Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

How cigarette smoke skews immune responses to promote infection, lung disease and cancer

Abstract

A complex and multilayered immune defence system protects the host against harmful agents and maintains tissue homeostasis. Cigarette smoke ex posure markedly impacts the immune system, compromising the host's ability to mount appropriate immune and inflammatory responses and contributing to smoking-related pathologies. These adverse effects on the immune system not only occur in active smokers, but also in those exposed to smoke passively in contaminated environments, and may persist for decades after exposure has ended.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adverse effects of cigarette smoke.
Figure 2: Overview of immune defects caused by smoking in the lungs.

References

  1. Kuper, H., Adami, H. O. & Boffetta, P. Tobacco use, cancer causation and public health impact. J. Intern. Med. 251, 455–466 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Stewart, S. L. et al. Surveillance for cancers associated with tobacco use — United States, 1999–2004. MMWR Surveill. Summ. 57, 1–33 (2008).

    PubMed  Google Scholar 

  3. US Department of Health and Human Services. The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General. (US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2004).

  4. Jha, P., Ranson, M. K., Nguyen, S. N. & Yach, D. Estimates of global and regional smoking prevalence in 1995, by age and sex. Am. J. Public Health 92, 1002–1006 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barnes, P. J. Alveolar macrophages as orchestrators of COPD. COPD 1, 59–70 (2004).

    Article  PubMed  Google Scholar 

  6. Sopori, M. Effects of cigarette smoke on the immune system. Nature Rev. Immunol. 2, 372–377 (2002).

    Article  CAS  Google Scholar 

  7. Smith, C. J. & Hansch, C. The relative toxicity of compounds in mainstream cigarette smoke condensate. Food Chem. Toxicol. 38, 637–646 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Rahman, I. et al. 4-hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 166, 490–495 (2002).

    Article  PubMed  Google Scholar 

  9. Cahill, K., Stead, L. F. & Lancaster, T. Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst. Rev. 16, CD006103 (2008).

    Google Scholar 

  10. Holt, P. G. Immune and inflammatory function in cigarette smokers. Thorax 42, 241–219 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dye, J. A. & Adler, K. B. Effects of cigarette smoke on epithelial cells of the respiratory tract. Thorax 49, 825–834 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jones, J. G. et al. Increased alveolar epithelial permeability in cigarette smokers. Lancet 1, 66–68 (1980).

    Article  CAS  PubMed  Google Scholar 

  13. Burns, A. R., Hosford, S. P., Dunn, L. A., Walker, D. C. & Hogg, J. C. Respiratory epithelial permeability after cigarette smoke exposure in guinea pigs. J. Appl. Physiol. 66, 2109–2116 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Mio, T. et al. Cigarette smoke induces interleukin-8 release from human bronchial epithelial cells. Am. J. Respir. Crit. Care Med. 155, 1770–1776 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Laan, M., Bozinovski, S. & Anderson, G. P. Cigarette smoke inhibits lipopolysaccharide-induced production of inflammatory cytokines by suppressing the activation of activator protein-1 in bronchial epithelial cells. J. Immunol. 173, 4164–4170 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Bauer, C. M. et al. Cigarette smoke suppresses type I interferon-mediated antiviral immunity in lung fibroblast and epithelial cells. J. Interferon Cytokine Res. 28, 167–179 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Kim, H. et al. Reversible cigarette smoke extract-induced DNA damage in human lung fibroblasts. Am. J. Respir. Cell. Mol. Biol. 31, 483–490 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Kamp, D. W., Greenberger, M. J., Sbalchierro, J. S., Preusen, S. E. & Weitzman, S. A. Cigarette smoke augments asbestos-induced alveolar epithelial cell injury: role of free radicals. Free Radic. Biol. Med. 25, 728–739 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. de Boer, W. I. et al. Monocyte chemoattractant protein 1, interleukin 8, and chronic airways inflammation in COPD. J. Pathol. 190, 619–626 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Russell, R. E. et al. Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. Am. J. Physiol. Lung Cell. Mol. Physiol. 283, L867–L873 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. King, T. E. Jr, Savici, D. & Campbell, P. A. Phagocytosis and killing of Listeria monocytogenes by alveolar macrophages: smokers versus nonsmokers. J. Infect. Dis. 158, 1309–1316 (1988).

    Article  PubMed  Google Scholar 

  22. Berenson, C. S., Garlipp, M. A., Grove, L. J., Maloney, J. & Sethi, S. Impaired phagocytosis of nontypeable Haemophilus influenzae by human alveolar macrophages in chronic obstructive pulmonary disease. J. Infect. Dis. 194, 1375–1384 (2006).

    Article  PubMed  Google Scholar 

  23. Hodge, S. et al. Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am. J. Respir. Cell. Mol. Biol. 37, 748–755 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, H., Cowan, M. J., Hasday, J. D., Vogel, S. N. & Medvedev, A. E. Tobacco smoking inhibits expression of proinflammatory cytokines and activation of IL-1R-associated kinase, p38, and NF-κB in alveolar macrophages stimulated with TLR2 and TLR4 agonists. J. Immunol. 179, 6097–6106 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Drannik, A. G. et al. Impact of cigarette smoke on clearance and inflammation after Pseudomonas aeruginosa infection. Am. J. Respir. Crit. Care Med. 170, 1164–1171 (2004).

    Article  PubMed  Google Scholar 

  26. Gaschler, G. J. et al. Cigarette smoke exposure attenuates cytokine production by mouse alveolar macrophages. Am. J. Respir. Cell. Mol. Biol. 38, 218–226 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, G. et al. High mobility group protein-1 inhibits phagocytosis of apoptotic neutrophils through binding to phosphatidylserine. J. Immunol. 181, 4240–4246 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Doz, E. et al. Cigarette smoke-induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent. J. Immunol. 180, 1169–1178 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Gaschler, G. J. et al. Bacteria challenge in smoke exposed mice exacerbates inflammation and skews the inflammatory profile. Am. J. Respir. Crit. Care Med. 29 Jan 2009 (doi: 10.1164/rccm.200808-1306OC).

    Article  CAS  PubMed  Google Scholar 

  30. Woodruff, P. A distinctive alveolar macrophage activation state induced by cigarette smoking. Am. J. Respir. Crit. Care Med. 172, 1383–1392 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Suzuki, M. et al. Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. Am. J. Respir. Cell. Mol. Biol. 39, 673–682 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Taraseviciene-Stewart, L. et al. An animal model of autoimmune emphysema. Am. J. Respir. Crit. Care Med. 171, 734–742 (2005).

    Article  PubMed  Google Scholar 

  33. Ito, K. & Barnes, P. J. COPD as a disease of accelerated lung aging. Chest 135, 173–180 (2009).

    Article  PubMed  Google Scholar 

  34. Rangasamy, T. et al. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J. Clin. Invest. 114, 1248–1259 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Just, M. et al. Relationships between lung function, smoking and morphology of dermal elastic fibres. Exp. Dermatol. 14, 744–751 (2005).

    Article  PubMed  Google Scholar 

  36. Postma, D. S. & Boezen, H. M. Rationale for the Dutch hypothesis. Allergy and airway hyperresponsiveness as genetic factors and their interaction with environment in the development of asthma and COPD. Chest 126, 96S–104S (2004).

    Article  PubMed  Google Scholar 

  37. Pelkonen, M. et al. Delaying decline in pulmonary function with physical activity: a 25-year follow-up. Am. J. Respir. Crit. Care Med. 168, 494–499 (2003).

    Article  PubMed  Google Scholar 

  38. Becker, C. E. & O'Neill, L. A. Inflammasomes in inflammatory disorders: the role of TLRs and their interactions with NLRs. Semin. Immunopathol. 29, 239–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Hamerman, J. A., Ogasawara, K. & Lanier, L. L. NK cells in innate immunity. Curr. Opin. Immunol. 17, 29–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Swann, J. B., Coquet, J. M., Smyth, M. J. & Godfrey, D. I. CD1-restricted T cells and tumor immunity. Curr. Top. Microbiol. Immunol. 314, 293–323 (2007).

    CAS  PubMed  Google Scholar 

  41. Tollerud, D. J. et al. Association of cigarette smoking with decreased numbers of circulating natural killer cells. Am. Rev. Respir. Dis. 139, 194–198 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Mian, M. F., Lauzon, N. M., Stämpfli, M. R., Mossman, K. L. & Ashkar, A. A. Impairment of human NK cell cytotoxic activity and cytokine release by cigarette smoke. J. Leukoc. Biol. 83, 774–784 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Lu, L. et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442, 997–1002 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Ng, A. K. & Travis, L. B. Subsequent malignant neoplasms in cancer survivors. Cancer J. 14, 429–434 (2008).

    Article  PubMed  Google Scholar 

  45. Kim, E. et al. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nature Med. 14, 633–640 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Vijayanand, P. et al. Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. N. Engl. J. Med. 356, 1410–1422 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Mellman, I. & Steinman, R. M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. McComb, J. G. et al. CX3CL1 up-regulation is associated with recruitment of CX3CR1+ mononuclear phagocytes and T lymphocytes in the lungs during cigarette smoke-induced emphysema. Am. J. Pathol. 173, 949–961 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tsoumakidou, M., Demedts, I., Brusselle, G. & Jeffery, P. K. Dendritic cells in chronic obstructive pulmonary disease: new players in an old game. Am. J. Respir. Crit. Care Med. 177, 1180–1186 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Jahnsen, F. L. et al. Accelerated antigen sampling and transport by airway mucosal dendritic cells following inhalation of a bacterial stimulus. J. Immunol. 177, 5861–5867 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Brokaw, J. J. et al. Glucocorticoid-induced apoptosis of dendritic cells in the rat tracheal mucosa. Am. J. Respir. Cell. Mol. Biol. 19, 598–605 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Robbins, C. S. et al. Cigarette smoke decreases pulmonary dendritic cells and impacts antiviral immune responsiveness. Am. J. Respir. Cell. Mol. Biol. 30, 202–211 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Robbins, C. S., Franco, F., Mouded, M., Cernadas, M. & Shapiro, S. D. Cigarette smoke exposure impairs dendritic cell maturation and T cell proliferation in thoracic lymph nodes of mice. J. Immunol. 180, 6623–6628 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Kroening, P. R. et al. Cigarette smoke-induced oxidative stress suppresses generation of dendritic cell IL-12 and IL-23 through ERK-dependent pathways. J. Immunol. 181, 1536–1547 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, L., Joad, J. P., Zhong, C. & Pinkerton, K. E. Effects of environmental tobacco smoke exposure on pulmonary immune response in infant monkeys. J. Allergy Clin. Immunol. 122, 400–406 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Trimble, N. J., Botelho, F. M., Bauer, C. M., Fattouh, R. & Stämpfli, M. R. Adjuvant and anti-inflammatory properties of cigarette smoke in murine allergic airway inflammation. Am. J. Respir. Cell. Mol. Biol. 40, 38–46 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Hogg, J. C. et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 350, 2645–2653 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Van Hove, C. L., Moerloose, K., Maes, T., Joos, G. & Tournoy, K. G. Cigarette smoke enhances Th-2 driven airway inflammation and delays inhalational tolerance. Respir. Res. 9, 42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee, S. et al. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nature Med. 13, 567–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Feghali-Bostwick, C. A. et al. Autoantibodies in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 177, 156–163 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Grumelli, S. et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. Plos Med. 1, e8 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hautamaki, R. D., Kobayashi, D. K., Senior, R. M. & Shapiro, S. D. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277, 2002–2004 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Maeno, T. et al. CD8+ T cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J. Immunol. 178, 8090–8096 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Motz, G. T. et al. Persistence of lung CD8 T cell oligoclonal expansions upon smoking cessation in a mouse model of cigarette smoke-induced emphysema. J. Immunol. 181, 8036–8043 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Gualano, R. et al. Cigarette smoke worsens lung inflammation and impairs resolution of influenza infection in mice. Respir. Res. 9, 53 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Korn, S. et al. Characterization of the interstitial lung and peripheral blood T cell receptor repertoire in cigarette smokers. Am. J. Respir. Cell. Mol. Biol. 32, 142–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Sullivan, A. K. et al. Oligoclonal CD4+ T cells in the lungs of patients with severe emphysema. Am. J. Respir. Crit. Care Med. 172, 590–596 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kang, M. J. et al. Cigarette smoke selectively enhances viral PAMP- and virus-induced pulmonary innate immune and remodeling responses in mice. J. Clin. Invest. 118, 2771–2784 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Karrasch, S., Holz, O. & Jorres, R. A. Aging and induced senescence as factors in the pathogenesis of lung emphysema. Respir. Med. 102, 1215–1230 (2008).

    Article  PubMed  Google Scholar 

  70. Kalra, R., Singh, S. P., Savage, S. M., Finch, G. L. & Sopori, M. L. Effects of cigarette smoke on immune response: chronic exposure to cigarette smoke impairs antigen-mediated signaling in T cells and depletes IP3-sensitive Ca2+ stores. J. Pharmacol. Exp. Ther. 293, 166–171 (2000).

    CAS  PubMed  Google Scholar 

  71. Zavitz, C. C. et al. Impact of cigarette smoke on T and B cell responsiveness. Cell. Immunol. 253, 38–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Harrison, O. J. et al. Airway infiltration of CD4+ CCR6+ Th17 type cells associated with chronic cigarette smoke induced airspace enlargement. Immunol. Lett. 121, 13–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Barcelo, B. et al. Phenotypic characterisation of T-lymphocytes in COPD: abnormal CD4+CD25+ regulatory T-lymphocyte response to tobacco smoking. Eur. Respir. J. 31, 555–562 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Sethi, S. & Murphy, T. F. Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin. Microbiol Rev. 14, 336–363 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wedzicha, J. Role of viruses in exacerbations of chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 1, 115–120 (2004).

    Article  PubMed  Google Scholar 

  76. Papi, A. et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am. J. Respir. Crit. Care Med. 173, 1114–1121 (2006).

    Article  PubMed  Google Scholar 

  77. Patel, I. S. et al. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax 57, 759–764 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Robbins, C. S. et al. Cigarette smoke impacts immune inflammatory responses to influenza in mice. Am. J. Respir. Crit. Care Med. 174, 1342–1351 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Kerstjens, H. A., Overbeek, S. E., Schouten, J. P., Brand, P. L. & Postma, D. S. Airways hyperresponsiveness, bronchodilator response, allergy and smoking predict improvement in FEV1 during long-term inhaled corticosteroid treatment. Dutch CNSLD study group. Eur. Respir. J. 6, 868–876 (1993).

    CAS  PubMed  Google Scholar 

  80. Chalmers, G. W. et al. Influence of cigarette smoking on inhaled corticosteroid treatment in mild asthma. Thorax 57, 226–230 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chaudhuri, R. et al. Cigarette smoking impairs the therapeutic response to oral corticosteroids in chronic asthma. Am. J. Respir. Crit. Care Med. 168, 1308–1311 (2003).

    Article  PubMed  Google Scholar 

  82. Chalmers, G. W. et al. Smoking and airway inflammation in patients with mild asthma. Chest 120, 1917–1922 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Melgert, B. N. et al. Short-term smoke exposure attenuates ovalbumin-induced airway inflammation in allergic mice. Am. J. Respir. Cell. Mol. Biol. 30, 880–885 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Robbins, C. S. et al. Mainstream cigarette smoke exposure attenuates airway immune inflammatory responses to surrogate and common environmental allergens in mice, despite evidence of increased systemic sensitization. J. Immunol. 175, 2834–2842 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Thatcher, T. H., Benson, R. P., Phipps, R. P. & Sime, P. J. High dose but not low dose mainstream cigarette smoke suppresses allergic airway inflammation by inhibiting T cell function. Am. J. Physiol. Lung Cell. Mol. Physiol. 295, L412–L421 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moerloose, K. B., Pauwels, R. A. & Joos, G. F. Short-term cigarette smoke exposure enhances allergic airway inflammation in mice. Am. J. Respir. Crit. Care Med. 172, 168–172 (2005).

    Article  PubMed  Google Scholar 

  87. Culpitt, S. V. et al. Impaired inhibition by dexamethasone of cytokine release by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 167, 24–31 (2003).

    Article  PubMed  Google Scholar 

  88. Bouzigon, E. et al. Effect of 17q21 variants and smoking exposure in early-onset asthma. N. Engl. J. Med. 359, 1985–1994 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Noakes, P. S., Holt, P. G. & Prescott, S. L. Maternal smoking in pregnancy alters neonatal cytokine responses. Allergy 58, 1053–1058 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Ng, S. P., Silverstone, A. E., Lai, Z. W. & Zelikoff, J. T. Effects of prenatal exposure to cigarette smoke on offspring tumor susceptibility and associated immune mechanisms. Toxicol. Sci. 89, 135–144 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Alberg, A. J., Brock, M. V. & Samet, J. M. Epidemiology of lung cancer: looking to the future. J. Clin. Oncol. 23, 3175–3185 (2005).

    Article  PubMed  Google Scholar 

  92. Ji, H. et al. K-ras activation generates an inflammatory response in lung tumors. Oncogene 25, 2105–2112 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Anderson, G. P. & Bozinovski, S. Acquired somatic mutations in the molecular pathogenesis of COPD. Trends Pharmacol. Sci. 24, 71–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Maheswaran, S. et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chalmer, J., Holt, P. G. & Keast, D. Cell-mediated immune responses to transplanted tumors in mice chronically exposed to cigarette smoke. J. Natl Cancer Inst. 55, 1129–1134 (1975).

    Article  CAS  PubMed  Google Scholar 

  97. Lu, L. M. et al. Cigarette smoke impairs NK cell-dependent tumor immune surveillance. J. Immunol. 178, 936–943 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Anderson, G. P. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 372, 1107–1119 (2008).

    Article  PubMed  Google Scholar 

  99. Rabe, K. F. et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 176, 532–555 (2007).

    Article  PubMed  Google Scholar 

  100. Mishra, N. C. et al. Nicotine primarily suppresses lung Th2 but not goblet cell and muscle cell responses to allergens. J. Immunol. 180, 7655–7663 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. de Jonge, W. J. et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2–STAT3 signaling pathway. Nature Immunol. 6, 844–851 (2005).

    Article  CAS  Google Scholar 

  102. Hecht, S. S. Cigarette smoking and lung cancer: chemical mechanisms and approaches to prevention. Lancet Oncol. 3, 461–469 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Kim, J. H. et al. Aryl hydrocarbon receptor gene polymorphisms affect lung cancer risk. Lung Cancer 56, 9–15 (2007).

    Article  PubMed  Google Scholar 

  104. Harrigan, J. A. et al. DNA adduct formation in precision-cut rat liver and lung slices exposed to benzo[a]pyrene. Toxicol. Sci. 77, 307–314 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Pae, H. O., Lee, Y. C. & Chung, H. T. Heme oxygenase-1 and carbon monoxide: emerging therapeutic targets in inflammation and allergy. Recent Pat. Inflamm. Allergy Drug. Discov. 2, 159–165 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Ryter, S. W., Otterbein, L. E., Morse, D. & Choi, A. M. Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. Mol. Cell. Biochem. 234–235, 249–263 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Anderson, G. P. The COPD CO-factor. Eur. Respir. J. 30, 1032–1034 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Yao, K. et al. Administration of intracoronary bone marrow mononuclear cells on chronic myocardial infarction improves diastolic function. Heart 94, 1147–1153 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Barreiro, E., Gea, J., Matar, G. & Hussain, S. N. Expression and carbonylation of creatine kinase in the quadriceps femoris muscles of patients with chronic obstructive pulmonary disease. Am. J. Respir. Cell. Mol. Biol. 33, 636–642 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Bowler, R. P., Barnes, P. J. & Crapo, J. D. The role of oxidative stress in chronic obstructive pulmonary disease. COPD 1, 255–277 (2004).

    Article  PubMed  Google Scholar 

  111. Wang, H. et al. Genetic susceptibility of lung cancer associated with common variants in the 3′ untranslated regions of the adenosine triphosphate-binding cassette B1 (ABCB1) and ABCC1 candidate transporter genes for carcinogen export. Cancer 115, 595–607 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Schuller, H. M. Nitrosamines as nicotinic receptor ligands. Life Sci. 80, 2274–2280 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pfeifer, G. P. et al. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21, 7435–7451 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Nair, U., Bartsch, H. & Nair, J. Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: a review of published adduct types and levels in humans. Free Radic. Biol. Med. 43, 1109–1120 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Peters for expert advice on the effect of smoke on human clinical infections. We also thank our basic science collaborators M. Hibbs, M. Ernst, S. Bozinovski and R. Gualano, as well as the graduate students G. Gaschler, C. Bauer and C. Zavitz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R. Stämpfli.

Related links

Related links

FURTHER INFORMATION

Martin R. Stämpfli's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stämpfli, M., Anderson, G. How cigarette smoke skews immune responses to promote infection, lung disease and cancer. Nat Rev Immunol 9, 377–384 (2009). https://doi.org/10.1038/nri2530

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2530

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing