981; 213:220–222.

    CAS  PubMed  Google Scholar 

  25. Akselrod S, Gordon D, Madwed J, Snydman N, Shannon DC, Cohen RJ. Hemodynamic regulation: investigation by spectral analysis.Am J Physiol 1985; 248:H867-H875.

    Google Scholar 

  26. Pomeranz B, MaCaulley RJB, Caudill MA et al. Assesment of autonomic function in humans by heart rate spectral analysis.Am J Physiol 1985; 248:H151-H153.

    CAS  PubMed  Google Scholar 

  27. Jasper HH. The ten twenty electrode system of the International Federation.Electroenceph Clin Neurophysiol 1958; 10:371–375.

    Google Scholar 

  28. Cross C. Technical tips: patient specific electrode application techniques.Am J EEG Technol 1992; 32:86–92.

    Google Scholar 

  29. Rechtschaffen A, Kales A, eds. A manual of standardized terminology, techniques and scoring system for sleep staging in human subjects. Washington DC: US Government Printing Office; NIH Publication 204, 1968.

    Google Scholar 

  30. Berger RD, Akselrod S, Gordon D, Cohen RJ. An efficient algorithm for spectral analysis of heart rate variability.IEEE Trans Biomed Eng 1986; BME-33:900–904.

    CAS  PubMed  Google Scholar 

  31. Pagani M, Lombardi F, Guzzetti S et al. Power spectral analysis of heart rate and arterial blood pressure variabilities as a marker of sympathovagal interaction in man and conscious dog.Circ Res 1986; 59:178–193.

    CAS  PubMed  Google Scholar 

  32. Baharav A, Kotagal S, Gibbons V et al. Fluctuations in autonomic nervous activity during sleep displayed by power spectrum analysis of heart rate variability.Neurology 1995; 45:1183–1187.

    CAS  PubMed  Google Scholar 

  33. Veale D, Pepin JL, Levy PA. Autonomic stress tests in obstructive sleep apnea syndrome and snoring.Sleep 1992; 15:505–513.

    CAS  PubMed  Google Scholar 

  34. Penzel T. Spectral analysis of blood pressure in patients with sleep related breathing disorders during NREM and REM sleep.Sleep 1993; 16:S150-S151.

    CAS  PubMed  Google Scholar 

  35. Aljadeff G, Gozal D, Schechtman VL, Burrell B, Harper RM, Davidson Ward SL. Heart rate variability in children with obstructive sleep apnea.Sleep 1997; 20:151–157.

    CAS  PubMed  Google Scholar 

  36. Veale D, Pepin JL, Wuyam B, Levy PA. Abnormal autonomic stress responses in obstructive sleep apnea are reversed by nasal continuous positive airway pressure.Eur Respir J 1996; 9:2122–2126.

    Article  CAS  PubMed  Google Scholar 

  37. Hedner J, Darpo B, Ejnell H et al. Reduction in sympathetic activity after long-term CPAP treatment in sleep apnea: cardiovascular implications.Eur Respir J 1995; 8:222–229.

    Article  CAS  PubMed  Google Scholar 

  38. Fletcher EC, Miller J, Schaaf JW et al. Urinary catecholamines before and after tracheostomy in patients with obstructive sleep apnea and hypertension.Sleep 1987; 10:35–44.

    CAS  PubMed  Google Scholar 

  39. Redline S, Tishler PV, Tosteson TD et al. The lamilial aggregation of obstructive sleep apnea.Am J Resp Crit Care Med 1995; 151:682–687.

    CAS  PubMed  Google Scholar 

  40. Keselbrener L, Akselrod S. Selective discrete Fourier transform algorithm for time-frequency analysis; method an application on simulated and cardiovascular signals.IEEE Trans Biomed Eng 1996; 43:789–802.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baharav, A., Kotagal, S., Rubin, B.K. et al. Autonomic cardiovascular control in children with obstructive sleep apnea. Clinical Autonomic Research 9, 345–351 (1999). https://doi.org/10.1007/BF02318382

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02318382

Key words

Navigation