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Abstract
Purpose In this study, we propose an artificial intelligence (AI) framework based on three-dimensional
convolutional neural networks to classify computed tomography (CT) scans of patients with coronavirus
disease 2019 (COVID-19), influenza/community-acquired pneumonia (CAP), and no infection, after
automatic segmentation of the lungs and lung abnormalities.
Methods The AI classification model is based on inflated three-dimensional Inception architecture and
was trained and validated on retrospective data of CT images of 667 adult patients (no infection n=188,
COVID-19 n=230, influenza/CAP n=249) and 210 adult patients (no infection n=70, COVID-19 n=70,
influenza/CAP n=70), respectively. The model’s performance was independently evaluated on an internal
test set of 273 adult patients (no infection n=55, COVID-19 n= 94, influenza/CAP n=124) and an external
validation set from a different centre (305 adult patients: COVID-19 n=169, no infection n=76, influenza/
CAP n=60).
Results The model showed excellent performance in the external validation set with area under the curve
of 0.90, 0.92 and 0.92 for COVID-19, influenza/CAP and no infection, respectively. The selection of the
input slices based on automatic segmentation of the abnormalities in the lung reduces analysis time (56 s
per scan) and computational burden of the model. The Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis (TRIPOD) score of the proposed model is 47% (15 out of 32
TRIPOD items).
Conclusion This AI solution provides rapid and accurate diagnosis in patients suspected of COVID-19
infection and influenza.

Introduction
Imaging with computed tomography (CT) plays a central role in the diagnosis of respiratory diseases [1, 2].
Since the outbreak of coronavirus disease 2019 (COVID-19) in 2020, more emphasis has been given to the
different types of pneumonias and to the distinctive features of COVID-19 from all others [3, 4]. Viral
pneumonias, either COVID-19 or others, can all present with reticulation, ground-glass opacities and
consolidations at chest CT scan, creating a challenge for radiologists in their routine differential diagnosis.
Previous studies on the performance of radiologists in discriminating between COVID-19 and other
pneumonias on chest CT scans have shown high variability in both sensitivity (73–94%) and specificity
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(24–100%), with, on average, high sensitivity and moderate specificity [5]. This variability of interpretation
of CT findings of pneumonia still creates a routine challenge for clinicians in their differential diagnosis,
which is key to properly treat the patients and prevent infection spread during pandemics and in the
next future.

In this context, the development of innovative artificial intelligence (AI) imaging solutions to support
radiologists in swift and precise differential diagnosis would be invaluable. Convolutional neural networks
(CNN) have shown great potential in detection, segmentation and classification tasks in radiological
images [6]. A recent study demonstrated the application of CNN for differentiation between influenza,
COVID-19 and no infection on chest CT scans, with an overall accuracy of 86.7%. The proposed method
incorporated training on image patches extracted from CT volumes where each image patch required
manual labelling as “pneumonia” or “irrelevant information” [7]. Another study compared the performance
of different AI models in classifying COVID-19 from other atypical and viral pneumonias, showing 99.5%
accuracy in classifying COVID-19 [8]. However, these approaches involve all manual detection (i.e.
drawing boxes around the lesions), labelling of the lesions in all the slices and training the models on the
patches of detected lesions and manual labels. The time required to perform these manual operations is
usually not considered when addressing the real-world application of these models and probably represent
one of the major hurdles to widespread clinical adoption.

A fully automatic tool running on chest CT images for the differential diagnosis of pneumonias can
represent an important step forward for decreasing the variability of interpretation among clinicians and
speeding up the diagnostic process. This will unburden medical staff and in turn provide better and faster
diagnosis for patients, reducing the use of hospital resources. Better allocation of both material and human
resources can be essential in a time of crisis, as the COVID-19 pandemic demonstrated with dramatic
clarity [9]. To attain this goal, we developed and externally validated a fully automated deep-learning
framework with a three-dimensional (3D) CNN, able to classify chest CT scans of patients with
COVID-19, influenza/CAP or no infection without manual intervention. Individual AI-based whole lung
and lung abnormalities segmentation models were used to pre-process the CT images to train the 3D CNN
model and are an integral part of the workflow to assure that only the patients presenting abnormalities in
the lung volume are processed by the model, saving time and computational power.

Material and methods
The study was approved by the local ethics committee of CHU-Liège (Liège, Belgium; EC number 116/
2020). The institutional review board waived the requirement to obtain written informed consent for this
retrospective case series, since all analyses were performed on de-identified (i.e. anonymised) data and
there was no potential risk to patients.

Subjects
Three cohorts of patients were included retrospectively in this study for model training, validation and
testing. Cohorts came from two university hospitals (CHU Sart-Tilman and CHU Notre Dame des
Bruyères) in Liège, Belgium. The first cohort (label: COVID-19) consisted of all patients with COVID-19
infection confirmed by reverse transcriptase (RT)-PCR who underwent chest CT imaging before 28 March
2020. The second cohort (label: influenza/community-acquired pneumonia (CAP)) consisted of patients
with influenza, parainfluenza or CAP infection confirmed by RT-PCR or positive antigen testing who
underwent chest CT imaging between March 2014 and March 2020. The third cohort (label: no infection)
consisted of consecutive patients who underwent chest CT imaging during October 2019, with confirmed
no infection in the lungs disregarding any other lung disease. The three cohorts were pooled together and
randomly split between training, validation and testing sets (figure 1). Additionally, the open-source dataset
COVID-CT-MD was used as an external validation set [10]. The final population consisted of 169 RT-PCR
confirmed positive COVID-19 cases (from February 2020 to April 2020), 60 CAP cases (from April 2018
to November 2019) and 76 no infection cases (from January 2019 to May 2020): all the patients were
treated at the Babak Imaging Center (Tehran, Iran) and labelled by three experienced radiologists.

Imaging scans
In this retrospective study, CT scans of the three cohorts of patients included were acquired from different
scanners (Siemens and GE) with diverse reconstruction kernels (soft and sharp). In case of presence of
more than one series per case, all the available series were used in training the model (as the reconstruction
kernels corresponding to the series were considered as a form of image augmentation). Slice thickness of
the scans ranged between 0.5 mm and 2 mm, while pixel spacing was between 1 mm and 2.5 mm. A
complete summary of the imaging parameters of both training and external validation set is reported in
supplementary table S1.
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Image pre-processing
The prevalence of COVID-19 cases in the three datasets was adjusted to avoid class imbalance and bias in
classification [11]. COVID-19 cases represented 35–45% of the whole cohort for each dataset. A fully
automated lung segmentation model (supplementary material: lung segmentation) was used to filter out the
slices not containing lungs from the CT scan series. The presence of abnormalities in each filtered slice
was confirmed using a lung abnormalities segmentation model (supplementary material: abnormalities
segmentation). If no abnormalities were present in the filtered slices, the scan was discarded from model
processing. Different sets of 48 consecutive axial slices with an overlap of 10 slices between one set and
the other (extracted from the whole volume with axial slices containing lungs) were obtained, while each
set including at least one slice containing abnormalities in the lung was used to train the model. The
workflow for the pre-processing protocol is depicted in figure 2. The entirety of datasets provided by
clinicians were used in the model training and validations, without any prior scan quality selection.

Each data point containing the 48 consecutive axial slices was processed in three different ways to obtain a
three-channel input for the model:
1. The first channel (channel 1) contained slices with intensities clipped at lung window level settings

(width 1500 HU, length −600 HU) with lungs and the abnormalities cropped.

CHU Liege cohort 1

COVID-19 (n=424)

CHU Liege cohort 2

Influenza/CAP (n=413)

CHU Liege cohort 3

No infection (n=313)

Training

COVID-19 (n=230)

Influenza/CAP (n=249)

No infection (n=188)

Validation

COVID-19 (n=70)

Influenza/CAP (n=70)

No infection (n=70)

Testing

COVID-19 (n=124)

Influenza/CAP (n=94)

No infection (n=55)

External validation

COVID-19 (n=169)

CAP (n=60)

No infection (n=76)

Babak Imaging Center

COVID-19 (n=169)

Influenza/CAP (n=60)

No infection (n=76)

FIGURE 1 Flow chart of patient cohort division. COVID-19: coronavirus disease 2019; CAP: community-acquired pneumonia.
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FIGURE 2 Scheme of the pre-processing workflow applied.
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2. The second channel (channel 2) contained the slices with the original intensities of lungs along with
the abnormalities cropped.

3. The third channel (channel 3) contained slices with intensities clipped at mediastinal window level
settings (width 350 HU, length 50 HU) within the region containing the cropped lungs, for which the
bounding rectangular crop within which lungs or lung abnormalities pixels are present was obtained.
This operation was performed in order to better assess pleural effusion [12].

Finally, the slices were centre-cropped to a slice size of 448×448 pixels. An example of the resulting lung
and abnormalities segmentation is reported in figure 3 for an influenza/CAP patient. Two more examples
for COVID-19 (supplementary figure S1) and no infection (supplementary figure S2) patients are reported
in the supplementary material.

3D CNN architecture
An inflated 3D Inception model [13], pre-trained on a Kinetics dataset [14], was trained on 48 consecutive
axial slices as 3D input. Inflated 3D Inception, also known as “two-stream inflated 3D ConvNets”, is
based on the Inception v1 architecture [15] and consists of inflated filters and pooling kernels into 3D,
leading to very deep, naturally spatiotemporal classifiers. The model is trained for five epochs and early
stopping was performed after the fifth epoch, as the validation loss started to increase while the training
loss decreased, using the categorical cross-entropy loss as an objective function at a batch size of two. A
batch size of two was preferred to fit graphics processing unit (GPU) memory of 11 GB. The model was
trained on 10 500 data points (which are different sets of 48 consecutive axial slices obtained from the
image volume with an overlap to 10 slices between one set and the other) and validated on 6000 data
points. The network weights were updated by using an Adam optimiser at a constant learning rate of
1×10−4 [16]. The model’s architecture is depicted in supplementary figure S3.

a) b) c)

d) e) f)

FIGURE 3 Lungs plus abnormalities segmentation on a slice from an influenza/community-acquired pneumonia (CAP) patient. a) Original axial slice
from case with influenza/CAP label; b) lung segmentation obtained on the same slice; c) ground-glass opacities segmented by the lung
abnormalities model. d–f ) Three-channel input obtained from the same slice: d) channel 1; e) channel 2; f ) channel 3.
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Model prediction
The model’s predictions on the probability of each class was obtained on all the 48 consecutive axial slices
of the test datasets. The overall class and the overall class probability were computed: if >20% of the
predictions correspond to the class COVID-19, then the patient is assigned to that class. If the probabilities
for the class influenza/CAP are >20%, then the patient is assigned to the class influenza/CAP. Otherwise,
the scan is classified in the no infection class.

Performance metrics
Classification performances of the deep-learning model in the internal testing set and external vaidation set
are expressed in term of area under the curve (AUC), specificity and sensitivity. AUC, sensitivity and
specificity are calculated for each class by considering the respective class as positive and the rest of the
classes as negatives. For instance, AUC of the influenza class is calculated by considering the influenza
class as positive and the no infection and COVID-19 classes as negatives. All data elaborations were
performed in Python (version 3.6.5) with Keras API. The computation time was calculated on average per
scan on the external test set for a RTX 2080 ti 11 GB GPU. The model was evaluated according to the
Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis
(TRIPOD) [17] (supplementary material).

Clinical summary report
The clinician is presented with an automatically generated report containing the results of the classification
algorithm. The report presents basic patients data (patient’s identifier, scan number and scan date) along
with the diagnosis (no infection, influenza/CAP, COVID-19) and the probability calculated by the model
for each class. In addition, the report shows the 48 consecutive slices with the corresponding lung and lung
abnormalities segmentations masks used by the model to make the classification.

Results
Study population
Table 1 lists the study population characteristics for the COVID-19, influenza/CAP and no infection
cohorts for the training, validation, internal testing and external validation sets. In the training set, 69% of
the COVID-19 patients needed oxygen therapy at admission, with 37% of patients being admitted to the
intensive care unit. 17% of COVID-19 patients needed mechanical ventilation and 4% died.

Performance on the internal test set
Model performance is reported in figure 4. The receiver operating characteristic curves for each class
(COVID-19, influenza/CAP and no infection) are depicted in figure 4a. The performance for COVID-19
classification in the internal test set has an AUC of 0.91 (95% CI 0.88–0.94) with a sensitivity of 87.90%
(109 out of 124) and a specificity of 87.24% (130 out of 149). The influenza/CAP and no infection classes
present an AUC of 0.89 (95% CI 0.84–0.93) with a sensitivity of 82.97% (78 out of 94) and a specificity
of 89.38% (160 out of 179); and 0.98 (95% CI 0.96–0.99) with a sensitivity of 78.18% (43 out of 55) and
specificity of 97.71% (213 out of 218), respectively. The confusion matrix (figure 4b) reports the
classification performances (i.e. predicted versus real values) for each class.

Performance on the external validation set
The lung abnormalities segmentation model identified 19 cases with no abnormalities in the external
validation set. These scans were not processed by the deep-learning architecture: performance metrics
reported in figure 5a and b are based on the 57 cases from the no infection class which presented
abnormalities in the lung. Classification for the COVID-19 class had an AUC of 0.90 (95% CI 0.86–0.94)
(sensitivity 83.43%, 141 out of 169; specificity 91.15%, 103 out of 113), while influenza/CAP presented

TABLE 1 Study population characteristics

Training and validation set Internal test set External validation set

Age (years) 63.8±14.44 64.4±15.8 50.67±5.87
Female 48 44 40
Pixel spacing (mm) 0.71±0.10 0.70±0.07 0.67±0.07
Slice thickness (mm) 1.19±0.61 1.19±0.59 2±0

Data are presented as mean±SD or %.
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an AUC of 0.92 (95% CI 0.87–0.96) (sensitivity 78.57%, 44 out of 56; specificity 94.54%, 208 out of
220) and no infection presented an AUC of 0.92 (95% CI 0.88–0.95) (sensitivity 84.21%, 48 out of 57;
specificity 90.66%, 204 out of 225) (figure 5a). The confusion matrix for the external validation set is
reported in figure 5b.

The performance in the external validation set is in good agreement with the internal testing set. A
summary of the performance metrics for both internal test set and external validation set are presented in
table 2. The TRIPOD score of the proposed model is 47% (15 out of 32 TRIPOD items). The output of
the classification workflow is also reported in the clinical summary report. A sample report for influenza/
CAP and COVID-19 patients is presented in supplementary figures S4 and S5.
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FIGURE 4 a) Receiver operating characteristic curve and b) confusion matrix for the internal test set. AUC: area under the curve; CAP:
community-acquired pneumonia; COVID-19: coronavirus disease 2019.
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Discussion
We developed and validated a deep-learning AI model for the classification of no infection, COVID-19 or
influenza/CAP cases based upon CT imaging. The model showed a performance of AUC of 0.90, 0.92 and
0.92 for COVID-19, influenza/CAP and no infection, respectively, in the external validation. The proposed
workflow automatically segments and detects both lungs and lung abnormalities, reducing the time and
computational burden of the classification task. Moreover, the network produces an automatic clinical
summary report that can be used by the clinician to verify the model decision.

The datasets used for this study come from different countries and different centres. The training cohort is
from the University Hospital in Liege, while the external validation set is from the Babak Imaging Center
in Tehran. The training dataset presents a certain homogeneity in imaging acquisition parameters, barring
the use of different scanners at the different centres. However, the validation data present different
characteristics, coming from a different country with different standards of care, and thus image acquisition
protocols. This is an indication of the difference existing within the dataset and indirect proof of the
generalisability of the performance of our model, which attained good performance in the external
validation dataset.

Several deep-learning COVID-19 classification networks have been published thus far, both 2D [18] and
3D [19], also based on automatic segmentation of the lungs [20, 21]. Both machine learning [22], deep
learning [23, 24] or a combination of both [25] have been explored for this classification task. The models’
performances are high to very high for all the published approaches (AUC between 0.8 and 0.95) and
several authors compared the AI workflow with clinicians’ performances [26, 27], reporting comparable if
not better performances from the AI models, and faster and more reproducible diagnosis. Our model has a
performance of AUC ∼0.9 for all the classes, in line with those reported in the literature [21, 28].

The possibility to integrate a fully automatic tool for evaluation of pneumonia source in the clinical
workflow can be instrumental to improve patient management and hospital resource allocation. Automatic
identification of COVID-19, influenza/CAP and no infection patients can reduce the diagnostic errors
related to human reader experience. The possibility of fast throughput of CT scans analysis will unburden
medical staff and free resources to be allocated to more urgent needs. Dubious cases will have to be
confirmed by clinicians upon examination, but the time and effort required to do so will be drastically
reduced. A careful evaluation of the real cost/benefit of these tools is sorely needed to promote their
application in the clinical practice.

However, these automatic tools still have important limitations of applicability in the clinical setting.
Overfitting, lack of generalisability and of explainability are the most relevant ones for deep-learning
models [29, 30]. In this study, several techniques were used to prevent overfitting. The model was trained
on a multivendor (GE, Siemens) dataset with diverse acquisition protocols and on differently
reconstructed series of the same case. In this way, the model learnt how to generalise in varying image
acquisition parameters, which is well reflected by the high sensitivity when evaluated on a held-out
internal test set with diverse acquisition protocols, and on the external validation set, coming from a
different medical centre. The ability of the model architecture to generalise to images with diverse
imaging parameters is a desired property for real-world clinical applications. Another important aspect of
deep learning applied to medical image analysis is explainability, with the “black box” perception
hampering the widespread adoption of these methods by clinicians. The production of parsimonious
models (i.e. clinicians clearly comprehend and agree with how the model reached the result to support a
clinical decision) is instrumental to build confidence and acceptance [31, 32]. In the field of AI there are
two main explainability approaches: post hoc systems, which provide explanation for a single specific

TABLE 2 Performance metrics results

AUC Sensitivity (%) Specificity (%)

Internal
test set

External
validation set

Internal
test set

External
validation set

Internal
test set

External
validation set

No infection 0.98 0.92 78.18 84.21 97.72 92.59
Influenza/CAP 0.89 0.92 82.97 78.57 88.79 89.44
COVID-19 0.91 0.90 87.90 83.43 88.01 91.07

AUC: area under the curve; CAP: community-acquired pneumonia; COVID-19: coronavirus disease 2019.

https://doi.org/10.1183/23120541.00579-2021 7

ERJ OPEN RESEARCH ORIGINAL RESEARCH ARTICLE | A. VAIDYANATHAN ET AL.



decision and make it possible to obtain it on demand, and ante hoc systems (also known as “glass box”),
in which the model is built to be intrinsically explainable, so it is possible to follow each step that the
model takes to reach its classification decision [32–34]. Usually, (gradient) class activation maps are used
to visualise the region of the scan on which the model based its classification decision [35]; thus, this
explainability approach falls under the post hoc systems category. In the present study, the use of
pre-selected and segmented slices containing lung abnormalities can be seen as an ante hoc explainability
system, as the model is specifically looking at the abnormal areas of the lung, segmented by the lung
abnormalities segmentation model. In this way the end user can verify on which slices and on which
areas of the slice (i.e. the abnormalities) the model based its classification decision. This can be
confirmed easily by the clinicians looking at the 48 consecutive slices along with lung and lung
abnormalities segmentation masks, used by the model for the classification, and reported in the automatic
clinical summary report (supplementary figures S1 and S2).

Indeed, our model selected only those slices containing abnormalities in the lungs, while most
deep-learning models published in the literature [7, 36] are still based on manual segmentation of the CT
scans and use as input all the slices containing lungs or the whole 3D lung volume when automatic
segmentation is implemented. Moreover, in previous studies the identification of the regions of the slice
used by the model to make its classification decision are the output of the model, helping with
interpretability. In our model the identification of the abnormalities in the lungs, linked to the different
kinds of pneumonia, is done a priori, removing irrelevant information (e.g. other pathological
presentations in the lung). An additional advantage of our approach is the possibility to select upfront the
scans for the model to process. If the selected slices do not present any abnormalities, the model will not
process the image, saving time and computational power. This was verified in the external validation set.
The no-infection patient cohort (n=76) of the COVID-CT-MD dataset includes healthy patients, among
other no-infection patients: our segmentation model correctly identified all the slices without abnormalities
and the corresponding scans were not processed by the model (19 out of 76 cases). Furthermore, the
pre-selection of slices to be evaluated by the model allows a reduction of computational burden, also
researched in this study by using Inception architecture. Indeed, the use of Inception architecture compared
to other approaches based on ResNet or ResNext reduces the computational burden of the model, while
maintaining equivalent performances [37]. This approach can allow shallow networks to achieve results
comparable to their deeper and more complex counterparts with shorter training times, enabling good
classification performances, even when using limited hardware [38]. The computation time (57 s per scan),
which can be seen as an indication of the computational burden of the model, was faster than alternatives
reported in the literature. Moreover, compared to other studies that used Inception architecture for similar
classification tasks (table 3), our network showed comparable performances [39, 40] and was validated on
an external testing set. This validation step is very important to verify the generalisability of the model to
patients other than those used for model development (i.e. training and testing).

Limitations
Considering the limitations of this study, a relevant point related to the external validation test set is the
presence of only CAP cases for the influenza/CAP class. This could lead to a misestimation of the model
performance for this classification task. However, influenza cases were present in the internal validation
and testing cohorts and the performances of the model were tested there. An additional external validation
dataset with direct clinician assessment of source of pneumonia would strengthen the generalisability and
add credibility to our approach.

TABLE 3 Performances of other classification models to distinguish coronavirus disease 2019 and other sources of pneumonia, based on Inception
modules

AUC Sensitivity (%) Specificity (%) Sample size Computation
time# (s)

Internal
test set

External
validation

set

Internal
test set

External
validation

set

Internal
test set

External
validation

set

Internal
test set

External
validation

set

This work 0.91 0.90 87 83 88 91 273 305 57
WANG et al. [36] 0.93 0.81 88 83 87 67 455 290 n.r.
EL ASNAOUI et al. [40] n.r. 92 96 n.r. 262
GIFANI et al. [39] 0.85 77 n.r. 186 n.r.

AUC: area under the curve; n.r.: not reported. #: calculated as average time per scan on the external validation set.
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The further distinction between bacterial and viral (non-COVID) pneumonia would represent an additional
step forward, allowing the clear identification of the best therapeutic treatment for each patients. This can
also result in a better therapeutic management, regarding for example the administration of antibiotics. The
misuse and abuse of antibiotic is a cause of great concerns in the research and clinical communities. The
insurgence of antimicrobial resistance is regarded as one of the top 10 global public health threats for the
near future [41]. The timely identification of patients with pneumonias that does not require antibiotics can
inform better therapy decisions and procedures, contributing to ease the burden of healthcare-associated
infections from resistant strains of bacteria [42].

Looking at the dataset used for this study, the provenance of all scans from scanner from only two
different vendors might somehow limit the generalisability of our approach, even though the images were
acquired with two of the most commonly used scanner manufacturers on the market. Adding more data on
different vendors, different acquisition and reconstruction settings might improve the model performances.
Ideally, these kind of clinical decision-making support tools need to be continuously updated with new and
heterogeneous data to attain accuracy, specificity and sensitivity comparable to the latest implementation of
diagnostic and therapeutic state of the art, for example via distributed learning [43, 44].

To verify the real clinical utility of the proposed tool, a prospective clinical validation study should be
carried out comparing performance and time to diagnosis of the AI tool to the current standard of care.
Moreover, the clinical use of this tool might need to be updated and modified according to the
development of the COVID-19 pandemic. We can expect that pneumonia from COVID-19 infection will
become endemic and recurring in the future. Our approach could be adapted to spot undiagnosed cases or
to provide a second independent verification of the occurrence of the disease, past the emergency status of
this pandemic.

Conclusion
COVID-19-associated lung diseases can mimic other viral lung diseases such as (para-)influenza or CAP,
which may result in misdiagnosis and delayed and unproper treatment. In this context, the development of
new diagnostic tools based on AI could become critical for deployment in the daily practice in the near
future. This approach could be exploited for other type of pulmonary diseases, fine-tuning the
abnormalities segmentation model to recognise and select only the slices that contain the abnormalities
relevant to the investigated disease. To reach this goal, a close collaboration between clinicians and data
scientists is essential and will promote the future application of these decision support tools in the clinic.
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