ERJ OPEN RESEARCH
ORIGINAL RESEARCH ARTICLE
N. MUNERA ET AL.

A novel model to predict severe COVID-19 and mortality using
an artificial intelligence algorithm to interpret chest radiographs
and clinical variables

Nicolas Munera®®, Esteban Garcia-Gallo>®, Alvaro Gonzalez', José Zea®, Yuli V. Fuentes®>
b b b b b

Cristian Serrano

%3 Alejandra Ruiz-Cuartas?, Alejandro Rodriguez* and Luis F. Reyes

2,3,5

'Arkangel Al, Bogota, Colombia. 2Department of Infectious Diseases, Universidad de la Sabana, Chia, Colombia. >Critical Care
Department, Clinica Universidad de La Sabana, Chia, Colombia. *Centro de Investigacién Biomédica en Red de Enfermedades
Respiratorias, Hospital Universitari Joan XXIIl and Rovira & Virgili University, Tarragona, Spain. *Nuffield School of Medicine, University
of Oxford, Oxford, UK. ®Joint first authors.

Corresponding author: Luis F. Reyes (luis.reyes5@unisabana.edu.co)

L))

Check for
updates

Shareable abstract (@ERSpublications)

In patients with #COVID19, an automated chest radiograph interpretation algorithm, along with
clinical variables, is a reliable alternative to identify patients at risk of developing severe COVID-19,
who might require admission to the intensive care unit https://bit.ly/3Kf61TK

Cite this article as: Munera N, Garcia-Gallo E, Gonzalez A, et al. A novel model to predict severe
COVID-19 and mortality using an artificial intelligence algorithm to interpret chest radiographs and
clinical variables. ERJ Open Res 2022; 8: 00010-2022 [DOI: 10.1183/23120541.00010-2022].

Copyright ©The authors 2022

This version is distributed under
the terms of the Creative
Commons Attribution
Non-Commercial Licence 4.0.
For commercial reproduction
rights and permissions contact
permissions@ersnet.org

Received: 7 Jan 2022
Accepted: 19 April 2022

3 28,

https://doi.org/10.1183/23120541.00010-2022

Abstract

Background Patients with coronavirus disease 2019 (COVID-19) could develop severe disease requiring
admission to the intensive care unit (ICU). This article presents a novel method that predicts whether a
patient will need admission to the ICU and assesses the risk of in-hospital mortality by training a deep-
learning model that combines a set of clinical variables and features in chest radiographs.

Methods This was a prospective diagnostic test study. Patients with confirmed severe acute respiratory
syndrome coronavirus 2 infection between March 2020 and January 2021 were included. This study was
designed to build predictive models obtained by training convolutional neural networks for chest
radiograph images using an artificial intelligence (AI) tool and a random forest analysis to identify critical
clinical variables. Then, both architectures were connected and fine-tuned to provide combined models.
Results 2552 patients were included in the clinical cohort. The variables independently associated with
ICU admission were age, fraction of inspired oxygen (Fjo,) on admission, dyspnoea on admission and
obesity. Moreover, the variables associated with hospital mortality were age, Fio, on admission and
dyspnoea. When implementing the AT model to interpret the chest radiographs and the clinical variables
identified by random forest, we developed a model that accurately predicts ICU admission (area under the
curve (AUC) 0.92+0.04) and hospital mortality (AUC 0.81+0.06) in patients with confirmed COVID-19.
Conclusions This automated chest radiograph interpretation algorithm, along with clinical variables, is a
reliable alternative to identify patients at risk of developing severe COVID-19 who might require
admission to the ICU.

Introduction

The disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), better known as
coronavirus disease 2019 (COVID-19), has become an international issue due to its social, economic and
health impact [1, 2]. Most patients present a mild disease; however, the infection may evolve to pneumonia
and critical infection in some cases [1, 3, 4]. Patients can develop complications such as ventilatory failure,
coagulopathies, thrombosis (e.g. disseminated intravascular coagulation), sepsis, multiple organ dysfunction
and death [5, 6]. More than 260 million cases have been confirmed, and <4.5 million people have died.
Patients at risk of dying due to COVID-19 are male, older adults and patients with several comorbid conditions
[7, 8]. According to the disease’s severity and past medical history, the mortality rate associated with the
COVID-19 ranges from 2.1% to 55%; therefore, it has become a global public health problem [9-11].
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Several stratification strategies have been described to identify patients at higher risk of developing severe
COVID-19 and dying. For instance, the CALL score evaluates a patient’s comorbidities, age, lymphocyte
count and serum levels of lactate dehydrogenase [12, 13]. Another widely used score is the 4C score,
which uses a combination of clinical variables and laboratory results to identify patients with severe
COVID-19 and a high risk of dying due to COVID-19 [7]. Other studies have assessed chest radiograph
abnormalities, age, comorbidities and abnormal laboratory results to identify patients with severe
COVID-19 [1, 14]. However, the predictive capacity of these scores is limited, because some of them only
include clinical variables or radiological variables, but none of them have a combination of these two.
Additionally, the scores that include radiological information require the subjective interpretation of the
treating physician, who might not have enough expertise to interpret these images.

The evaluation of diagnostic images is crucial for diagnosing COVID-19 pneumonia regardless of the
result of the reverse transcriptase (RT)-PCR, especially in patients with high clinical suspicion [15, 16]. A
chest radiograph is the most frequently utilised image to diagnose pneumonia and COVID-19; however,
the image reading process is highly variable among observers [17]. Features identified in chest radiographs
could be lung consolidations, ground-glass opacity, nodules and reticular-nodular opacities, leaving the
diagnostic capability of the test to the subjective physician interpretation [18]. This limitation is
fundamental in areas or hospitals where untrained radiologists are available.

Therefore, there is a need for novel approaches that use easy-to-access clinical data and computer-based
image interpretation algorithms that allow untrained clinicians to accurately identify patients at higher risk
of developing severe COVID-19 or dying. We hypothesise that using artificial intelligence (AI) and
advanced statistical models, we could create an algorithm that detects patients at risk of dying using chest
radiographs and some easy-to-access clinical data. We conducted a study to test this hypothesis, using a
previously developed AI algorithm to interpret chest radiographs and clinical data collected for a
prospective multicentre study.

Material and methods

Study design

This is a prospective diagnostic test study. Clinical data were collected in the LIVEN COVID-19 study, a
voluntary registry created by the Latin American Intensive Care Network [19, 20]. Variables were
compiled by the attending physicians, who reviewed medical records and diagnostic testing data for
patients admitted to 22 hospitals across eight Latin-American countries, with SARS-CoV-2 infection
confirmed by RT-PCR between March 2020 and January 2021. This study aimed to determine the risk
factors associated with the development of severe COVID-19 and death. In this sense, three models were
trained for the evaluation. The first model assessed predictions using only chest radiographs; the second
model used clinical variables to predict outcomes; finally, the third model used both images and clinical
data to identify patients at risk of developing severe COVID-19 or dying during hospital admission. This
study was approved by the institutional review board of the Clinica Universidad de La Sabana (TSICCM
CUS0012). This study was a secondary analysis of a dataset collected prospectively, so informed consent
was waived.

Data collection

Data included sociodemographic variables, comorbid conditions, symptoms, vital signs on hospital
admission and treatments received during the hospitalisation. Obesity was determined by treating
physicians when the patients had body mass index >30 kg-m™2. Additionally, chest radiograph images
collected on hospital admission were reported in some patients and were used in our models. Physiological
variables and laboratory results were gathered during the first 24 h of hospital admission. All data were
collected in the Research Electronic Data Capture platform (REDCap, version 8.11.11; Vanderbilt
University, Nashville, TN, USA) [21] hosted at the Universidad de La Sabana (Chia, Colombia). Clinical
variables were pre-processed before training the proposed classifier. Incomplete clinical information was
considered as a general exclusion criterion. Subjects without a chest radiograph were excluded from the
image-based model and were included only in the clinical cohort (figure 1).

Model construction

Transfer learning was used to train two hybrid architectures. These architectures were designed to extract
features from images and clinical data to predict intensive care unit (ICU) admission and hospital
mortality. A hold-out scheme was used whenever each cohort was assessed (clinical or images),
specifically for the images cohort; 70% was reserved for training (these data were used to fit the model);
12% for validation (these data were used to provide an unbiased evaluation of the model fit on the training
dataset while tuning model hyperparameters and stopping the training early); finally, the remaining 18%
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LIVEN COVID-19 dataset
n=3007
450 lack any of the ICU hospital mortality variables|
457 lack any of the ICU admission variables b Train  Test Validation
v
Clinical cohort ICU Yes 1404 68 45
n=2552 (hospital mortality) admission No 972 37 24
n=2550 (ICU admission)
Hospital ~ Yes 548 34 22
1832 subjects do not have radiography images |« mortality No 1830 71 471
v
Subjects with available radiography images
n=720
138 subjects.do not ha.ve good-quality < Train  Test Validation
radiography images
v
ICU Yes 258 68 45
Subjects with clear front radiography images admission No 150 37 24
n=582
Hospital  Yes 126 34 22
mortality No 282 71 47

FIGURE 1 Cohorts for outcome assessments for the Latin American Intensive Care Network (LIVEN) coronavirus disease 2019 (COVID-19) dataset.
Exclusion criteria are presented, and splits for the clinical cohort and images cohort are specified. ICU: intensive care unit.

was used for testing (these data were used to provide an unbiased evaluation of the final model).
Furthermore, to keep all experimentation under the same testing conditions, the subjects selected for
validation and testing in the images cohort were also used as such for the clinical cohort, which, due to
different sample sizes, results in a differently proportioned split whenever clinical models were assessed, to
92.6% training, 2.9% validation and 4.5% testing.

The images model was a fine-tuned model pre-trained with ImageNet weights (figure 2a). It uses
“Hippocrates”, a tool that tests for five different backbones (MobileNet, InceptionV3, DenseNet121,
Xception), a range of neurons number that goes from 32 to 256 in the last fully connected layer, several
values for dropout weights ranging from 0.3 to 0.7 and multiple top-layer weights for classification. As a
result, one loss optimisation was carried out numerous times per backbone and hyperparameters setup, and
the model yielding the best performance was selected.

Some preparation and pre-processing for training models with images had to be done before trying
backbone learning and convolutional neural network training. Firstly, only frontal views of posterior—
anterior and anterior—posterior chest radiograph images with well-defined anatomical structures were
selected; as a result, images with strong artefacts or heavily blurred structures were discarded from the
study. Secondly, as there were variations in contrast, grey-level intensity and capture methods, a
pre-processing algorithm was used to take all images to the same dynamic range and remove elements that
were not part of the image.

After pre-processing, backbone learning was performed by letting each backbone and parameter
configuration learn during a fixed number of iterations. Each network processed the whole dataset five
times (five epochs). Then, the setup that yielded the best performance was used to train over 20 epochs
with an early stop to avoid overfitting during the process. The combined model was used to exploit both
clinical and image information in the classification process. A custom architecture was proposed for this
model by connecting single sigmoid outputs of both models to a single neuron that predicts the likelihood
of any given class (figure 2c). For this case, 002C feature extraction weights for both separate models were
frozen, since the only weights that could be learned were related to the contribution of clinical and image
information for the output prediction and its respective bias. The combined models were trained for 150
epochs with an early-stop call-back that prevented the model from overfitting by monitoring validation loss
decay. The binary cross-entropy and stochastic gradient descent (SGD) with a learning rate of 0.01 were
used as cost function and optimiser.
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FIGURE 2 Convolutional neural network model construction. a) Proposed approach for obtaining a model from

images by backbone learning; b) proposed perceptron model to use clinical data for outcome assessment;
c) proposed combination of a) and b).

Statistical analysis

To predict the probability of ICU admission or hospital mortality, a random forest model was used. The
random forest model is an ensemble-learning model that uses multiple decision trees as its base models. In the
end, a majority voting system is implemented to synthesise the results of all the base models. Additionally, a
logistic regression model was designed to select the clinical variables and laboratory results that best predicted
the outcomes. Sociodemographic and physiological data selected by the random forest model were included
as independent variables in the multivariate analysis. Some variables were included for biological plausibility.
Odds ratios were obtained based on the exponentials of the final logistic regression model coefficients.

A predictive clinical model was built as a simple perceptron model for the Al prototype (figure 2b). All
the selected clinical variables in the logistic regression model were connected to a single neuron output
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layer with a sigmoid activation function. Then, the model was trained for 150 epochs with an early-stop
call-back that prevents it from overfitting by monitoring validation loss decay. For this training, the binary
cross-entropy was defined as the cost function, and SGD with a learning rate of 0.001 was used as
the optimiser.

A statistical analysis using bootstrapping was performed to validate each model. First, the testing set was
sampled with replacement to obtain 250 samples, each with a sample size equal to the 50% of the size of
the original set. Then, each sample was assessed by using the area under the receiver operating
characteristic curve (AUC-ROC), obtaining a metric population (AUC population). Finally, statistics such
as mean, standard deviation and 95% confidence intervals were also computed for the AUC population.
As a result, the bootstrapped test of the AUC population calculated per model was used to compare the
performance of the proposed models. Then, a distribution comparison of the three AUC populations under
a t-test to establish statistically significant differences across the proposed models were performed.
Additional evaluation measurements like sensitivity, specificity and accuracy metrics were also computed
over all the testing sets for each model. All statistical analyses were performed using SciPy 1.7.1 in Python
3.8 and R Studio version 1.3.1056.

Results

3007 patients were registered in the LIVEN COVID-19 study. After excluding patients with no ICU hospital
mortality data or the clinical variables needed on clinical admission, 2550 patients were included in the
clinical cohort for the ICU admission predictive model, and 2552 for the hospital mortality analysis. 59.5%
(1517 out of 2550) of the patients required ICU admission and were distributed in the models as follows:
92.6% (1404 out of 1517) underwent training, 4.5% (68 out of 1517) underwent testing and 2.9% (45 out of
1517) underwent validation. Of all the patients included in the clinical cohort, 23.7% (604 out of 2552) died
during hospital admission. Figure 1 presents how these patients were distributed in the models.

23.9% (720 out of 3007) of the overall cohort had chest radiograph images available; however, 80.8% (582
out of 720) had clear frontal images. Of the images cohort, 31.3% (182 out of 582) of patients died, and of
these, 69.2% (126 out of 182) underwent training, 18.7% (34 out of 182) underwent testing and 12.1% (22
out of 182) underwent validation. 63.7% (371 out of 582) required ICU admission and were distributed as
presented in figure 1.

The variables independently associated with ICU admission were age (OR 1.62, 95% CI 1.43-1.83;
p<0.001), fraction of inspired oxygen (Fjo,) on admission (OR 4.10, 95% CI 3.55-4.73; p<0.001), systolic
pressure on admission (OR 1.20, 95% CI 1.05-1.38; p=0.007), diastolic pressure on admission (OR 0.80,
95% CI 0.70-0.93; p=0.003), oxygen saturation (Sp,) (OR 0.84, 95% CI 0.76-0.94; p=0.002), Glasgow
Coma Scale score on admission (OR 0.60, 95% CI 0.53-0.69; p=0.007), male sex (OR 1.42, 95% CI
1.28-1.59; p<0.001), dyspnoea on admission (OR 1.42, 95% CI 1.28-1.58; p<0.001), obesity (OR 1.42,
95% CI 1.28-1.58; p<0.001), arterial hypertension (OR 1.17, 95% CI 1.05-1.32; p=0.005) and diabetes
mellitus (OR 1.22, 95% CI 1.10-1.36; p<0.001). Vomiting/nausea, chronic kidney disease, conjunctivitis
and skin ulcers were not relevant for this final model (table 1).

The variables associated with hospital mortality were age (OR 1.68, 95% CI 1.51-1.87; p<0.001), Fjo, on
admission (OR 4.32, 95% CI 3.75-4.97; p<0.001), systolic blood pressure on admission (OR 1.20, 95%
CI 1.05-1.38; p=0.007), diastolic blood pressure on admission (OR 0.80, 95% CI 0.70-0.93; p=0.003),
So, (OR 0.82, 95% CI 0.74-0.91; p<0.001), Glasgow Coma Scale score on admission (OR 0.61, 95% CI
0.54-0.69; p<0.001), male sex (OR 1.44, 95% CI 1.29-1.60; p<0.001), dyspnoea on admission (OR 1.50,
95% CI 1.35-1.66; p<0.001), obesity (OR 1.43, 95% CI 1.28-1.59; p<0.001), chronic kidney disease (OR
1.20, 95% CI 1.08-1.33; p<0.001) and arterial hypertension (OR 1.21, 95% CI 1.08-1.35; p=0.001).
Diabetes mellitus on admission was not relevant for this final model (table 1).

ICU admission models

ROC curves for ICU admission are presented in figure 3a, c, e. This assessment yielded a performance of
0.88+0.05 for the images-based model, 0.90+0.04 for the clinical model and 0.92+0.04 for the combined
model. Furthermore, additional metrics such as sensitivity and specificity are provided for each model in
table 2. All possible combinations of each AUC for the three models showed statistical differences
(p<0.0001). Visualisation of ROC populations and mean curves for each model are displayed in figure 4a, b.

Hospital mortality

The ROC curves for hospital mortality are presented in figure 3b, d, f. Additionally, metrics such as
sensitivity and specificity are provided for each model in table 2. This assessment yielded performances of
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TABLE 1 Clinical variables selected by logistic regression models to assess intensive care unit (ICU) admission and hospital mortality prediction

ICU admission Hospital mortality

Logistic regression variables OR (95% Cl) p-value Logistic regression variables OR (95% Cl) p-value
Age 1.62 (1.43-1.83) <0.001 1.68 (1.51-1.87) <0.001
Fio, 4.10 (3.55-4.73) <0.001 4.32 (3.75-4.97) <0.001
Systolic blood pressure 1.20 (1.05-1.38) 0.007 1.20 (1.05-1.38) 0.007
Diastolic blood pressure 0.80 (0.70-0.93) 0.003 0.80 (0.70-0.93) 0.003
So, 0.84 (0.76-0.94) 0.002 0.82 (0.74-0.91) <0.001
Glasgow Coma Scale 0.60 (0.53-0.69) <0.001 0.61 (0.54-0.69) <0.001
Sex 1.42 (1.28-1.59) <0.001 1.44 (1.29-1.60) <0.001
Dyspnoea 1.42 (1.28-1.58) <0.001 1.50 (1.35-1.66) <0.001
Obesity 1.42 (1.28-1.58) <0.001 1.43 (1.28-1.59) <0.001
Vomiting/nausea® 1.00 (0.90-1.11) 0.88
Abdominal pain 1.08 (0.98-1.20) 0.11 1.05 (0.94-1.16) 0.34
Chronic kidney disease® 1.20 (1.08-1.33) <0.001
Conjunctivitis® 1.00 (0.90-1.12) 0.91
Arterial hypertension 1.17 (1.05-1.32) 0.005 1.21 (1.08-1.35) 0.001
Skin ulcers® 0.95 (0.86-1.06) 0.43
Diabetes mellitus™* 1.22 (1.10-1.36) <0.001

Fio,: fraction of inspired oxygen; So: oxygen saturation. # missing values were variables not selected for the predictive model analysis due to
statlstlcal significance or biological plau5|b|l|ty, ‘: noncomplicated diabetes.

0.75+0.07 for the images-based model, 0.81+0.06 for the clinical model and 0.81+0.06 for the combined
model. Sensitivity performance was 71%, 75% and 75% for the images, clinical and combined models,
respectively. Similarly, specificity metrics were 76%, 71% and 74%, respectively, for the three proposed
models. Additionally, positive predictive values were 59%, 57% and 58%, respectively, and negative
predictive values were 84%, 84% and 85%, respectively. No statistically significant differences were found
in the AUC comparison between clinical and combined models (p=0.13). However, when the AUC of the
imaging model was compared with the combined model (p<0.0001) and the AUC of the clinical model
with the images-based model (p<0.0001), statistically significant differences were found (figure 4c, d).

Discussion

This study presents algorithms for predicting whether COVID-19 patients may require ICU admission or
are likely to die during hospitalisation by using an automatised method to interpret chest radiographs,
clinical variables and a combination of both. We found that models constructed with chest radiograph
images (interpreted by an AI algorithm) and clinical data presented good discriminatory performance
regarding ICU admission and hospital mortality. Notably, the models using clinical data and the Al
algorithm combined had an excellent discriminatory power to identify patients at risk of developing severe
COVID-19. Nevertheless, predicting hospital mortality by combining chest radiography features and
clinical information was not statistically significant. Finally, the chest radiograph images model alone had
the lower predictive potential for both outcomes.

Different predictive models for the COVID-19 illness progression have been developed throughout the
pandemic. Routinely measured clinical variables have been used as essential predictors of severity. Znao
et al. [22], in a retrospective study of 4997 COVID-19 patients, showed that the presence of shortness of
breath, elevated heart rate, elevated respiratory rate and decreased pulse oxygen saturation was significantly
associated with a higher proportion of patients admitted to the ICU. Additionally, other authors have
described that diagnostic image analysis provides consistent information of pulmonary involvement and
complements clinical prediction in COVID-19 patients. In another study, Jiao et al. [23] developed a
multicentre retrospective study of 1834 patients with COVID-19, reporting that when chest radiographs
were added to clinical data, the ROC curve increased from 0.82 (95% CI 0.79-0.82) to 0.84 (0.81-0.85),
with p<0.0001 for severity prediction. On top of that, Sopa et al. [24] designed a hybrid approach model
using clinical data associated with chest radiograph images of 820 COVID-19 patients finding the best
performance for critical infection prediction when using both inputs. Our combined model also
demonstrated that the clinical information provides consistent performance that improves the classification
metrics when complemented with an Al image features extraction algorithm. These results suggest a
complementary role between imaging, demographics, routine laboratories involving lung function and
others to determine whether a patient is likely to require ICU admission.
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FIGURE 3 Receiver operating characteristic (ROC) curves of a) intensive care unit (ICU) admission and c) hospital mortality assessment and
b, d) statistical comparison of models per outcome assessment. AUC: area under the curve.

TABLE 2 Performance metrics for intensive care unit (ICU) admission and hospital mortality model assessment

Sensitivity Specificity PPV NPV AUC
Mean#sp 95% CI

ICU admission

Images 0.85 0.81 0.89 0.75 0.88+0.05 0.8788-0.8911

Clinical 0.87 0.78 0.88 0.76 0.90+0.04 0.8956-0.9059

Combined 0.91 0.78 0.89 0.83 0.92+0.04 0.9113-0.9218
Hospital mortality

Images 0.71 0.76 0.59 0.84 0.75+0.07 0.7368-0.7546

Clinical 0.71 0.75 0.57 0.84 0.81+0.06 0.7981-0.8132

Combined 0.74 0.75 0.58 0.85 0.81+0.06 0.8066-0.8205
PPV: positive predictive value; NPV: negative predictive value; AUC: area under the curve.
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FIGURE 4 Receiver operating characteristic (ROC) curves of a, ¢, ¢) intensive care unit (ICU) admission and b, d, f) hospital mortality assessment
using proposed models. AUC: area under the curve.

In the case of prediction of hospital mortality, BaLp! et al. [25] found that arterial oxygen tension/Fjq, ratio
was associated with higher mortality rate (OR 0.99, 95% CI 0.98-1.00; p= 0.002), as well as the presence
of cardiovascular disease (OR 3.21, 95% CI 1.28-8.39; p<0.014) and age (OR 1.16, 95% CI 1.11-1.22;
p<0.001), with statistical differences, despite having only 340 COVID-19 patients in their retrospective
study. Similarly, Rvan et al. [26] developed a model by a methodology of “boosted” decision trees
including variables such as age, heart rate, respiratory rate, peripheral oxygen saturation, temperature,
systolic blood pressure, diastolic blood pressure, white blood cell counts, platelets, lactate, creatinine and
bilirubin levels, reporting an AUC-ROC of 0.86 to predict 48-h mortality in COVID-19 patients.
Moreover, the model showed a better performance compared with the AUC-ROC of current 48-h mortality
scores (quick Sepsis Related Organ Failure Assessment 0.792, Modified Early Warning Score 0.724 and
CURB-65 (confusion, urea >7 mmol-L™", respiratory rate >30 breaths-min", blood pressure <90 mmHg
systolic and/or 60 mmHg diastolic, age >65 years) 0.802) [26]. Nevertheless, this study had a community
hospital dataset of only 114 COVID-19 patients and did not include information about diagnostic images.
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Our clinical model included similar variables and had better discriminatory power than previous studies.
Importantly, in our study, we used the random forest analysis which is more robust to identify the variables
associated with the outcomes. However, our model using automatised chest radiograph interpretation and
clinical data had a modest prediction power for mortality.

Different imaging findings have been associated with COVID-19 disease. Batsr et al. [25] described how
ground-glass opacities with consolidation (69%) were the most common chest radiograph finding evaluated
in COVID-19 patients, with an almost perfect inter-rater agreement related with the parenchymal opacity
(x=0.90), Brixia score (intraclass coefficient (ICC) 0.91) and percentage of lung involvement (ICC 0.95).
Nevertheless, the chest radiograph characteristics and the risk of mortality or risk for ICU admission were
not assessed in the multivariate analysis. Likewise, Au-YonG et al. [27], in their retrospective cohort study
of 751 patients with COVID-19, demonstrated that a higher percentage of chest radiograph opacity is
related to lower survival: 50-75% opacity had a median 7.6 escalation-free survival days (95% CI 5.4—
23.7 days) and 76-100% opacity had 2.6 days (95% CI 1.5-16.6 days) (p<0.001). Despite this, our results
suggest that an automatised model of interpretation of chest radiograph characteristics alone did not
achieve the best performance for predicting COVID-19 severity or in-hospital mortality compared to
models that combined clinical data. Thus, we believe that using our automated algorithm to interpret chest
radiographs and some clinical characteristics might be extremely useful to identify patients at risk of
developing severe COVID-19 and those at risk of dying due to this infection. Determining these high-risk
patients might be critical when chest radiographs are interpreted by untrained personnel.

There are some limitations of this study that are important to consider. First, a few chest radiograph images
had inconsistent quality and noisy data which may have affected the performance of the automatised
algorithm for reading the images in clinical practice. However, the images could be pre-processed and fixed
to mitigate this issue. Second, the number of patients with images available was small. Therefore, the sample
size of both images and combined cohorts was less than the clinical information sample. The algorithm’s
performance might have been affected, causing it to fail to make robust predictions. However, this is one of
the few studies that have included radiological findings in predictor models, which is a strength of our
algorithms and allows us to generate new hypotheses about using artificial intelligence in medical practice.
Indeed, the model’s performance with a chest radiograph could improve the prediction capacity when
combined with clinical variables. Third, although deep neural networks have exhibited superior performance
in various tasks, interpretability is always the Achilles’ heel of deep neural networks. At present, deep neural
networks obtain high discrimination power at the cost of low interpretability of their black-box
representations. We believe that high model interpretability may help people break several bottlenecks of
deep learning, e.g. learning from very few annotations, learning via human—computer communications at the
semantic level and semantically debugging network representations. Likewise, the applicability of the
models will depend to a great extent on the local health systems and the willingness of the clinicians to
request the images and the corresponding laboratories. Future follow-up studies will add tremendous value
to the current evidence by testing this model, specifically those based on radiograph images.

To summarise, our study presents evidence that our automatised algorithm to interpret chest radiographs
along with some clinical data might be an instrumental tool to identify patients at higher risk of developing
severe COVID-19. Notably, our model does not require the physician’s interpretation of the images; it only
requires an image, and the Al system interprets the variables and makes an automated analysis. Predicting
ICU admission using images, clinical information or a combination of both yielded consistent results
across all three experiments. The combined model is the best to identify patients at risk of severe
COVID-19. Additionally, chest radiograph images demonstrated better predictive power in the case of ICU
admission compared with mortality prediction, and their utility is improved when it is complemented with
clinical information. Future work involves clinical trials with ICU admission predictors that evaluate our
models’ external validation and improve clinical outcomes of COVID-19 patients.
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