Skip to main content
Log in

Identification of Two Multidrug-Resistant Pseudomonas aeruginosa Clonal Lineages with a Countrywide Distribution in Hungary

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to identify class 1 integrons from extended-spectrum and metallo-β-lactamase-negative, multidrug-resistant Pseudomonas aeruginosa clinical isolates from Hungary and to characterize the isolates by phenotypic and molecular methods. Fourteen selected P. aeruginosa isolates resistant to ceftazidime, gentamicin, and ciprofloxacin were subjected to serotyping, random amplification of polymorphic DNA (RAPD), integron content analysis, and a phenotypic test to detect high-level production of AmpC. Four representative isolates were further analyzed by multilocus sequence typing. Two P. aeruginosa multidrug-resistant clonal lineages were identified with a countrywide distribution. The first lineage is characterized by serotype O4, RAPD genotype A, sequence type ST175, and the presence of a class 1 integron harbouring aadB and aadA13 gene cassettes in its variable region. The second lineage is characterized by serotype O6, RAPD genotype B, sequence type ST395, and a class 1 integron carrying a single aadB cassette. The corresponding isolates were recovered from altogether 11 towns in Hungary. ST175 and ST395 are the presently calculated founders of two distinct P. aeruginosa clonal complexes that appear to have a wide geographical distribution also outside Hungary. The multidrug-resistant phenotype associated with these two clonal lineages might have contributed to an increase in their frequency and to their subsequent diversification. Both P. aeruginosa lineages displayed ≥8-fold synergy with boronic acid/ceftazidime combinations, suggesting an AmpC-mediated resistance to ceftazidime. Our observations underscore the role of class 1 integrons in the spread of aminoglycoside resistance by clonal dissemination among P. aeruginosa clinical isolates in Hungary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Beesley T, Gascoyne N, Knott-Hunziker V et al (1983) The inhibition of class C beta-lactamases by boronic acids. Biochem J 209:229–233

    PubMed  CAS  Google Scholar 

  2. Clinical and Laboratory Standards Institute (CLSI) (2008) Standards for antimicrobial susceptibility testing. Eighteenth informational supplement M100-BS18. CLSI, Wayne, PA

  3. Curran B, Jonas D, Grundmann H et al (2004) Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol 42:5644–5649

    Article  PubMed  CAS  Google Scholar 

  4. Driscoll JA, Brody SL, Kollef MH (2007) The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67:351–368

    Article  PubMed  CAS  Google Scholar 

  5. Feil EJ, Li BC, Aanensen DM et al (2004) eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186:1518–1530

    Article  PubMed  CAS  Google Scholar 

  6. Giske CG, Libisch B, Colinon C et al (2006) Establishing clonal relationships between VIM-1-like metallo-β-lactamase-producing Pseudomonas aeruginosa strains from four European countries by multilocus sequence typing. J Clin Microbiol 44:4309–4315

    Article  PubMed  CAS  Google Scholar 

  7. Gotz A, Smalla K (1997) Manure enhances plasmid mobilization and survival of Pseudomonas putida introduced into field soil. Appl Environ Microbiol 63:1980–1986

    PubMed  CAS  Google Scholar 

  8. Hocquet D, Berthelot P, Roussel-Delvallez M et al (2007) Pseudomonas aeruginosa may accumulate drug resistance mechanisms without losing its ability to cause bloodstream infections. Antimicrob Agents Chemother 51:3531–3536

    Article  PubMed  CAS  Google Scholar 

  9. Hope R, Warner M, Hill R et al. (2008) Phenotypic AmpC detection: which inhibitor is best? Clin Microbiol Infect 14(S7):P876

    Google Scholar 

  10. Johnson JK, Arduino SM, Stine OC (2007) Multilocus sequence typing compared to pulsed-field gel electrophoresis for molecular typing of Pseudomonas aeruginosa. J Clin Microbiol 45:3707–3712

    Article  PubMed  CAS  Google Scholar 

  11. Libisch B, Lepsanovic Z, Krucso B et al (2007) Characterization of PER-1 extended-spectrum ß-lactamase producing Pseudomonas aeruginosa clinical isolates from Hungary and Serbia. Clin Microbiol Infect 13(s1):S162

    Google Scholar 

  12. Libisch B, Muzslay M, Gacs M et al (2006) Molecular epidemiology of VIM-4 metallo-β-lactamase-producing Pseudomonas sp. isolates in Hungary. Antimicrob Agents Chemother 50:4220–4223

    Article  CAS  Google Scholar 

  13. Libisch B, Watine J, Balogh B et al (2008) Molecular typing indicates an important role for two international clonal complexes in dissemination of VIM-producing Pseudomonas aeruginosa clinical isolates in Hungary. Res Microbiol 159:162–168

    Article  PubMed  CAS  Google Scholar 

  14. Livermore DM (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 34:634–640

    Article  PubMed  CAS  Google Scholar 

  15. Mahenthiralingam E, Campbell ME, Foster J et al (1996) Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis. J Clin Microbiol 34:1129–1135

    PubMed  CAS  Google Scholar 

  16. Marumo K, Takeda A, Nakamura Y et al (1999) Detection of OXA-4 β-lactamase in Pseudomonas aeruginosa isolates by genetic methods. J Antimicrob Chemother. 43:187–193

    Article  PubMed  CAS  Google Scholar 

  17. McEllistrem MC, Kolano JA, Pass MA et al (2004) Correlating epidemiologic trends with the genotypes causing meningococcal disease, Maryland. Emerg Infect Dis 10:451–456

    PubMed  Google Scholar 

  18. Poole K (2005) Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:479–487

    Article  PubMed  CAS  Google Scholar 

  19. Revilla C, Garcillán-Barcia MP, Fernández-López R et al (2008) Different pathways to acquiring resistance genes illustrated by the recent evolution of IncW plasmids. Antimicrob Agents Chemother 52:1472–1480

    Article  PubMed  CAS  Google Scholar 

  20. Szabó D, Szentandrássy J, Juhász Z et al (2008) Imported PER-1 producing Pseudomonas aeruginosa, PER-1 producing Acinetobacter baumanii and VIM-2-producing Pseudomonas aeruginosa strains in Hungary. Ann Clin Microbiol Antimicrob 7:12

    Article  PubMed  Google Scholar 

  21. Tam VH, Schilling AN, LaRocco MT et al (2007) Prevalence of AmpC over-expression in bloodstream isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 13:413–418

    Article  PubMed  CAS  Google Scholar 

  22. White PA, McIver CJ, Rawlinson WD (2001) Integrons and gene cassettes in the enterobacteriaceae. Antimicrob Agents Chemother 45:2658–2561

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge financial support from the EU through the DRESP2 FP6 grant. This publication made use of the Pseudomonas aeruginosa MLST website (http://pubmlst.org/paeruginosa/) sited at the University of Oxford. The development of this site has been funded by the Wellcome Trust. We also thank Dr Vincent Tam for strains PA1975 and PA2040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Libisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libisch, B., Balogh, B. & Füzi, M. Identification of Two Multidrug-Resistant Pseudomonas aeruginosa Clonal Lineages with a Countrywide Distribution in Hungary. Curr Microbiol 58, 111–116 (2009). https://doi.org/10.1007/s00284-008-9285-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9285-7

Keywords

Navigation