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Abstract
Early Career Members of Assembly 2 (Respiratory Intensive Care) attended the 2022 European Respiratory
Society (ERS) International Congress in Barcelona, Spain. The conference covered acute and chronic
respiratory failure. Sessions of interest to our Assembly members and to those interested in respiratory critical
care included the state-of-the-art session on respiratory critical care, the journal session (ERS/Lancet) on
acute respiratory distress syndrome (ARDS) phenotyping into precision medicine, and sessions on specificity
of coronavirus disease 2019 ARDS and its post-critical care. A symposium on treatment of acute respiratory
failure in patients with COPD and innovations in mechanical ventilation either in the intensive care unit or at
home were also reported upon. These sessions are summarised in this article.

Introduction
Assembly 2 of the European Respiratory Society (ERS) encompasses the broad fields of respiratory critical
care. Our assembly is divided into two groups, those of acute critical care and of non-invasive support.
Currently, Christian Karagiannidis heads our assembly, João Winck has the role of secretary, and
Christoph Fisser is our Early Career Representative. The acute critical care subgroup is chaired by Ignacio
Martin-Loeches, with Ana Cysneiros as secretary. The non-invasive support group is chaired by Marieke
Duiverman, and Claudia Crimi is secretary. At the time of publication, we have 1672 Assembly 2
members, 36% of whom are early career members and 50% of them are female. In this review, we present
highlights from the ERS International Congress 2022 of interest to Assembly 2 members and those
interested in critical care and mechanical ventilation. The sessions we have reported on include the
symposia on acute respiratory distress syndrome (ARDS) phenotypes, non-invasive ventilation (NIV) in
hypoxaemic respiratory failure and new developments in mechanical ventilation and weaning, and the
guidelines session on high-flow nasal cannula (HFNC) in adults with acute respiratory failure.
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ARDS: the path to precision medicine (a joint ERS/Lancet session)
Lorraine Ware (Nashville, TN, USA) began the session by highlighting that ARDS is a heterogenous
clinical syndrome. Different methods have been employed to subclassify ARDS based on aetiology,
severity, radiological distribution and biological markers [1]. The hyperinflammatory phenotype
characterised by CALFEE et al. [2] has demonstrated a higher mortality and differential response to treatment.
Further advances in ARDS phenotyping may hold promise for future personalised medicine.

Danny McAuley (Belfast, UK) emphasised the limitations of current Berlin definition of ARDS. He
suggested incorporating ultrasound to identify lung infiltrates, using the ratio of oxygen saturation
measured by pulse oximetry to inspiratory oxygen fraction (SpO2

/FIO2
ratio) as a non-invasive marker of

oxygenation and removing minimal positive end-expiratory pressure (PEEP) requirement with the advent
of high flow nasal oxygen. The cornerstone of ARDS management includes lung protective ventilation,
prone positioning and restrictive fluid strategy [3–5]. The recent REST trial explored extracorporeal CO2

removal (ECCO2R) to further lower tidal volumes, without mortality benefit [6]. Additionally, there is an
urgent need to assess the long-term outcomes post-ARDS.

Martin Kneyber (Groningen, the Netherlands) presented the paediatric-specific definition and management
of ARDS [7]. Interestingly, in the paediatric population, studies have not shown a strong correlation
between tidal volume and mortality [8]. However, mortality was higher in children managed with lower
PEEP than recommended by the ARDSNet protocol [9]. Increased driving pressure was associated with
prolonged time to extubation [10]. More randomised controlled trials are needed to guide individualised
therapy in paediatric ARDS.

Michael A. Matthay (San Francisco, CA, USA) concluded the session with lessons learned from past
clinical trials. Moving forward, he recommended designing ARDS trials that reduce heterogeneity by
targeting treatable traits, yet applicable to diverse global population [11]. A global definition of ARDS was
proposed at an international consensus conference to address these goals.

Take-home message
• Given the heterogeneity of ARDS, further phenotyping into treatable traits is key to precision medicine

in both adults and children.

Beyond COVID-19: translating COVID-19 treatment successes to all-cause ARDS
Tiffanie Jones (Philadelphia, PA, USA) reflected on the need to identify and translate coronavirus disease
2019 (COVID-19) biomarkers into ARDS’ treatable traits [12, 13]. Alveolar/endothelial injury contributes
to ARDS at different stages [14]; the receptor for advanced glycation endproducts (RAGE) is defined as an
alveolar/epithelial injury marker, and its soluble form (sRAGE), a possible treatable trait, is associated
with the risk of ARDS [15–19]. Anti-RAGE therapies have been tested in preclinical models with success
[20, 21].

Manu Shankar-Hari (Edinburgh, UK) described a molecular signature with a cytokine pattern connected to
each ARDS phenotype [22–24]. Targeting inflammation positively impacts mortality. As such, interleukin
(IL)-6 antagonist reduced mortality in patients with COVID-19 [25], anti-TNF-α therapy increased survival
in septic patients [26], and reparixin appeared to be effective for the treatment of patients with COVID-19
pneumonia [27]. The success of a therapy might be associated with the dominant activated pathway at the
moment of the treatment, according to the patient’s phenotype.

Jurjan Aman (Amsterdam, the Netherlands) defined the necessity to measure vascular stability and leakage
as a critical player for ARDS due to COVID-19 [14, 28–31]. In this regards, angipoietin-2 has been
suggested as a marker [32]. To improve alveolocapillary function, imatinib (a tyrosine kinase inhibitor) has
been used in COVID-19 patients [33]. Imatinib trials, COUNTER-COVID and INVENT-COVID,
exhibited an improvement in the clinical outcome in severe COVID-19 and reduced extravascular lung
water index (EVLWi) in subgroups of ARDS due to COVID-19 patients, measured by pulse contour
cardiac output monitoring [33–36].

Trials in critical care are challenging due to heterogeneity of the patient population and inefficiencies in
obtaining data, including long-term outcomes. Carolyn Calfee (San Francisco, CA, USA) introduced
adaptive trials (trials with pre-planned capabilities to adjust design factors) as a proposal to deal with the
ARDS phenotype heterogeneity, the stratified randomisation and a response adaptation [37–39]. They had
a considerable impact during COVID-19: for example, RECOVERY evaluated 10 treatments in 47 879
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participants in 199 sites, and I-SPY-COVID is an adaptive platform for a phase 2 clinical trial to identify
agents with potential therapeutic benefit [40, 41].

Take-home messages
• The need for finding new biomarkers and treatable traits to develop new therapies targeted against

ARDS is evident. Most treatments of ARDS are directed against inflammation, but we must not miss
the treatment for vascular leakage.

• Adaptive clinical trials have proven to be a useful tool in finding targeted treatments for ARDS.

State-of-the-art: respiratory critical care
Carolyn Calfee (San Francisco, CA, USA) presented the clinical implications of phenotyping ARDS.
Several ways of phenotyping have been proposed and have demonstrated acceptable results in different
settings according to the aetiology or the severity of the underlying disease (e.g. COVID-19 ARDS [42]).
Biomarker models have identified a hyperinflammatory phenotype [1, 2, 43, 44] that have been validated
in different cohorts [45, 46]. This might help in the future treatment because hyperinflammatory ARDS
might respond to higher PEEP or corticosteroids [42, 46]. However, prospective studies evaluating this
concept are still needed.

Laurent Brochard (Toronto, ON, Canada) discussed the clinical implications of patient self-inflicted lung
injury (p-SILI). Experimental studies have demonstrated p-SILI [47, 48]; however, in clinical practice it is
still a concept. There is indirect clinical evidence of p-SILI such as a high expired tidal volume that is
independently associated with NIV failure in patient with acute hypoxaemic respiratory failure [49].
Monitoring techniques including airway occlusion pressure (Pocc) [50] could help to better understand it,
although oesophageal pressure (Poes) is the gold standard [51]. Clinical implications hypothesises that
mortality is higher with NIV than with HFNC due to p-SILI [52]. Partial neuromuscular blockade,
ventilation with higher PEEP and higher FIO2

presents as a promising treatment for p-SILI [53–55].

Lise Piquilloud (Lausanne, Switzerland) commented on the advanced respiratory monitoring in acute
respiratory failure. Current recommendations do not address potential phenotypes, chest wall compliance or
p-SILI risk [56]. A well targeted Poes ventilation strategy potentially improves ARDS outcomes, especially
in patients with lower APACHE-II scores [57, 58]. Respiratory drive and effort monitoring is relatively
easy and indicates patient demand during assisted mechanical ventilation [50, 59]. Pocc at 100 ms (P0.1) is
a not-so-new technique but useful [60–64] and might predict relapse in COVID-19 ARDS patients [65].

Stefano Nava (Bologna, Italy) presented whether HFNC or NIV should be used for acute hypoxaemic
respiratory failure. There are contradictory results on this matter. While the FLORALI study found lower
mortality with HFNC in the severe subgroup of patients [52], it failed to reduce therapeutic escalation
compared to standard oxygen therapy in mild hypoxaemic COVID-19 patients [66]. Helmet NIV reduced
the incidence of intubation compared with HFNC in COVID-19 [67] and other studies found them to be
equivalent [68]. Nonetheless, a trial of NIV might be offered to treat de novo acute hypoxaemic respiratory
failure, when treated by an experienced team [69].

Take-home messages
• ARDS phenotypes are already treated differently, in terms of severity and COVID-19 versus

non-COVID-19 distress.
• New methods for identifying molecular phenotypes using biomarkers and/or clinical data have been

developed, although clinical testing is still needed.

COVID-19 acute respiratory distress syndrome
The usefulness of day 1 chest X-ray score for predicting mortality and intensive care unit (ICU) admission
in COVID-19 patients was reported by Trieu-Nghi Hoang-Thi (Ho Chi Minh City, Vietnam). In 219
patients hospitalised for COVID-19 pneumonia, a simple severity score based on lung consolidation
observed on chest X-ray, with a maximal score of 24, was assessed. Each point increase in this score
increased the risk of death over time by 1.33 (HR 1.33, 95% CI 1.10–1.62) and was a strong predictor of
mortality in the first 25 days (figure 1). This score had a good sensitivity and specificity and could be a
useful tool in hospitals where computed tomography is not readily available [70].

Elizabeth Rohrs and Thiago Bassi (Burnaby, BC, Canada) presented reports on the value of temporary
transvenous diaphragm neurostimulation (TTDN) in ARDS. The studies were conducted on a model of
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moderate ARDS in deeply sedated pigs. TTDN significantly reduced the total mechanical work of
breathing by 19%. Neurostimulation of the diaphragm with each breath modulated the neuroinflammation
associated with moderate ARDS by attenuating the proportion of pro-inflammatory microglia in the
hippocampus compared to mechanical ventilation alone [71]. Finally, TTDN resulted in 41% less
atelectasis and improved homogeneity of alveolar expansion in pigs with moderate ARDS [72]. These
results support TTDN as a new tool to improve ARDS outcomes.

Leila Atmowihardjo (Maastricht, the Netherlands) introduced the efficacy and safety of intravenous
imatinib in invasively ventilated patients with moderate to severe COVID-19 ARDS, in a multicentre
randomised double-blind, phase 2 study. Imatinib was administered twice daily versus placebo and EVLWi
(primary outcome) was measured once daily by Pulse Contour Cardiac Output monitoring. 33 patients,
mainly men, with a moderate ARDS, were included in each group. There was no significant effect of
imatinib on variation of EVLWi or on clinical outcomes between day 1 and day 7, but a biological
sub-phenotype of patients (n=20) has been identified, characterised by high levels of alveolar epithelial
injury markers that had a decrease of EVLWi over time and needs further characterisation. There were no
safety concerns in this population.

Ofir Deri (Tel Hashomer, Israël) reported on the outcomes of patients with COVID-19-associated
respiratory failure being registered on the lung transplantation list (n=20), in a single-centre retrospective
study. Among these 20 patients (12 males), median age was 49.5 (43.8–57.5) years and median body mass
index was 30.5 (28.9–31.1) kg·m−2. Four patients underwent lung transplantation and seven died while
waiting on the list. The surviving patients were younger (p=0.016) and spent less time under
extracorporeal membrane oxygenation (ECMO) (p=0.044).

Jessica Gonzalez Gutierrez (Lleida, Spain) presented an overview and follow-up in a post-COVID-19
consultation of critically ill patients (i.e. with ICU admission) in a prospective observational cohort. At
12-month follow-up (n=97), one-third of patients needed to continue follow-up due to low diffusing
capacity of the lung for carbon monoxide, chest computed tomography abnormalities or persistent
symptoms, leading to a high use of healthcare resources.

Take-home messages
• A new score, based only on the first-day chest X-ray, may be useful in hospitalised patients with

COVID-19 if computed tomography is not available.
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• Temporary transvenous neurostimulation of the diaphragm improved ARDS outcomes in preclinical
studies and needs to be evaluated in patients.

• A sub-phenotype of invasively ventilated COVID-19 patients may benefit from imatinib and need
further characterisation.

Post-critical care long COVID: reducing the physical and emotional toll
The pathophysiology of post-ICU COVID-19 symptoms was presented by Negin Hajizadeh (New York, NY,
USA). 25% to 75% of post-ICU COVID-19 patients reported new disabilities, mainly fatigue, exertional
dyspnoea and mental health problems, often irrespective of the severity of the acute illness [73]. Severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) not only causes direct alveolar damage, but also
promotes aberrant angiogenesis and microthrombi formation [28]. However, COVID-19 lung lesions only
partly explain the dyspnoea and fatigue of some of these patients. Indeed, skeletal muscle wasting promoted
by inflammatory cytokines (IL-6 and TNF-α) and myalgic encephalomyelitis due to mitochondrial
dysfunction could contribute to the post-COVID-19 hyperventilation syndrome (figure 2) [74].

Nicholas Hart (London, UK) opened his presentation on prolonged mechanical ventilation (PMV) in
COVID-19 patients by pointing out the heterogeneity of PMV definitions across the scientific literature,
which urgently requires a standardisation [75]. The effects of evolving standard-of-care, vaccination and virus
biology greatly reflected on critical care occupancy and the need for PMV. Indeed, data from the Guy’s and
St Thomas’ NHS Hospital (London, UK) showed that the survival of critical COVID-19 patients
progressively increased (from 70% of wave one (April 2020) to 87% of wave four (April 2022)).
Nevertheless, during waves three and four, the proportion of patients requiring ECMO doubled, mainly due
to the more frequent admission of unvaccinated pregnant women. The recovery process should be focused on
“reverse the reversible”, treating each sequela due to SARS-CoV-2 infection that could be addressed.

Tracy Vannorsdall (Baltimore, MD, USA) presented a topic called “Managing anxiety, depression and
cognitive impairment to promote recovery”. Higher rates of depressive symptoms were noticed after the
start of the pandemic and they were more common in those with lower income, less savings and more
stressors [76]. Interestingly, the rate of objective cognitive dysfunction was much lower than subjective
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complaints. Thus, clinicians should also target other factors such as anxiety, depression or fatigue in order to
improve objective and subjective functioning. Data from a long COVID clinic showed that 4 months after
leaving ICU, patients had significant levels of psychiatric stress and their cognitive scores decreased [77].

Mara Paneroni (Brescia, Italy) talked about rehabilitation modalities to address physical morbidity and
support recovery. Multinational task force recommends early, bedside rehabilitation for patients affected by
severe COVID-19 [78]. A global protocolised weaning strategy, started early in the ICU and followed by
intensive rehabilitation in a specialised centre, accelerated the physical recovery and psychological status in
ICU survivors from COVID-19 ARDS [79].

Take-home messages
• Long-term impairment is common in post-acute COVID-19 patients.
• Discrepancies between COVID-19 lung parenchymal damage and dyspnoea severity can be explained

by myalgic encephalomyelitis and hyperventilation syndrome.
• The progressive improvement of the standard of care and the evolving virus biology resulted in a

reduction of patients requiring intensive treatment and prolonged mechanical ventilation.
• Psychiatric and cognitive disorders became more frequent during the SARS-CoV-2 pandemic.
• Early physical rehabilitation is crucial for the optimal recovery of COVID-19 patients.

Treatment of acute respiratory failure in COPD patients
Marieke Duiverman (Groningen, the Netherlands) presented NIV as the first-line intervention to relieve
work of breathing in patients with COPD presenting with acute hypercapnic respiratory failure. NIV
clinical practice varies widely across hospitals [80]. Evidence-based use improves exacerbation outcomes,
including mortality, endotracheal intubation, hospitalisation duration, gas exchange and complications
[81, 82], whereas delayed NIV implementation increases mortality [83]. The Non-invasive Ventilation
Outcomes (NIVO) score serves as an outcome-prediction tool for in-hospital mortality [84, 85]. NIV
settings [86] and patient comfort [87] should be optimised to prevent patient–ventilator asynchrony and
intolerance. Home NIV should be considered as an earlier intervention for persistent hypercapnia [88, 89].

Paolo Navalesi (Padua, Italy) presented the role of HFNC in facilitating CO2 wash-out [90], relieving work
of breathing through PEEP [91] and delivering humidified, warm air [92, 93]. Although better tolerated
than NIV [94], HFNC is not an alternative [95–97] but an ancillary treatment during NIV breaks or
withdrawal [98]. Regarding compensated hypercapnic respiratory failure, HFNC shows superiority over
conventional oxygen therapy in improving hypercapnia [99] and need for NIV [100]. Post-extubation
HFNC is recommended, but NIV remains pivotal for high-risk patients [97, 101].

Christian Karagiannidis (Cologne, Germany) illustrated the decreasing number of patients with COPD
under invasive mechanical ventilation (IMV) during the COVID-19 pandemic. IMV poses higher risk of
mortality, endotracheal intubation, complications and longer hospitalisation duration than NIV [102, 103].
ECCO2R may prevent or shorten duration of IMV by alleviating acidosis and respiratory rate [104, 105]
and may improve right ventricle function by reducing pulmonary artery pressure [106]. However,
application of ECCO2R raises technical issues related to recirculation rate [107] and bleeding/
thromboembolic complications that limit its current use and therefore should only be used in clinical trials
[105, 108].

Rebecca D’Cruz (London, UK) reflected on COPD exacerbations’ detrimental impact on long-term
outcomes, with higher mortality in patients requiring mechanical ventilation [109–111]. Interestingly,
eosinophilic exacerbations show more favourable outcomes, including need for NIV and mortality [112].
R. D’Cruz highlighted the lung function decline and potential progression to respiratory failure associated
with exacerbations [113, 114]. Extrapulmonary sequelae and comorbidities warrant a holistic approach
[115–123].

Take-home messages
• NIV remains the first-line intervention for acute hypercapnic respiratory failure in patients with

exacerbated COPD. The NIVO score is a validated outcome-prediction tool.
• HFNC facilitates NIV breaks or withdrawal, showing superiority over conventional oxygen therapy.
• ECCO2R alleviates acidosis and respiratory rate, but further clinical trials on its safety and

effectiveness are needed.
• Extrapulmonary sequelae warrant a holistic approach to COPD exacerbations.
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Innovations in non-invasive respiratory support
Nicole Sheers (Heidelberg, Australia) opened the session by presenting a randomised controlled trial that
examined the feasibility of setting up NIV at home in patients with motor neuron disease. The patients
were randomised to the NIV home model (single-day NIV initiation at home with remote usage
monitoring, and weekly telephone follow-up) or a usual care control (single-day in-hospital NIV initiation
with in-laboratory polysomnography follow-up). No significant between-group difference was observed in
symptoms, quality of life, care burden or adherence.

Ana Díez Izquierdo (Barcelona, Spain) shared data from a retrospective review of 10 children with chronic
lung diseases or neurological conditions necessitating home HFNC therapy. The review was conducted
over 12 months with the aim of assessing the long-term benefits and safety of HFNC use. During
follow-up, it was identified that home HFNC in children resulted in early discharge (40%) and reduction in
hospital readmission (30%). This was attributed to the ability to treat exacerbations of disease at home. No
adverse events were observed.

Chiara Torregiani (Trieste, Italy) presented a study investigating the utility of forced oscillatory technique
as a potential marker of lung compliance in patients with COVID-19. The study enrolled 32 patients with
moderate to severe COVID-19 ARDS who underwent NIV and alternated to HFNC. The study identified
that forced oscillatory technique measurements can be used to identify abnormal respiratory reactance and
could be used to assess patients. Currently, forced oscillatory technique is mainly applied in neonatology
to expand the pathophysiological understanding of ARDS and in pre-clinical studies.

Goals to be achieved in patient under NIV:

• Clinical improvement and reduction in daytime PaCO2

• Mean nocturnal SpO2
 >90% more than 90% of recording time, without 

 residual SpO2 
oscillations

• Synthesis report from NIV software showing more than 4 h per night of use,  

 without discomfort (i.e. fragmented or multiple short periods on ventilator  

 use)

• Correction of nocturnal hypoventilation documented by PtcCO2
 (if available)

Yes

Yes

Yes No

No

No

Detection of non-intentional leaks

(clinically and/or by NIV software)

Residual nocturnal hypoventilation
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FIGURE 3 Goals to be achieved in a patient under home NIV. NIV: non-invasive ventilation; SpO2
: oxygen saturation measured by pulse oximetry;

PtcCO2
: transcutaneous carbon dioxide tension; AHI: apnoea–hypopnoea index; IPAP: inspiratory positive airway pressure; VT: tidal volume; EPAP:

expiratory positive airway pressure. Reproduced and modified from [131] with permission.
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David Berlowitz (Heidelberg, Australia) concluded the session with an explanation of an artificial
intelligence model which could be used to detect patient–ventilator asynchrony during NIV. The models,
which used Multidimensional Matrix Profiles, were able to filter and de-noise polysomnography data to
identify asynchronies. Their proposed model had 0.80 sensitivity and specificity for identifying patient–
ventilator asynchrony.

Take-home message
• Recent research has identified methods to increase the ease of use and optimisation of NIV in both the

home and the hospital.

State-of-the-art in home mechanical ventilation
Barbara Garabelli (Milan, Italy) focused her presentation on alternative treatments of NIV support for chronic
respiratory failure in neuromuscular diseases. Long-term mechanical ventilation improves survival and increases
or maintains health-related quality of life (HRQoL) [124, 125]; however, dependency of the ventilator can affect
quality of life especially in patients having continuously a mask on their face. Other types of NIV support can
reduce side-effects related to prolonged ventilation such as mouthpiece ventilation or intermittent abdominal
pressure ventilation. Mouthpiece ventilation with a volume mode is the preferable choice because it allows
air-stacking and there is no leak compensation during patient disconnection [126, 127]. The settings usually
suggested are no PEEP or back-up respiratory rate, a low trigger and a tidal volume according to the respiratory
abilities and needs of the patient (500–1500 mL). Regarding intermittent abdominal pressure ventilation
[128, 129], there is a lack of expert consensus guidelines on its indication, titration, management, and follow-up.

Jean-Paul Janssens (Geneva, Switzerland) highlighted the different structural options for home NIV
follow-up that depends on the local healthcare structures, legislations and geographical considerations.
Home NIV follow-up should also be tailored for specific groups of patients or situations requiring
multidisciplinary assessment. There are numerous tools for home NIV monitoring (e.g. symptom scores,
arterial blood gases, nocturnal pulse oximetry) and side-effects of NIV should be systematically assessed
using a checklist. A recent study explored different strategies for home NIV monitoring, attempting to
efficiently identify patients who were inappropriately ventilated, using ventilator software integrated with
overnight capnography [130]. Several goals should be achieved in patients under NIV (figure 3) [131, 132]
due to its impact on HRQoL and survival in certain groups of patients [133–135]. Different studies have
shown the feasibility, safety and cost-effectiveness of initiating NIV at home [136, 137] with a specialised
team of nurses, the use of capnography and telemonitoring.

Take-home messages
• NIV supports such as mouthpiece ventilation or intermittent abdominal pressure ventilation can reduce

side-effects related to prolonged ventilation.
• The impact of NIV support on HRQoL should be tested in clinical trials, especially for intermittent

abdominal pressure ventilation.
• Logistics for home NIV follow-up are country and healthcare system dependent. The implementation

of NIV at home seems feasible and safe.
• Monitoring of home NIV is mandatory to ensure efficacy and comfort, guided by several goals to be

achieved in patients under NIV.
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