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ABSTRACT The heterogeneity of interstitial lung disease (ILD) results in prognostic uncertainty
concerning end-of-life discussions and optimal timing for transplantation. Effective prognostic markers
and prediction models are needed. Cardiopulmonary exercise testing (CPET) provides a comprehensive
assessment of the physiological changes in the respiratory, cardiovascular and musculoskeletal systems in a
controlled laboratory environment. It has shown promise as a prognostic factor for other chronic
respiratory conditions. We sought to evaluate the prognostic value of CPET in predicting outcomes in
longitudinal studies of ILD.

MEDLINE, Embase and the Cochrane Database of Systematic Reviews were used to identify studies
reporting the prognostic value of CPET in predicting outcomes in longitudinal studies of ILD. Study
quality was assessed using the Quality in Prognosis Study risk of bias tool.

Thirteen studies were included that reported the prognostic value of CPET in ILD. All studies reported
at least one CPET parameter predicting clinical outcomes in ILD, with survival being the principal
outcome assessed. Maximum oxygen consumption, reduced ventilatory efficiency and exercise-induced
hypoxaemia were all reported to have prognostic value in ILD. Issues with study design (primarily due to
inherent problems of retrospective studies, patient selection and presentation of numerous CPET
parameters), insufficient adjustment for important confounders and inadequate statistical analyses limit
the strength of the conclusions that can be drawn at this stage.

There is insufficient evidence to confirm the value of CPET in facilitating “real-world” clinical decisions
in ILD. Additional prospective studies are required to validate the putative prognostic associations reported
in previous studies in carefully phenotyped patient populations.
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Introduction
The heterogeneity of interstitial lung disease (ILD) [1, 2] presents challenges for patients and clinicians in
terms of treatment choices, optimal timing of end-of-life discussions [3], or referral for transplantation [4]
and clinical trial design [5, 6].

Cardiopulmonary exercise testing (CPET) provides a comprehensive assessment of the physiological
changes that occur in the respiratory, cardiovascular and musculoskeletal systems during exercise, in a
controlled laboratory environment [7, 8], and is considered the gold standard for evaluating
maximal/symptom-limited exercise tolerance in patients with pulmonary and cardiac disease [9].
Although CPET has been available for decades, recent evidence is emerging to support its use in the
prognostication of chronic cardiopulmonary disease [10, 11], with increasing interest in its application in
ILD [12].

Maximum/peak oxygen consumption (VO2max or peak VO2) is a measurement of the capacity for aerobic
exercise and is determined by variables that define oxygen delivery by the Fick equation [13]. In patients
with ILD, limitations on exercise may be the consequence of either ventilatory mechanical limitation (by
reaching their ventilatory ceiling, typically thought to be 80% of maximal voluntary ventilation (MVV)),
abnormal gas exchange (or reduction in ventilatory efficiency; indicated by variables such as the increment
in minute ventilation (VE) relative to carbon dioxide production (VE/VCO2)) and/or diffusion limitation
(indicated by variables such as reduction in oxygenation >5% or hypoxia at anaerobic threshold (AT)/peak
exercise) [13].

The primary objective of this systematic literature review was to evaluate the prognostic value of CPET in
predicting disease-specific outcomes in longitudinal studies of ILD. If a prognostic role for CPET were
confirmed, it could be used to guide earlier intervention for at-risk patients and support cohort
enrichment for ILD clinical trials.

Materials and methods
The study protocol was prepared in accordance with Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [14] and registered in the International Prospective Register of
Systematic Reviews (PROSPERO 110198/2018) (study commencement date 1 November 2018, completion
date 30 September 2019). In brief, eligible studies included cohort (retrospective or prospective) studies
reporting the prognostic value of CPET results in adult populations of ILD.

The primary objective was to evaluate the prognostic value of CPET in predicting disease course and
outcomes in longitudinal studies of ILD. We explored the relationship between CPET and a broad range
of relevant clinical outcomes including, but not limited to, relevant disease outcomes (e.g. death,
hospitalisation), potential surrogates of disease severity (e.g. worsening lung physiology, etc.), and future
deterioration in health-related quality of life (HRQoL) and/or functional status. Where possible, a
comparison of the prognostic value of CPET was made across different ILD subtypes.

Studies were excluded if an ILD cohort was not described and reported separately. Non-original research
publications and abbreviated reports were excluded. Randomised controlled trials (RCTs) were excluded as
we did not expect this to be an appropriate methodological design for assessing the prognostic value of
CPET. An amendment to our originally registered protocol (English language articles only) enabled the
inclusion of a relevant non-English (French) publication.

The search criteria were developed in accordance with search recommendations for systematic reviews of
evaluations of prognostic variables [15]. Electronic searches were performed in MEDLINE, Embase and
the Cochrane Database of Systematic Reviews (CDSR), with no publication date or language restrictions.
Full details of the specific search criteria applied are presented as supplementary material 1. All titles and
abstracts were screened independently by two review authors (RD and CS), and agreement was assessed
using Cohen’s kappa statistics [16]. Any discrepancies/disagreements were resolved by discussion between
reviewers and included a third party (SLB) if necessary.

A formal systematic review management platform was not used for this study. EndNote (Alfasoft Limited)
was used to facilitate the combination of multiple database results and deduplication. A standardised data
extraction form was used (independently by RS and CS, with subsequent verification by SLB) to extract
relevant study details from selected studies.

A meta-analysis was planned if appropriate and feasible. A narrative, qualitative data synthesis was
planned if wide heterogeneity in study design and CPET analysis precluded quantitative analysis. Study
quality was assessed using the QUIPS (Quality in Prognosis Study) risk of bias tool by two reviewers (RD
and CS) [17], with agreement measured using Cohen’s kappa (supplementary material 2).
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Results
Simultaneous searches of Embase (n=573) and MEDLINE (n=373), performed on 13 April 2019,
identified 946 articles. A search of the CDSR did not identify any additional studies. As anticipated, we
did not identify any relevant RCTs in our study selection process and no studies were excluded on the
basis of an RCT design. After removal of duplicates, 658 titles and abstracts were screened for eligibility.
There was moderate initial agreement between the two reviewers (Cohen’s kappa 0.462, supplementary
material 3). Discordance for 20 studies was due to a single non-clinically trained reviewer choosing to
include questionable studies for consideration (all of which were easily resolved through discussion and
subsequently excluded). Due to the nature of discordance, it was not felt that retraining reviewers and
formally repeating the title and abstract selection process would benefit the review process.

Following full text review, 13 studies were eligible for full data extraction (figure 1).

Study design
Table 1 summarises the study design and reported findings of the final 13 studies.

The majority were retrospective cohort analyses (11/13, 85%), with variable follow-up (the majority
<4 years [7, 18–25], one study with 5 year follow-up [26]; range 23 days–20 years follow-up [19, 27]).

There were two prospective studies [28, 29]. One investigated the relationship between CPET and survival
characteristics in IPF with variable follow-up between 9 and 64 months [28]. The other used CPET as part
of a wider investigation into the role of exercise testing in the prognostication of ILD and followed patients
for a fixed period of 40 months [29].

Articles identified through

MEDLINE search, n=373

–

–

–

Articles identified through

Embase search, n=573

Articles identified through

CDSR search, n=0

Duplicate results removed, 

n=288

Full text articles excluded, n=5

(cross-sectional study of CPET with no longitudinal 

component, n=5

Records excluded at title and abstract review, 

  n=640

Did not fulfil principal inclusion criteria, n=594

Inclusion criteria met but:

    Conference abstract/review, n=5

    Cross-sectional study with no longitudinal

       component, n=33

    Study focused on diagnostic role of CPET, n=4

    Study focused on use of CPET for evaluating 

       suitability for transplantation, n=2

    Study focused on use of CPET for 

       identification of pulmonary vasculopathy, n=2

Total articles identified, n=946

Titles and abstracts assessed for

eligibility, n=658

Discordance of 20 articles:

all resolved by discussion with 

third reviewer (see supplementary 

material)

Studies included in qualitative

synthesis, n=13
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FIGURE 1 Study selection flow diagram presented according to PRISMA statement. CDSR: Cochrane Database of Systematic Reviews; CPET:
cardiopulmonary exercise testing.
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TABLE 1 Study characteristics of papers selected for full data extraction

First author,
date [ref],
origin

Description Study population and
attrition

CPET method and
CPET parameters

Exclusion Disease outcomes Statistical methods to
investigate CPET and
outcome

Summary of key reported
outcomes

Comments

TRIANTAFILLIDOU

2013 [28],
Greece

Prospective study
evaluating prognostic
role of 6MWT and
CPET in IPF.
Follow-up
9–64 months.

25 pts with IPF Cycle ergometer,
pulse oximetry.
VE/VCO2 slope,
VO2 peak/kg,
VE/VCO2 ratio
at AT.

Significant PH (PASP
>45 mmHg on ECHO), pts
taking beta blockers.
Pulmonary fibrosis due to
environmental and
occupational exposure,
drug toxicity or
autoimmune
rheumatological disease.

Survival Parameters of study were
evaluated by Wald test,
likelihood ratio test and the
score (log-rank) tests with
Bonferroni correction.
Parameters achieving
statistical significance
were then evaluated in a
multiple regression Cox
proportional hazard model
with a stepwise model
selection.

8 D by end of the observation
period.

21 patients reached the AT.
VE/VCO2 slope, VO2 peak·kg

−1

and VE/VCO2 at AT were
significant survival predictors.
Optimal model for mortality
risk estimation combined VO2

peak·kg−1 with DLCO
(p<0.0001). Per 1 unit increase
in VO2 peak·kg

−1

(1 mL·kg−1·min−1) and DLCO%
(1%), mortality rate was
reduced by 32% and 13%,
respectively.

VO2 peak threshold of
14.2 mL·min−1·kg−1 was
associated with an increased
mortality risk.

Prospective study with
low mortality rate
in small numbers
of pts.

Data generated from
sub-analysis of
RCT.

VAINSHELBOIM
2016 [29],
Israel

Prospective
observational study
evaluating role of
12 week exercise
training programme
on survival at
40 months follow-up.
Evaluation of the role
of CPET variables in
the prognostication
of IPF.

34 pts with IPF Cycle ergometer,
pulse oximetry.
Peak VO2·kg

−1,
peak work rate,
VE/VO2 nadir,
VE/VCO2 ratio at
AT, tidal volume
reserve.

Non-IPF ILD. Clinically
unstable in preceding
3–6 months, severe
comorbid illness, unstable
cardiac disease and any
orthopaedic or
neurological
contraindications to CPET.

Mortality or
transplantation

ROC curve analysis was used
to determine cut-off points
of CPET variables for
mortality. Cox regression
analysis for survival
analysis and comparison
between significant cut-off
points (log-rank test). HR
for death or LTx (Wald
test).

9 deaths and 2 LTx (considered
fatalities in statistical analysis).

Poorer survival and increased
mortality associated with
cut-off points for:

peak work rate <62 watts (AUC
0.854, 0.73–0.98 CI, p=0.005),

peak VO2 <13.8 mL·kg−1·min−1

(AUC 0.731, 0.56–0.90 CI,
p=0.031),

tidal volume reserve
<0.48 L·breath−1 (AUC 0.810,
0.66–0.96 CI, p=0.01), VE/VCO2

at AT >34 (AUC 0.783, 0.6–0.96
CI, p=0.02) and

VE/VO2 nadir >34 (AUC 0.736,
0.56–0.90, p=0.002).

Bivariate analysis of these cut-offs
(above and below the threshold)
revealed HRs as follows: peak
work rate 9.2 (1.9–42.6), peak
VO2 4.4 (0.94–20.3), tidal
volume reserve 7.6 (1.6–35.2),
VE/VO2 nadir 8.3 (2.2–31.6),
VE/VO2 at AT 4.6 (1.2–17.3).

Non-survivors were characterised
by higher dyspnoea levels, the
presence of PH (assessed by
ECHO sPAP>35 mmHg), and
CPET markers of reduced
ventilatory efficiency (VE/VO2

nadir p=0.039, VE/VCO2 at AT
p=0.008) and reduced exercise
capacity (peak work rate
p=0.01, peak VO2 p=0.02).

Prospective
observational study
analysis as part of
a wider
single-centre RCT.

Underpowered to
detect survival
differences
between groups.

Small sample size.
Higher prevalence of

PH in
non-survivors.

Continued
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TABLE 1 Continued

First author,
date [ref],
origin

Description Study population and
attrition

CPET method and
CPET parameters

Exclusion Disease outcomes Statistical methods to
investigate CPET and
outcome

Summary of key reported
outcomes

Comments

KING 2001 [23],
USA

Retrospective analysis
of clinical,
radiological and
physiological
parameters
predicting survival in
IPF. Median
follow-up 20 months
(maximum
14.8 years).

238 IPF pts with
histological UIP.

80 pts excluded from
the final model
derivation.

Cycle ergometer,
blood gas
analysis.
P(A-a)O2

corrected for FiO2,
VD/VT, VO2,
maximal
workload.

CTD, left ventricular failure,
occupational and
environmental exposure,
or history of drug
exposure known to cause
pulmonary fibrosis.
Incomplete case records.

Survival (defined as death
or time of censoring:
censored if still alive
at last contact n=79,
received single LTx
n=11, double LTx n=1,
or heart and LTx n=1
or e) died from other
cause than IPF (n=12).

Kaplan–Meier survival curves
developed for group,
stratified by sex, age and
smoking status. Univariate
Cox proportional hazards
regression analysis
(adjusted for age and
smoking) for each variable.
Variables with p<0.25
included in multivariate
analysis. Pearson’s
correlation to avoid
multicollinearity. Forward
elimination process used
to develop preliminary
model. Multivariable
influential points removed.
Composite scoring system
developed, weighting
categories according to p
values and HR, and using
Akaike’s information
criteria.

155 D (125 IPF, 19 other causes, 11
unknown and attributed to IPF).

105 patients censored (n=79 alive
at time of analysis, n=13 LTx,
n=12 non-IPF deaths, n=1 lost
to follow-up).

Composite scoring model
developed to predict survival in
IPF (included age, smoking
history, clubbing, extent of
profusion of interstitial
opacities, presence/absence of
PH on CXR, % predicted TLC
and PaO2 at the end of maximal
exercise).

Exercise PaO2 only exercise
variable included in the model,
accounting for 10.5% of score
(PaO2 maximal exercise HR
0.74, CI 0.67–0.82, p<0.0001).

CPET performed in
study as part of
wider analysis of
predictive factors in
IPF.

Histological UIP
increased potential
selection bias of a
less severe IPF
population.

The radiological
component used
CXR rather than
HRCT in early
years of the study.

Only 158/238 (66%) of
the original cohort
were used to derive
the complete
model and thus
possibility for
selection bias.

MIKI 2003 [21],
Japan

Retrospective study:
evaluation of the
predictive value of
CPET for IPF
respiratory deaths.
Mean follow-up
2.7 years
(7.2 months–
9.0 years).

41 IPF pts. Exercise treadmill
(Sheffield
protocol). PaO2,
PaCO2, HR,
respiratory
frequency (f), Vt,
VE, peak VO2,
VE/VO2, VE/VCO2,
VO2/HR, AaDO2

and PaO2 slope.

CTD, sarcoid, OP, EP, HP,
cardiac disease, anaemia,
primary cardiac disease,
PVD, cancer, pleural/chest
wall disorders including
respiratory muscle
weakness. Steroid or
immunosuppressive
treatment prior to study
entry. Death from a
non-respiratory cause
during follow-up.

Respiratory death Exercise parameters (between
groups split by PaO2 slope)
compared using
Mann–Whitney. Univariate
Cox proportional hazards
model to compare initial
parameters then entered
into multiple regression
analysis using stepwise
evaluation. Relationship
between PaO2 slope and
other variables were
analysed by linear
regression with stepwise
technique. Survival times
compared using
Kaplan–Meier curves and
statistical significance
determined by log-rank
test.

23 respiratory deaths. Median
survival 2.9 years.

In univariate analysis, VO2 max (HR
0.997, 0.995–0.999 CI, p=0.012),
VO2/HRR max) (HR 0.69,
0.51–0.93 CI, p=0.014), PaO2

slope (HR 0.68, 0.51–0.89 CI,
p=0.006), VE/VCO2 (HR 1.04,
1.006–1.07 CI, p=0.020) and age
(HR 1.1, 1.02–1.18 CI, p=0.014)
associated with survival in IPF.

On multiple regression, PaO2 slope
(HR 0.84, 0.73–0.97 CI, p=0.015)
and age (HR 1.096, 1.01–1.19
CI, p=0.025) independently
related to survival.

When PaO2 slope was divided into
steep (⩽−60 mmHg·L−1·min−1)
and gentle
(>−60 mmHg·L−1·min−1),
median survival time after
CPET significantly shorter in
steep group (1.6 versus
4.5 years).

Retrospective,
single-centre
cohort.

Large number of
exclusion criteria.

Outcomes limited to
respiratory deaths.

Continued
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TABLE 1 Continued

First author,
date [ref],
origin

Description Study population and
attrition

CPET method and
CPET parameters

Exclusion Disease outcomes Statistical methods to
investigate CPET and
outcome

Summary of key reported
outcomes

Comments

FELL 2009 [24],
USA

Retrospective study
evaluating prognostic
value of CPET in IPF.
Mean follow-up not
reported.

117 IPF pts. 10 pts
excluded from
survival analysis as
VO2 max changed
between baseline
and 6 months.

Cycle ergometer.
Blood gas
analysis. Peak
VO2·kg

−1

Patients with CTD,
occupational or
environmental exposure,
histological pattern other
than UIP.

Survival Multivariate Cox proportional
hazard models studied the
predictive value of peak
VO2 adjusting for age,
gender, smoking status,
baseline FVC% and
baseline DLCO%. Resulting
HR were plotted against
peak VO2 to determine
thresholds. Survival
thresholds examined with
Kaplan–Meier survival
curves, log-rank tests and
multivariate Cox
proportional hazard
models.

Peak VO2·kg
−1 examined as a

continuous variable did not
predict survival HR 0.969
(p=0.55).

Baseline threshold peak VO2

<8.3 mL·kg−1·min−1 was
associated with an increased
risk of death (n=8; HR 3.24,
1.10–9.56 CI, p=0.03).

No other CPET variables reported.

Retrospective,
single-centre
study.

Number of deaths in
each group not
reported.

Analysis was not by a
priori plan. Small
number of pts
below VO2 max
threshold in
analysis.

Caution in interpreting
generalisability to
IPF population as
64% (75/117)
required a surgical
lung biopsy for
diagnosis. No other
CPET outcomes
reported.

WALLAERT 2011
[22], France

Retrospective
multicentre study
evaluating prognostic
role of CPET in
determining 3-year
survival in IPF.

63 IPF patients Cycle ergometer.
Blood gas
analysis. Peak
VO2·kg

−1, VE/VO2

at ventilatory
threshold, VE/CO2,
(VO2/HRR), P(A-a)
O2, ventilatory
reserve and
lactate.

Non-IPF associated ILD. Pts
in which blood gas
analysis had not been
performed.

3-year survival (absence
of D or LTx).

Demographic data, resting
pulmonary function and
CPET parameters in the
survivors were compared
to those who died/received
lung transplantation by
univariate survival analysis.
Multivariate logistic
regression analysis
explored prognosis at
3 years. Kaplan–Meier
curve and log-rank test
was performed, with
model validation by ROC
curve analysis.

19 patients: D (n=14) or LTx (n=5)
at 3 years.

Multivariate logistic regression
analysis highlighted four
parameters to be independently
correlated with mortality: TLC
(% pred), VE/VO2 at ventilatory
threshold, FVC (% pred) and
P(A-a)O2.

The most appropriate logistic
regression model incorporated
two variables, with the lowest
3 year survival when TLC
(<65%) and VE/VO2 at
ventilatory threshold (>45) (AUC
0.811, sensitivity was 98%,
specificity 50%, positive
predictive value 80% and the
negative predictive value 64%).

Retrospective study.
Presence of PH not

studied.
Inadequate description

of exclusion
criteria.

Continued

https://doi.org/10.1183/23120541.00027-2020
6

IN
TER

STITIA
L
LU

N
G
D
ISEA

SE
|
S.L.B

A
R
R
ATT

ET
A
L.



TABLE 1 Continued

First author,
date [ref],
origin

Description Study population and
attrition

CPET method and
CPET parameters

Exclusion Disease outcomes Statistical methods to
investigate CPET and
outcome

Summary of key reported
outcomes

Comments

GLÄSER 2013
[18],
Germany

Retrospective study
evaluating predictive
value of CPET
measures for the
presence of PH in
IPF. Follow-up
2 years.

135 pts (73 with PH)
IPF.
No follow-up data
for 2 pts, reducing
cohort to 133.

Cycle ergometer,
pulse oximetry.
Peak VO2, VO2 at
AT (mL·min−1),
VE/MVV, VE versus
VCO2 slope, VE
max, Vt max, Vt
max/IC, VE/MVV.

Pts with left heart disease
(ECHO ± PWP>14 mmHg
by RHC), non-IPF
pulmonary fibrosis and/or
PH resulting in a life
expectancy <24 months,
inability to perform CPET
due to orthopaedic or
neurological impairment.

Interceding pulmonary
hypertension. Survival
(death and lung
transplantation
combined endpoint)

Mann–Whitney or chi-squared
test used for comparison
of IPF pts with/without PH.

Cox proportional hazards
analysis used for
pulmonary variables and
endpoint. Kaplan–Meier
survival plots constructed
with differences in survival
analysed by log-rank test.
Cut-off values for best
discrimination determined
using ROC curve analysis.

37 D and 6 LTx during follow-up.
Presence of PH best predicted by

gas exchange efficiency during
exercise and peak oxygen
uptake (VE versus VO2 slope
pred (⩾152.4, AUC 0.938,
0.892–0.984 CI) and VO2 peak
(⩽56.3, AUC 0.832, 0.753–0.911
CI)).

By univariate analysis, the
presence of PH (by RHC) was
the most powerful
prognosticator in IPF (whole
group) (mPAP HR 1.07,
1.04–1.11 CI), with CPET
outcomes of peak VO2 pred (HR
0.96, p=0.001) and VO2 at AT
pred (HR 0.97, p=0.017) also
being statistically significant.

In multivariate analysis, invasively
measured pH and peak VO2

pred were independent
predictors for survival.

Retrospective
multicentre study.

Potential recruitment
bias due to
selected cohort
(specialist centres,
excluded left heart
disease).

VAN DER PLAS

2014 [20],
Netherlands

Retrospective study
exploring predictive
value of CPET and
ECHO parameters
for survival in IPF.
Mean follow-up
42.3 ± 42.2 months.

38 pts with IPF.
Follow-up for 3 pts
who received
transplantation
was censored at
date of
transplantation.

Cycle ergometer.
Peak workload (%
predicted), VO2

peak (% pred), VE
peak (% pred),
breathing reserve
(%), HRR peak (%
pred), VE/VCO2

ratio at AT, VO2/
HRR (% pred),
ETCO2 at max
(kPa).

Non-IPF ILD. Pts where
CPET and ECHO were
performed more than
2 weeks apart.

Survival Pearson’s correlation
coefficients were
calculated for sPAP and
CPET parameters. Patients
were grouped into those
with/without sPAP
⩾40 mmHg and differences
in exercise parameters
analysed with unpaired
t-test or chi-squared test.
ROC curve analysis was
used to determine
variables that predict sPAP
⩾40 mmHg. Kaplan–Meier
survival curves then
evaluated the prognostic
value of these parameters
on survival. HRs were
calculated using
multivariate Cox
proportional hazard
models (with FVC and CPI
included in the model to
correct for functional
severity of IPF) to
determine predictive value
of parameters on survival.

24 D and 3 LTx during follow-up.
29/38 (76%) had a reduced VO2

peak (i.e. <84% predicted).
VE/VCO2 at AT was significantly

higher in patients with sPAP
⩾40 mmHg (n=11) compared to
those with sPAP ⩽40 mmHg
(n=27), (54.0 ± 21.9 versus
37.9 ± 7.5, p=0.021).

VE/VCO2 at AT was shown to be a
good predictor of sPAP
⩾40 mmHg by ROC curve
analysis but only VE/VCO2 at AT
and not sPAP ⩾40 mmHg was
shown to predict survival.

Pts with VE/VCO2 at AT ⩽45 (n=24)
had a significantly better
prognosis that those with VE/
VCO2 ⩾45 (n=14), 81.3 ± 14.1
versus 21.0 ± 4.9 months,
respectively; HR 4.58, p=0.001.

Parameters reflecting functional
severity of IPF did not add to
the predictive value of VE/VCO2

at AT for survival.

Retrospective analysis
of prospective
database.

Single centre.

Continued
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TABLE 1 Continued

First author,
date [ref],
origin

Description Study population and
attrition

CPET method and
CPET parameters

Exclusion Disease outcomes Statistical methods to
investigate CPET and
outcome

Summary of key reported
outcomes

Comments

KOLLERT 2011
[25],
Germany

Retrospective study
evaluating whether
gas exchange during
CPET reflects
disease activity and
clinical course in
sarcoidosis. 2 year
follow-up.

149 histologically
confirmed
sarcoidosis.

Analysis of 102
patients (47
incomplete notes).

Cycle ergometer,
capillary blood
gas analysis.

P(A-a)O2

Patients who could not
complete CPET >6 min, in
the absence of
extra-cardiopulmonary
limitations. Patients with
clinical signs of acute
infection. For the
longitudinal subgroup
analysis: patients with
incomplete records.

Longitudinal component:
duration of
immunosuppressive
therapy (no treatment,
treatment ⩽1 year,
treatment >1 year)

Associations between
sarcoidosis clinical
parameters (including the
need for prolonged
immunosuppressive
therapy >1 year) and
P(A-a)O2 during exercise
were assessed by analysis
of variance statistical
methodology.

Univariate then multivariate
backward binary logistic
regression analysis used to
assess clinical variables
independently associated
with need for prolonged
immunosuppression.

Multivariate regression analysis
suggested FVC (OR 0.954,
0.917–0.992 CI, p=0.009) and
P(A-a)O2 (OR 1.098, 1.039–1.160
CI, p<0.0001) during exercise
were independently associated
with a need for prolonged
immunosuppressive treatment.

No other CPET variables reported.

No other CPET
variables described
in analysis and
thus potential for
reporting bias.

Unable to determine
exact clinical
characteristics of
this longitudinal
cohort from the
data presented.

LOPES 2012
[26], Brazil

Retrospective study to
identify CPET
measures that
predict FVC and
DLCO progression
over 5 years in
patients with thoracic
sarcoidosis.

42 pts with
histologically
confirmed
sarcoidosis.

Cycle ergometer,
blood gas
analysis. Peak VO2

(% pred), % peak
VO2 at lactate
threshold, VCO2/
VO2, VO2/HRR,
maximum
respiratory rate,
breathing reserve,
HRR, P(A-a)O2,
ΔSpO2, Δlactate.

History of smoking.
Mycobacterial infection,
exposure to
aero-contaminants or
medications known to
cause granulomatous
disorders. Those with
known medical history or
laboratory diagnosis of
concomitant respiratory,
cardiac or neuromuscular
disease.

Decline FVC% and
DLCO%

FVC/DLCO variation over study
period evaluated by
Wilcoxon signed rank test.
Correlations between CPET
measures and FVC/DLCO
variation over 5 years used
Spearman’s rank
correlation (except
breathing reserve and
relative variations of FVC).
ROC curve analysis used to
determine cut-offs for
CPET measurements are
predictors for lung
function decline. MLR used
to identify factors
independently related to
decreased lung function.

Significant reductions in FVC
(relative variation −5.1% (−23.1
to 0%)) and DLCO (relative
variation −2.5% (−44.4 to
0.93%)) at 5 years follow-up.

Peak VO2 (% pred), breathing
reserve, maximum RR,
P(A-a)O2 and ΔSpO2 correlated
with FVC and DLCO values that
had declined >10% from
baseline (p<0.0001 for all
parameters).

P(A-a)O2 >22 mmHg (RR 70.0,
p=0.001) and breathing reserve
<40% (RR 20.8, p=0.014)
independently predicted lung
function decline (FVC% pred
and DLCO% pred).

Retrospective,
single-centre study.

Potential for selection
bias (tertiary centre
for sarcoid - more
likely to have
severe patients).
Small number of
patients resulting in
high RR values.

Cardiac circulatory
status not
determined.

Continued
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TABLE 1 Continued

First author,
date [ref],
origin

Description Study population and
attrition

CPET method and
CPET parameters

Exclusion Disease outcomes Statistical methods to
investigate CPET and
outcome

Summary of key reported
outcomes

Comments

LAYTON 2017
[7], USA

Retrospective study
evaluating predictive
value of CPET for
1-year transplant-
free survival in a
population of ILD
patients undergoing
lung transplant
evaluation.

192 pts had CPET
performed on
oxygen. Four tests
terminated due to
oxygen
desaturation (nadir
SpO2 <80% despite
30% FiO2). Three
tests terminated
early due to low
ETCO2 (<18 mmHg)
or elevated ETCO2

(>60 mmHg),
reducing cohort to
185 pts.

Cycle ergometer,
pulse oximetry.
Peak VO2

(mL·kg−1·min−1,
% predicted),
workload (watts,
% predicted),
VE/VCO2 slope
(% predicted),
ETCO2 mmHg
and O2 pulse.

Pts not being evaluated for
lung transplant, those that
did not require oxygen
with exercise, no follow-up
data available at 1 year
post-CPET.

Survival without the need
for transplantation (at
1 year).

Comparison of variables
between those who died /
transplanted (D/LTx) and
those who survived
transplant-free were
compared using
two-sample independent
t-test. Survival was
calculated by
Kaplan–Meier method,
with univariable Cox
regression analysis to
identify predictors of 1 year
transplant-free survival.
Multivariable Cox model
with forward stepwise
elimination method to
identify prediction of
transplant-free survival
(and to predict survival
excluding those
transplanted). ROC used to
test thresholds of these
predictors.

79 D/LTx during follow-up
period.Mixed cohort of ILD
patients analysed: IPF n=135
(70%), sarcoidosis n=15 (8%),
HP n=6 (3%), NSIP n=12 (6%),
ILD with mixed connective
tissue disorder n=24 (13%).

113/192 (59%) survived
transplant-free.

More patients with sarcoidosis in
the survival transplant-free
group than the D/LTx group
and more patients with NSIP in
the D/LTx group (p=0.028).

Multivariable Cox regression
identified CPET variables of:

peak workload <35% predicted (HR
4.71, 2.64–8.38 CI, AUC=0.740)

nadir CPET SpO2 <86% despite
30% FiO2 (HR 2.27, 1.41–3.68
CI, AUC=0.645)

FVC% predicted <45% (HR 1.82,
1.15–2.87 CI, AUC 0.624) as
discriminatory parameters
predicting 1-year mortality or
need for transplant.

Notably the presence of PH (present
in 50% pts determined by
combination of RHC or ECHO)
was not an independent predictor
of prognosis in this study.

Retrospective,
single-centre
cohort.

Potential for selection
bias, unidentified
confounding and
missing covariate
data.

Generalisability to
general ILD
patients
questionable as
highly selected
cohort of advanced
ILD patients.

Source population,
patterns of referral
transplant, waiting
times and cohort
characteristics may
differ from other
transplant
programmes.

KAWUT 2005
[19], USA

Retrospective study of
CPET and 6MWTD
variables associated
with survival in pts
referred for lung
transplant. Median
follow-up 271 days
(23–983).

51 pts with IIP or
DPLD of known
cause (e.g. drugs,
occupational or
environmental
exposures, CTD)
referred for lung
transplant.

Cycle ergometer.
Pulse oximetry.
SaO2 (unloaded,
peak, recovery),
peak VO2·kg

−1,
VO2/HR peak,
VCO2 unloaded,
VE unloaded.

Pts evaluated at another lung
transplantation centre.
Other forms of DPLD, e.g.
LAM, pulmonary
Langerhans cell
histiocytosis/histiocytosis
X, EP and granulomatous
DPLD, e.g. sarcoidosis.

All-cause mortality.
Death on the lung
transplantation
waiting list.

Cox proportional hazards
regression to identify
predictors of
time-to-death. Individual
models were constructed
using LTx as a
time-dependent covariate
to “control” for receiving a
LTx. ROC curve analysis
was used to define cut-off
for variables associated
with dying on the
transplantation list.

7 lung transplantations and 17
deaths (1 post-transplantation).

28/51 (55%) UIP/IPF, CTD-UIP
(n=4), NSIP (n=6), HP (n=2), DIP
(n=1), COP (n=1), LIP (n=1) and
unclassifiable ILD (n=7).

A 6MWTD <350 m (HR 4.6,
1.5–14.2 CI, p=0.009), peak
VO2·kg

−1 (HR 0.88, 0.79–0.99 CI,
p=0.039) (no threshold
determined) and VE/VCO2 >46
(p=0.05) (were each associated
with increased risk of death).

SpO2 <95% during unloaded
exercise had 75% chance of
dying on transplantation list
(sensitivity 86%, specificity
89%).

67% chance of death if 6MWTD
<350 m.

Retrospective
single-centre
cohort.Only half pts
reached AT which
limited analysis
(low number of
endpoints).

Additional oxygen use
during CPET was
variable.

Generalisability
questionable as
highly selected
cohort of severe
ILD.

Source population,
patterns of referral
to transplant
centre, waiting
times and cohort
characteristics may
differ from other
transplant
programmes.

Continued
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TABLE 1 Continued

First author,
date [ref],
origin

Description Study population and
attrition

CPET method and
CPET parameters

Exclusion Disease outcomes Statistical methods to
investigate CPET and
outcome

Summary of key reported
outcomes

Comments

SWIGRIS 2009
[27], USA

Retrospective study
exploring prognostic
role of SpO2 and
SaO2 at rest and
during maximal
exercise in SSc-ILD
exercise. Median
follow-up 7.1 years.

83 patients with
SSc-ILD

Cycle ergometer.
Blood gas
analysis and pulse
oximetry. SpO2

and SaO2 at rest
and during
maximal exercise
(SpO2 max). VO2

max measured
but not reported.

Pulmonary hypertension,
overlap syndromes.

Mortality Cox proportional hazard
models were used to
examine the prognostic
capabilities of SpO2,
dichotomised by <89% or
⩾89% and also as
continuous variables.
Kaplan–Meier survival
curves were generated.

39 deaths (number of
transplantations not
recorded).In Cox proportional
hazards models, SpO2

predicted mortality; SpO2max
<89% (HR 2.4, 95% CI 1.2 to
4.9, p=0.02), SpO2max fall >4%
from baseline (HR 2.4, 95% CI
1.1 to 5.0, p=0.02), alongside
ΔSpO2 (HR 1.08, 95% CI 1.03 to
1.14, p=0.002).

Controlling for FVC%, the ΔSpO2

remained a significant
predictor of mortality (HR 1.07,
95% CI 1.01 to 1.14, p=0.02).

No other CPET variables reported.

No other CPET
variables described
in analysis and
thus potential for
reporting bias.

Abbreviations: ΔSpO2: difference between peak and resting oxygen saturation; 6MWTD: 6-minute walk test distance; AaDO2: alveolar–arterial oxygen pressure difference; AT: anaerobic
threshold; AUC: area under the curve; BR: breathing reserve [1 – (VE during exercise/MVV)] × 100; CI: confidence interval; COP: cryptogenic organising pneumonia; CPET:
cardiopulmonary exercise testing; CPI: composite physiologic index; CTD: connective tissue disease; CXR: chest X-ray; D: died/deaths; DLCO: diffusion capacity of lungs for carbon
dioxide; DPLD: diffuse parenchymal lung disease; ECHO: echocardiogram; EP: eosinophilic pneumonia; ETCO2: end tidal carbon dioxide; FiO2: fraction of inspired oxygen; FVC: forced
vital capacity; HP: hypersensitivity pneumonitis; HR: hazard ratio; HRCT: high-resolution computed tomography; HRR: heart rate; IC: inspiratory capacity; ILD: interstitial lung disease;
IPF: idiopathic pulmonary fibrosis; LAM: lymphangioleiomyomatosis; LTx: lung transplantation; max: maximal; MLR: multiple logistic regression; MVV: maximum voluntary ventilation
(can be measured or estimated as FEV1 × 41); OR: odds ratio; PaCO2: partial pressure of carbon dioxide; PaO2: partial pressure of oxygen; pts: patients; NSIP: non-specific interstitial
pneumonia; P(A-a)O2: alveolar–arterial oxygen pressure gradient at peak exercise; PH: pulmonary hypertension; pred: predicted; PVD: peripheral vascular disease; PWP: pulmonary
capillary wedge pressure; RCT: randomised controlled trial; RHC; right heart catheter; ROC: receiver operating characteristic curve; RR: respiratory rate; SaO2: oxygen saturation of
arterial blood; sPAP: systolic pulmonary artery pressure; SpO2: oxygen saturation measured by pulse oximetry; SSc: systemic sclerosis; TLC: total lung capacity; UIP: usual interstitial
pneumonia; VCO2: carbon dioxide production; VD/VT: physiological dead space/tidal volume ratio; VE: minute ventilation; VE/VCO2: ventilatory equivalent for carbon dioxide; VE/VO2:
ventilatory equivalent for oxygen; VO2: oxygen uptake; VO2 slope: PaO2 plotted against VO2; VO2/HRR max or oxygen pulse: oxygen delivery per heartbeat; VT: ventilatory threshold
(highest VO2 sustained without lactic acidosis); Vt: tidal volume; tidal volume reserve: Vt max-Vt resting.
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Patient populations
The majority (8/13, 62%) exclusively recruited patients with IPF, with retrospective assessment of 703 IPF
patients and prospective assessment of 59 IPF patients. Classification of IPF was based on accepted criteria
used at the time of enrolment: the 2000 American Thoracic Society (ATS) international consensus (IC)
statement [1, 20, 21, 23, 24, 28] and the later 2002 ATS/ERS (European Respiratory Society) IC classification
of the idiopathic interstitial pneumonias (including IPF) [19, 22, 30]. The updated 2011 ATS/ERS/JRS/ALAT
guidelines for the diagnosis of IPF [31] were applied in all [7, 18, 28, 29] but one of the studies [20] published
after 2011 (the latter was a retrospective study that may have recruited patients prior to the 2011 guidelines).

Two retrospective studies explored the prognostic role of CPET in 144 histologically confirmed sarcoidosis
patients [25, 26], representing Scadding disease stages 1–4 [32]. Only one retrospective study had
examined the prognostic role of CPET in systemic sclerosis ILD (SSc-ILD) (n=83) [27]. Patients with SSc
met classification criteria adopted by the 1980 American Rheumatology Association [33] and those with
SSc sine scleroderma met criteria proposed by Poormoghim and colleagues [34]. A diagnosis of ILD was
based on chest radiography in 60/83 patients [27].

The prognostic role of CPET in other secondary causes of ILD (such as myositis, occupational causes of
ILD and hypersensitivity pneumonitis (HP)) and/or other forms of idiopathic interstitial pneumonias (IIP)
has not been well studied. Two retrospective studies have reported the prognostic value of CPET in mixed
ILD populations referred for lung transplantation [7, 19], but low patient numbers precluded useful
subgroup analyses.

The majority of studies had a moderate (6/13, 46%) or high (4/13, 31%) [7, 19, 21, 25] risk of bias for
participant selection. For example, generalisability in one study was limited by the lack of clearly defined
clinical characteristics (e.g. Scadding disease stage) in patients followed longitudinally (102/149) [30]. Studies
enrolling from populations referred for lung transplantation resulted in selected cohorts of advanced ILD
patients [7, 19]. Others incorporated a priori patient grouping, for example the presence of pulmonary
hypertension (PH) [18], to enrich populations with those at higher risk of outcomes of interest, or actively
excluded relevant patients, e.g. those that died from a cause other than respiratory failure [21].

Study attrition was generally low, consistent with the retrospective nature of the majority of studies. The
QUIPS risk of bias for study attrition was high in two studies. Over 25% of patients were excluded from
the analyses by Lopes et al. [26] (due to smoking history, concomitant respiratory disease, cardiac disease
and neuromuscular disease). In another study, 34% (80/238) of the original study population were
excluded from the analysis because of incomplete data sets [23].

Prognostic factor measurement
CPET was the sole prognostic factor for the majority of studies (8/13, 62%), with a minority using CPET
as part of a broader repertoire of exploratory physiological tests including 6MWT [7, 19, 28] or lung
function parameters [18]. One study incorporated CPET with other clinical, radiological and resting
physiological assessments to devise a scoring system to predict survival in newly diagnosed cases of IPF
(the clinical–radiological–physiological score) [23].

In two studies, CPET was the principal method of achieving maximal exercise [25, 27], with arterial blood gas
sampling or peripheral oxygenation measurements used to determine the effect of exercise on gas exchange.
In both studies, typical CPET measures, such as peak VO2, were not reported.

The bias rating for prognostic factor measurement using the QUIPS tool was generally low to moderate
(figure 2), with the majority of studies reporting a standardised approach to CPET (albeit individualised
for each study) and analysis that would be easily reproducible and not amenable to bias. Most studies
provided a sufficient description of the CPET protocol used (6/10, 60%), adhering to the 2003 ATS
statement on CPET testing [7, 18–20, 22, 28]. Variance in the use of supplemental oxygen during CPET
was observed; oxygen usage was an inclusion criteria in one study [7], whilst in others, supplemental
oxygen was applied variably, depending on a pre-study requirement for home oxygen or saturation on
room air <90% [19]. In 7 of 13 (54%) studies, blood gas analysis was used to assess the adequacy of gas
exchange during exercise [21–27], whilst the remainder used pulse oximetry, considered by some experts
to be a suboptimal substitute [13]. A broad range of quantitative CPET parameters were presented/
analysed (summarised in table 1), raising the possibility of reporting bias (see later).

All but one study used cycle ergometry. Treadmill exercise testing was used as the method of CPET in the
remaining study, with exercise increments based on a patient’s daily activities and parameters of resting
pulmonary function; this raises concerns regarding variation amongst subjects [21]. Furthermore, inherent
differences in physiological responses recorded by the two ergometers during incremental exercise have
been well defined, and make direct comparison of the two methods problematic [35, 36].
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Outcome measurement
Eleven of 13 studies (85%) evaluated mortality. The majority of these (10/11, 91%) examined all-cause
mortality, considering death or lung transplantation as composite endpoint. The remaining study used an
outcome measurement that was restricted to respiratory deaths only [21]. One study assessed the
discriminatory ability of CPET to identify patients who would die on the lung transplant list before
receiving transplantation [19]. Other outcomes included interceding PH [18], decline in pulmonary
function (FVC, forced vital capacity), decline in DLCO (diffusion capacity for carbon monoxide) and/or
duration of immunosuppressive therapy in sarcoidosis [25, 26].

The risk of bias for outcome measure assessment was considered low to moderate across all studies (fig 2).

Reported prognostic associations of CPET in ILD
All studies reported at least one positive association between CPET and clinical outcomes, raising the
possibility of positive reporting bias. A summary of the main findings is presented in table 2. Significant
heterogeneity in study design, study populations (and classification criteria adopted), CPET protocols,
CPET endpoints and defined endpoints precluded a meta-analysis.

Maximal oxygen consumption
The prognostic value of measures of maximal oxygen consumption during CPET on ILD outcomes have
been reported in 10/13 (77%) studies (table 2).

Peak VO2·kg
−1 inversely correlated with increased 1-year mortality in two cohorts of patients with severe

ILD referred for lung transplantation [7, 19], whilst peak VO2 thresholds ranging from <8.3 to
<14.2 mL·kg−1·min−1 [24, 28, 29] were reported to predict mortality in IPF. These results contrasted with
the findings of other studies that failed to identify any significant association [20–22].

Ventilatory efficiency
The prognostic value of the ventilatory equivalent for CO2 at AT (VE/VCO2 at AT) at levels ranging
between >34 and >46 was reported to predict survival in IPF [7, 19, 20], even after correcting for
functional severity of ILD [20] (table 2).

The ventilatory equivalent for oxygen at AT (VE/VO2 at AT) was also reported to be a poor predictor of
survival in IPF patients [21, 22] and whilst VE/VO2 was associated with worse IPF survival in the
derivation cohort of the clinical–radiological–physiological multimodal score, even after adjustment for age
and smoking status, it was not included as a parameter in the final model [21].

First author, year  Study 
participation 

 Prognostic 
factor 

measurement 

Outcome 
measurement 

Study 
confounding 

Statistical 
analysis and 
reporting 

KING 2001 [23]        

MIKI 

L i

 2003 [21]        

KAWUT  2005 [19]        

SWIGRIS  2009
[27]  

      

FELL  2009 [24]       

WALLAERT   2011 
[22]  

      

KOLLERT  2011 
[25]  

      

LOPES  2012 [26]        

TRIANTAFILLIDOU  
 2013 [28] 

      

GLÄSER  2013 [18]        

VAINSHELBOIM 
2016 [29]  

      

LAYTON 2017  
[7]  

      

Study attrition

FIGURE 2 The Quality in Prognosis Study (QUIPS) risk of bias tool assessment of included studies. Green
indicates low risk of bias, amber indicates a moderate risk and red indicates a high risk of bias.
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TABLE 2 Reported associations between CPET parameters and outcomes in studies of ILD

CPET measurement Studies Threshold Outcome

Maximal oxygen
consumption (peak
VO2)

FELL 2009 No association as continuous variable (HR 0.969,
p=0.55).

Peak VO2 <8.3 mL·kg−1·min−1 associated with
worse outcome (n=8; HR 3.24, 1.10–9.56 CI,
p=0.03).

Survival in IPF.

GLÄSER 2013 Peak VO2% pred <56.3%
Peak VO2% pred (multivariate analysis) – no
threshold determined.

Presence of PH.
Survival in IPF.

KAWUT 2005 Peak VO2·kg
−1 (no threshold determined),

associated with worse outcome.
Mortality at 1 year of mixed ILD patients

referred for transplantation.
KING 2001 Methodology suggested peak VO2 was recorded but

result not reported in results section.
Survival in IPF.

KOLLERT 2011 Not measured. Prolonged immunosuppressive therapy
(>1 year) in sarcoidosis.

LAYTON 2017 Peak VO2·kg
−1 and peak VO2% pred (association with

univariate analysis but not multivariate).
A 1 mL·kg−1·min−1 greater VO2 reduced the risk of
mortality/transplantation by 9%.

1-year mortality or transplantation in
mixed population of ILD.

LOPES 2012 Peak VO2 <50% pred (association on univariate but
not multivariate analysis).

Decline of >10% FVC% pred and DLCO
% pred at 5 years follow-up from
baseline, in thoracic sarcoidosis.

MIKI 2003 Peak VO2 (associated with worse outcome using
univariate analysis, but not on multivariate).

Respiratory deaths in IPF.

SWIGRIS 2009 Although measured, not part of planned statistical
analysis.

Mortality in SSc-ILD.

TRIANTAFILLIDOU
2013

Peak VO2 <14.2 mL·kg−1·min−1 associated with
worse outcome and further enforced when the
model combines DLCO.

Survival in IPF.

VAINSHELBOIM 2016 Peak VO2 <13.8 mL·kg−1·min−1 associated with
worse outcome (AUC 0.731, 0.56–0.9, p=0.031).

Mortality or transplantation in IPF.

VAN DER PLAS 2014 Peak VO2·kg
−1 – no association. Survival in IPF.

WALLAERT 2011 Peak VO2 and peak VO2·kg
−1 – no association as

continuous variable.
3-year survival in IPF.

Ventilatory efficiency
(VE/VO2, VE/VCO2)

FELL 2009 Not measured Survival in IPF.
GLÄSER 2013 VE/VCO2 slopepred ⩾152.4 predicted outcome

(sensitivity 87.2%, specificity 88.4%).
Development of interceding PH in IPF.

KAWUT 2005 VE/VCO2 >46 associated with worse outcome. The
risk was non-proportional so could not be
estimated with a single hazard ratio.

All-cause mortality at 1 year of mixed
ILD patients referred for
transplantation.

KING 2005 VE/VO2 associated with worse outcome when
results adjusted for age and smoking status (HR
1.06). Not included in multivariable model.

Survival in IPF.

KOLLERT 2011 Not measured Prolonged immunosuppressive therapy
(>1 year) in sarcoidosis.

LAYTON 2017 VE/VCO2 slope (association with univariate analysis
but not multivariate)

1-year mortality or transplantation in
mixed population of ILD.

LOPES 2012 Not measured Decline in FVC and DLCO at 5 years in
sarcoidosis.

MIKI 2003 VE/VO2 at max VE/VCO2 at max (associated with
worse outcome using univariate analysis, but not
on multivariate).

Respiratory deaths in IPF.

SWIGRIS 2009 Not measured Survival in SSc-ILD.
TRIANTAFILLIDOU
2013

VE/VCO2 slope and higher VE/VCO2 at AT predicted
worse outcome.

Survival in IPF.

VAINSHELBOIM 2016 VE/VCO2 at AT >34 and nadir VE/VO2 >34 predicted
worse outcome in univariate and bivariate
analysis

Mortality in IPF.

Continued
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Diffusion limitation or exercise-induced hypoxaemia
Exercise-induced hypoxaemia was reported as a potential prognostic factor for survival in IPF [21, 23].
PaO2 at the end of maximal exercise was the only CPET-derived parameter included in the comprehensive
clinical–radiological–physiological multimodal score predicting survival in IPF, and when weighted,
accounted for as much as 10.5% of the maximum score in the final model [23].

TABLE 2 Continued

CPET measurement Studies Threshold Outcome

VAN DER PLAS 2014 VE/VCO2 at AT >45 associated with poorer survival
(HR 4.58, p=0.001), even after correcting for lung
function severity.

Survival in IPF.

WALLAERT 2011 VE/VO2 at AT >45 associated with worse outcome
(multivariate analysis).

3-year survival in IPF.

Diffusion limitation or
exercise-induced
hypoxaemia

FELL 2009 Resting PaO2 was associated with worse outcome
(HR 0.934) when adjusted for age, sex, baseline
physiology and smoking status. No threshold
could be determined.

Survival in IPF.

GLÄSER Although SpO2 monitored during CPET, not
included in analysis.

Survival in IPF or development of
interceding PH.

KAWUT 2013 SaO2 <95% during unloaded exercise (one of
several variables) predicting worse outcome
(p=0.0025).

SaO2 <95% during unloaded exercise (one of
several variables) predicting worse outcome
(sens. of 86%, spec. 89%).

All-cause mortality at 1 year of mixed
ILD patients referred for
transplantation.

Death on waiting list for lung
transplantation.

KING 2001 PaO2 at maximal exercise associated with worse
outcome and included in multivariable model
(accounted for as much as 10.5% of the
maximum score in the model).

Survival in IPF.

KOLLERT 2011 P(A-a)O2 associated with worse outcome
(multivariate analysis, OR 1.098, p<0.001).

Prolonged immunosuppressive therapy
(>1 year) in sarcoidosis.

LAYTON 2017 Nadir CPET SpO2 <86% independently associated
with worse outcome (HR 2.27, p=0.001). Risk of
death/lung transplantation increased two-fold
when SpO2 <86%.

1-year mortality or transplantation in
mixed population of ILD.

LOPES 2012 P(A-a)O2 >22 mmHg associated with worse
outcome (multivariate analysis, RR 70.0,
p<0.001).

Decline of >10% FVC% pred and DLCO
% pred at 5 years follow-up from
baseline, in thoracic sarcoidosis.

MIKI 2003 PaO2 slope (ΔPaO2/ΔVO2) predicted worse outcome
(multivariate analysis, HR 0.841, p=0.015). Those
stratified ⩽−60 mmHg·L−1·min−1 associated with
worse survival (1.6 years versus 4.5 years).

Respiratory deaths in IPF.

SWIGRIS 2009 SpO2 at maximum exercise <89% (HR 2.4) or SpO2

at maximum exercise fall >4 points from
baseline (HR 2.4) associated with worse
outcome.

Survival in SSc-ILD.

TRIANTAFILLIDOU
2013

SpO2 at peak exercise – no association Survival in IPF.

VAINSHELBOIM 2016 Although SpO2 monitored during CPET, not
included in analysis.

Mortality in IPF.

VAN DER PLAS 2014 Not specifically reported on. Survival in IPF.
WALLAERT 2011 Higher P(A-a)O2 associated with worse outcome

using multivariate analysis, but was not included
in the final logistic regression model.

3-year survival in IPF.

Abbreviations: AT: anaerobic threshold; DLCO: diffusion capacity of lungs for carbon dioxide; FVC: forced vital capacity; HR: hazard ratio; ILD:
interstitial lung disease; IPF: idiopathic pulmonary fibrosis; max: maximum; OR: odds ratio; P(A-a)O2: alveolar–arterial oxygen pressure
gradient at peak exercise; pred: predicted; RR: relative risk; SaO2: oxygen saturation of arterial blood; sens.: sensitivity; spec.: specificity;
SpO2: oxygen saturation measured by pulse oximetry; SSc: systemic sclerosis; VE/VCO2: ventilatory equivalent for carbon dioxide; VE/VO2:
ventilatory equivalent for oxygen; VO2: oxygen uptake.
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In mixed populations of ILD patients with advanced disease and referred for lung transplantation [7, 19],
desaturation during CPET was reported to be predictive of lung transplantation or death.

In two studies examining longitudinal outcomes in sarcoidosis, the alveolar–arterial oxygen pressure
gradient during exercise P(A-a)O2 (a measure of arterial desaturation during exercise) was independently
associated with both the need for prolonged (>1 year) immunosuppressive therapy [25] and decline in
pulmonary function at 5 years [26].

Finally, in the single study of SSc-ILD [27], akin to studies of sarcoidosis and IPF, diffusion limitation,
measured in this study as the change in peripheral oxygenation (SpO2) during CPET, correlated with
survival.

Study confounders
The majority of studies were considered to be at “high” risk of bias due to inadequate account of potential
confounding factors or methods of statistical analysis/reporting (fig 2). The data used in the majority of
studies was obtained from existing databases and/or case note review (85%, n=11) and as such, the
contribution of potential important confounders such as comorbid disease [18, 21, 22, 24, 26, 27], body
mass index [19–21, 24, 26, 28] and smoking status [18, 19, 22, 26] was not recorded. Baseline “disease
severity” was only specifically addressed as a potential confounder by one study [20]. The use of variable
levels of supplemental oxygen (or uncertain inspired oxygen concentrations) in some of the reviewed
studies [7, 19] is also a major limitation that potentially impacts on the accuracy of peak VO2.

As discussed previously, studies reporting outcomes in subjects referred for transplantation reduces the
generalisability of the study findings [7, 20], selecting cohorts of more advanced ILD patients. Other
studies focused on healthier populations of ILD patients (e.g. not requiring supplemental oxygen during
CPET), and this unsurprisingly resulted in lower mortality rates (n<10) [24, 28, 29].

Multiple logistic regression (MLR) was the dominant statistical methodology used to determine the
relationship between CPET parameters and clinical outcomes in ILD. Whilst this approach adjusts for the
effects of known confounders, most of the study sample sizes were smaller than the proposed minimum
requirement for MLR analysis [37]. Only one study reported an a priori power calculation to influence
sample size [29]; others were underpowered to detect the outcomes proposed.

Stepwise multiple regression was used by some studies to determine the optimal model parameters to
predict increased mortality [23, 28]. This approach uses parameter inference, which may lead to
over-fitting of some parameters or exclusion of confounders that do not reach statistical significance [38].
Furthermore, the number of parameters or order entry (or deletion) can also affect the selected model [39]
and affect the likelihood of type I error [38]. Only one study specifically attempted to reduce
multicollinearity [23], which if overlooked can increase the risk of type II error [40].

Discussion
Clinicians would benefit from reliable prognostic markers for patients with ILD to enable timelier referral
for transplantation, improved monitoring of existing therapies, and to determine the efficacy of novel
treatments in clinical trials [12, 41].

To our knowledge, this is the first study to systematically review and critically appraise studies that have
reported the prognostic value of CPET in ILD. Thirteen studies were identified; survival was the principal
clinical outcome measured. The utilisation of numerous methodologies, CPET parameters and timing of
mortality evaluation prevented the determination of definitive CPET thresholds for predicting outcomes in
ILD. Due to the clinical diversity of the studies and moderate risk of bias in all studies in at least one
domain of the QUIPS tool, meta-analysis was not possible. It was also felt that meta-analysis might
overstate the findings of these small-scale, poorly matched studies.

There were conflicting results with regards to the prognostic role of maximal oxygen consumption in
predicting survival, which may in part be attributable to the heterogeneity of the studies concerned. Whilst
reductions in ventilatory efficiency have been reported to predict both the presence of PH [42] and
development of interceding PH in IPF cohorts [18], an independent prognostic value in IPF patients was
not determined. The magnitude of hyperventilation at ventilatory threshold does, however, warrant further
exploration as a prognostic factor in ILD, particularly as a marker of concurrent cardiopulmonary vascular
impairment. Exercise-induced hypoxaemia was another potential prognostic outcome reported in several
studies. A study directly comparing the longitudinal prognostic value of CPET with alternative forms of
exercise testing, such as 6-minute walk testing, could therefore be justified.

Issues around study design (relating primarily to the inherent problems of retrospective studies, patient
selection and presentation of numerous CPET parameters), insufficient adjustment for confounding

https://doi.org/10.1183/23120541.00027-2020 15

INTERSTITIAL LUNG DISEASE | S.L. BARRATT ET AL.



variables and inadequate statistical analyses limits the strength of conclusions that can be drawn from the
studies undertaken to date. Whilst the associations presented shed important light on the potential role of
CPET in disease prognostication in ILD, there is currently insufficient evidence to support its use in
facilitating “real-world” clinical decisions and larger prospective studies are required. In planning future
clinical studies, rigorously phenotyped patient cohorts, characterised using standardised definitions and
with external validation or multicentre cohorts, will be imperative to try to overcome some of the
challenges encountered by studying heterogeneous ILD populations.

Several practical challenges of CPET, including lack of measurement standardisation, non-uniform
parameter availability from different instrument manufacturers, provision of adequate training of
personnel, availability of equipment in secondary care, establishment of optimal exercise duration and
ramping protocol, alongside individual patient safety considerations, such as desaturation to prohibitive
levels in advanced ILD, will all need to be addressed prior to its consideration in clinical practice in ILD
patient populations. The absence of sufficient longitudinal data to identify a minimally clinically important
change in CPET values in ILDs is a further obstacle that will also need to be overcome [12, 43].

This work has identified a number of considerations for future prognostic studies of CPET in ILD.
Common to many human diseases, the disease progression in ILD is probably influenced by a complex
interplay of patient, genetic, environmental and treatment factors. As such, a multivariable approach to the
design and analysis of future prognostic studies of ILD is essential if we are to confirm a specific role for
CPET in routine monitoring. In contrast to RCTs there are no robust standards defining the need to
register or publish protocols for prognostic research and as such it is not always transparent whether
statistical analysis was part of the a priori plan [44]. Almost all studies in this review examined multiple
prognostic CPET variables and as such there is potential for selective reporting bias that could be largely
overcome by more stringent protocol registration with pre-specified outcomes of interest. It is important
that relevant study confounders are taken into consideration in future studies examining the prognostic
value of CPET in ILD to establish whether CPET provides additional prognostic value beyond more easily
obtainable clinical and physiological outcomes.

Conclusions: take-home message
CPET may have a role as a prognostic factor in ILD but the quality of existing studies and lack of MCID
values in ILDs limits the conclusions that can be drawn at present. Large carefully designed prospective
studies are needed to establish the role of CPET in the longitudinal assessment of ILD in the future.
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