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Shareable abstract: A review focusing on novel treatment approaches for bronchiolitis 

obliterans syndrome, to reverse the pathological changes and thereby impact tangibly on 

survival or need for subsequent lung transplantation, and also improve patients' quality of life.  

Abstract 

Bronchiolitis obliterans syndrome (BOS) may develop after either lung or haematopoietic stem 

cell transplantation (HSCT), with similarities in histopathological features and clinical 

manifestations. However, there are differences in the contributory factors and clinical 

trajectories between the two conditions. BOS after HSCT occurs due to systemic graft-versus-

host-disease (GVHD), whereas BOS after lung transplantation is limited to the lung allograft. 

BOS diagnosis after HSCT is more challenging, as the lung function decline may occur due to 

extrapulmonary GVHD, causing sclerosis or inflammation in the fascia or muscles of the 

respiratory girdle. Treatment is generally empirical with no established effective therapies. 

This review provides rare insights and commonalities of both conditions, that are not well 

elaborated elsewhere in contemporary literature, and highlights the importance of cross 

disciplinary learning from experts in other transplant modalities. Treatment algorithms for 

each condition are presented, based on the published literature and consensus clinical 

opinion. Immunosuppression should be optimised, and other conditions or contributory 

factors treated where possible. When initial treatment fails, the ultimate therapeutic option is 

lung transplantation (or re-transplantation in the case of BOS after lung transplantation) in 

carefully selected candidates. Novel therapies under investigation include aerosolised 

liposomal cyclosporine, Janus kinase inhibitors, antifibrotic therapies, and (in patients with BOS 

after lung transplantation) B-cell–directed therapies. Effective novel treatments that have a 

tangible impact on survival and thereby avoid the need for lung transplantation or re-

transplantation are urgently required.  



Introduction 

Pulmonary complications such as bronchiolitis obliterans syndrome (BOS) are common after 

lung or haematopoietic stem cell transplantation (HSCT) [1]. BOS is characterised by a 

progressive obstructive ventilatory defect due to the development of obliterative bronchiolitis 

(OB) [1-7]. Hitherto, the rarity of OB delayed the understanding of its disease pathogenesis [8]. 

However, the emergence of lung transplant and HSCT as therapeutic modalities has led to an 

increased interest in this rare condition, providing much of the literature regarding the risk 

factors, natural history, therapeutic responsiveness and outcomes [9, 10]. While microvascular 

ischaemia likely plays a role in pathogenesis, the driving force is almost certainly immune 

related; for this reason, the twin pathways of “graft versus host” and “host versus graft” need 

to be compared. 

BOS after lung transplantation is the most common phenotype of chronic lung allograft 

dysfunction (CLAD), developing in up to 50% of recipients by the fifth post-transplant year and 

is the major cause of late post-transplant mortality [11-13]. BOS after HSCT is less common, 

affecting 2–10% of recipients within 5 years [14-20]. BOS is the lung manifestation of 

multisystemic graft-versus-host disease (GVHD), with a prevalence of 14% in patients with 

chronic GVHD [21]. BOS negatively impacts prognosis after lung transplantation and HSCT [11-

13, 18, 21-23]. However, as data required to confirm evidence-based therapeutic 

recommendations are limited, treatment is generally consensus driven [24].  

The aims of the current article are to describe the characteristics of BOS after lung 

transplantation and HSCT, provide a viewpoint on diagnosis and management of these 

conditions based on expert opinion and a review of the literature, and describe research into 

new treatment strategies. 



Methods 

A videoconference of international experts (adult and paediatric transplant physicians, 

pulmonologists and haematologists), facilitated by a professional moderator, was held on 18th 

December 2020. This review summarises the consensus opinions of the group on BOS after 

lung transplantation and HSCT, supported by published literature. 

What are CLAD-BOS and chronic GVHD-BOS? 

CLAD 

The International Society for Heart and Lung Transplantation (ISHLT) consensus statement 

defines CLAD as a persistent decline in pulmonary function, characterised by a decrease of 

≥20% in forced expiratory volume in 1 second (FEV1) for >3 months from post-transplant 

baseline, after excluding other potential causes (table 1) [3]. The baseline value is calculated 

from the mean of the two best postoperative FEV1 measurements taken ≥ 3 weeks apart. CLAD 

severity is staged based on the current FEV1 relative to baseline [3]. 

Restrictive, obstructive, mixed or undefined clinical phenotypes of CLAD are defined based on 

the predominant ventilatory pattern, total lung capacity (TLC) and presence/absence of 

opacities on chest computed tomography (CT) scan (supplementary table S1) [3, 25]. 

Pulmonary function changes characteristic of the restrictive allograft syndrome (RAS) 

phenotype are declining TLC and a FEV1/forced vital capacity (FVC) ratio >0.7, whereas BOS is 

characterised by stable or increasing TLC and declining FEV1/FVC indicative of obstruction and 

hyperinflation [26]. The presence of multi-lobar persistent parenchymal and/or pleural 

opacities on CT (or chest X-ray [CXR] if CT is not available) is required for RAS diagnosis [3, 25]. 

Approximately 65–70% of CLAD patients present predominantly with the BOS phenotype and 



10–35% have the RAS phenotype [12, 26-29], although the proportion with RAS appeared 

lower in a more recent study based on the latest ISHLT consensus criteria [29]. This is partly 

because mixed phenotype is now considered a different entity, whereas RAS and mixed were 

previously grouped together. Using these criteria, Levy and colleagues estimated that ~5% of 

patients present with mixed and ~10% with undefined phenotype [29], whereas Verleden and 

colleagues estimated that the undefined phenotype was less frequent (2%); however, raw data 

were not independently verified. Overall survival and graft survival are worse in those with RAS 

or mixed phenotype than the BOS or undefined phenotype [12, 26, 27, 29-31]. Survival 

differences between CLAD phenotypes are unaffected by age, sex, native lung disease and 

cytomegalovirus (CMV) serostatus mismatch [29]. However, allograft survival among all 

patients with CLAD is generally worse in those with CMV serostatus mismatch and in those 

failing to achieve predicted FEV1 and FVC postoperatively [12]. 

Phenotypes are not static, and patients can progress from the BOS to RAS phenotype, and 

more rarely from RAS to BOS [26, 32]. A patient who transitions from BOS to RAS will meet the 

criteria for the mixed phenotype [3, 25], so it is more accurate to describe the phenotypic 

change as BOS-to-mixed. Survival in BOS-to-RAS patients is worse than in BOS, but comparable 

to or better than in RAS patients [31, 33]. 

Risk factors for BOS and RAS include non-adherence to or suboptimal immunosuppressive 

regimens, acute cellular rejection (ACR) episodes, lymphocytic bronchiolitis, community-

acquired respiratory viral (CARV) infection, donor-specific antibodies, air pollution, 

gastroesophageal reflux (GERD), Pseudomonas aeruginosa or Aspergillus fumigatus 

colonisation and CMV mismatch [31, 34, 35], although more RAS patients seem to develop 

human leukocyte antigen (HLA) antibodies compared with BOS patients [36]. Additionally, the 

development of RAS, but not BOS, appears to be delayed after living donor lung lobar versus 



cadaveric donor transplantation [37]. 

GVHD-BOS 

GVHD-BOS usually develops between 100 days and 2 years of HSCT, but onset beyond 5–6 

years post-HSCT has been noted, usually in patients experiencing an extrapulmonary GVHD 

flare [7, 16, 17]. Risk factors for GVHD-BOS are impaired lung function before and early after 

HSCT, a myeloablative/busulfan-containing conditioning regimen, CMV seropositivity, pre-

transplant history of pulmonary disease, female donor, unrelated donor and prior acute GVHD; 

receipt of antithymocyte globulin, which decreases chronic GVHD risk, reduces the risk of BOS 

[17, 18, 38].  

There is a need for clinical biomarkers at 80–100 days post-HSCT, because declining lung 

function at this time-point is a significant risk factor for later BOS development. Beyond chest 

irradiation and FEV1, forced expiratory flow between 25% and 75% of maximum has emerged 

as an important biomarker for the early detection of at-risk patients [38, 39]. 

Patients may present with persistent cough or dyspnoea-on-exertion, while asymptomatic 

patients may be identified during routine monitoring of pulmonary function [7]. The 

nonspecific symptomatology of GVHD-BOS may contribute to diagnostic delays [40]. Unlike 

CLAD, which affects only the lungs, GVHD is a systemic condition, so BOS after HSCT usually 

occurs in association with signs/symptoms affecting other organ systems, such as the skin, 

nails, eyes, mouth, hair, genitals, joints, liver and haematopoietic systems, with clinical 

manifestations of fatigue or decreased endurance at the outset [7, 41, 42]. These often 

present before GVHD-BOS diagnosis [7]. Overall, the diagnostic features of GVHD-BOS are 

similar to those of CLAD, with primary pulmonary function impairment [41].  

The US National Institutes of Health definition is shown in table 1 [41]. These features include 



FEV1/vital capacity (forced or slow, whichever is greater) <0.7 or the 5th percentile of predicted 

and FEV1 <75% of predicted and with ≥10% decline over <2 years in the absence of an infective 

cause, and evidence of air trapping or other signs of BOS (small airway thickening or 

bronchiectasis) on CT or evidence of gas trapping on lung function testing.  

Unlike CLAD, specific GVHD-BOS phenotypes have not been defined [43]. However, Bergeron 

and colleagues proposed two different lung function patterns in patients with GVHD-BOS [44]. 

The first is a typical obstructive defect characterised by FEV1/FVC ratio <0.7, and the second is 

atypical with FEV1<80% and FVC <80% but normal lung capacity, such that the FEV1/FVC ratio 

was >0.7. Outcomes did not differ between the two groups, but patients with the typical 

pattern had fewer centrilobular nodules on CT [44]. These data need to be further explored as 

they could also represent a restrictive GVHD lung disease or a subset of patients with BOS who 

do not demonstrate obstruction due to extrapulmonary constraints (e.g. sclerotic GVHD of the 

respiratory girdle). 

The trajectory of FEV1 decline in patients with GVHD-BOS is heterogeneous and deterioration 

may happen rapidly [45, 46]. Studies have shown that patients with a rapid decline in lung 

function (25% FEV1 decline) during the first 3 months of GVHD-BOS, those with poorer FVC at 

diagnosis of GVHD-BOS or those with nontuberculous mycobacteria in bronchoalveolar lavage 

(BAL) culture have worse survival than those who do not [14, 45-47]. 

Pathophysiology and aetiology 

CLAD 

The temporal relationship between the development of CLAD and infectious diseases (e.g. 

chronic pulmonary P. aeruginosa and CARV), supports the concept that one pathway of CLAD 

is a microbe-allograft-host interaction, whereby the infectious pathogen causes allograft cells 



to release chemokines that recruit host leukocytes to the site that then recognise the airways 

as non-self [48, 49]. Other pathways involve endogenous molecules released by injury to small 

airways or their microvasculature following diverse injuries including ACR [50]. The influx of 

leukocytes precipitates an allo-response causing graft dysfunction [48, 49]. Thus, CLAD is a 

host-versus-graft (rather than a graft-versus-host) disease. The inescapable conclusion is that 

both are immune-regulated phenomena, which may explain why BOS is common after lung 

transplantation and HSCT. 

Dysfunction of the regulatory mechanisms and induction of an acute inflammatory response 

generate a positive feedback loop and amplify the immune response, causing the pathological 

process to transition from an acute to a chronic response [50]. Humoral (adaptive) immune 

activation may be a contributing mechanism determining CLAD-RAS phenotype development 

[51]. Continuous exposure of the airway epithelium to inflammatory processes can lead to 

fibroblast recruitment and eventually extracellular matrix remodelling [25]. Acute fibrinous 

and organising pneumonia appears to be an early event in this process [25, 52]. 

The histological features of CLAD can be heterogeneous. The dominant and most frequent 

finding is OB . Other common findings include variable grades of ACR including perivascular 

and/or peribronchiolar lymphocytic infiltrates, pleuro-parenchymal fibro-elastosis, and 

microvascular damage [53]. 

GVHD-BOS 

The early processes leading to BOS in GVHD differ from those in CLAD, but the eventual 

histological changes are relatively similar. As described earlier, BOS after HSCT is a 

manifestation of chronic GVHD. While less is known about the aetiology of BOS after HSCT, 

chronic GVHD is caused by central tolerance failure, B-cell and auto-antibody production [40, 

54]. T-cells play a major role in the initiation of GVHD; the subset of T-cells that are primarily 



responsible for the development of pulmonary GVHD are not characterised, although CD4+ T-

helper 17 cells are likely involved [40]. 

The pathology of GVHD-BOS is less well defined than BOS after lung transplantation due to a 

lower volume of surgical lung biopsies and lower autopsy rates. One study showed two distinct 

patterns: constrictive bronchiolitis obliterans (CBO) and lymphocytic bronchiolitis (LB) [55]. 

CBO demonstrates marked bronchiolar narrowing with fibrous lesions and hyperplasia of the 

epithelium, whereas in LB, fibrosis is absent, and there is bronchiolar dilatation, and epithelial 

thinning, necrosis or disappearance [56]. Patients with LB tend to have better survival than 

those with CBO [55]. 

The pattern of morphological changes on pulmonary micro-CT is similar in patients with 

obstructive CLAD and those with GVHD-BOS [57], with both having a reduced number of 

terminal bronchioles [57]. 

Diagnosis 

Early diagnosis of CLAD may be more likely than GVHD-BOS, since pulmonary function is 

monitored more frequently in lung transplant recipients. In contrast, the major concern after 

HSCT is haematological malignancy relapse hence pulmonary function testing is generally less 

frequent and sporadic [45]. As a result, many HSCT patients potentially miss the opportunity 

for early intervention for BOS [45]. 

Current guidelines recommend implementing early investigations for CLAD as soon as the 

condition is suspected (i.e. ≥10% reduction in baseline FEV1) [3]. Spirometry is a key monitoring 

and diagnostic tool in both lung transplant or HSCT recipients with suspected pulmonary 

complications, but extrapulmonary manifestations may affect lung function tests in GVHD-BOS 

patients. Home spirometry may detect early pulmonary function decline, but is not a 



substitute for office testing [58] and requires periodical calibration of the home spirometer 

against the laboratory spirometer and assessment of the patient’s technique. Home 

spirometry may be a useful way to limit clinic visits (e.g. during the SARS-CoV-2 pandemic). 

Once lung function decline is confirmed, possible causes should be investigated using 

bronchoscopy with visual airway inspection, transbronchial biopsies where indicated, BAL, TLC 

testing (e.g. plethysmography) and CT imaging (supplementary table S2) [3]. Lung biopsy 

(usually by the transbronchial route) is considered the gold standard diagnostic modality to 

rule out other causes of FEV1 decline, such as ACR. However, the risks of biopsy (bleeding and 

pneumothorax) may outweigh the benefits in some patients, particularly those with GVHD-

BOS, in whom non-invasive methods play an important role in diagnosis [3, 59-61]. 

Small airway brushings may detect a lymphocytic gene expression signature in patients with 

CLAD, which may not be apparent in transbronchial biopsies [62]. Functional magnetic 

resonance imaging (MRI) can assess regional changes in lung function assisting early CLAD 

detection [31], but is expensive and not universally available [59]. 

CT or CXR are commonly used to identify opacities, but CT is preferred due to greater 

sensitivity and specificity than CXR and better visualisation of changes in lung parenchyma and 

small airways. The presence of air trapping, and especially its increase, as seen on high 

resolution chest CT during inspiration and expiration is supportive of BOS diagnosis [63, 64]. 

Radiation exposure is higher with CT than conventional CXR but can be substantially reduced 

by low-radiation protocols. While the initial use of CXR followed by CT in patients with 

suspicious CXR findings may be optimal, air trapping can limit the utility of CXR in GVHD-BOS 

patients [59]. 

Typical chest CT findings in CLAD (RAS/mixed phenotype) are opacities (ground glass 

appearance, consolidation, small linear or reticular densities) and/or increased pleural 



thickening indicative of fibrosis [3]. Centrilobular opacities, air trapping and bronchial wall 

thickening may be present on CT of patients with BOS after lung transplantation or GVHD, but 

pleural thickening is absent or rare after GVHD [64]. 

An emerging modality in BOS diagnosis and assessment is parametric response mapping 

(PRM), in which expiratory and inspiratory CT scans undergo voxel-based analysis [65, 66]. In 

patients with BOS after lung transplantation, PRM correlates with FEV1 decline (at least in 

patients without a restrictive pattern), whereas air trapping does not [66]. In patients with BOS 

after HSCT, PRM can detect BOS even in those with concurrent infection [65]. PRM is useful for 

monitoring BOS progression after either type of transplant [65, 66], but further data are 

required. 

MRI has been investigated for morphological assessment of transplanted lungs, and some MRI 

parameters may be early markers of CLAD [67, 68], but further data are needed before MRI is 

routinely used for BOS assessment.  

Perhaps the most innovative strategy to monitor ACR and antibody-mediated rejection 

revolves around the understanding that these responses cause cell death and the release of 

donor-derived cell-free DNA into the circulation, which may be used as a non-invasive, 

quantitative marker to track the events leading to chronic lung allograft dysfunction [69]  

Artificial intelligence (AI) is another innovation that can be applied to understanding rare 

diseases. One example is the identification of lung GVHD after HSCT by quantitative imaging 

[70]. AI has the potential to increase our understanding of the similarities and differences 

between CLAD-BOS and GVHD-BOS. 



Current treatment approaches 

CLAD-BOS 

Initially, any precipitating or underlying conditions should be identified and treated, including 

ACR, infection, lymphocytic bronchiolitis, GERD or others [3], and the patient’s maintenance 

immunosuppressive regimen should be optimised (figure 1a). A consecutive case series 

indicated that early management of BOS, when it is less severe, may be efficacious in 

stabilising declining lung function parameters at a higher plateau. Based on their years of 

clinical practice experience, the authors agreed that early introduction of therapies may 

mitigate progression to more severe BOS [71]. If ACR is diagnosed, it should be treated as per 

standard protocols avoiding prolonged courses of high-dose steroids [3, 24]. There is evidence 

suggesting that the prevalence of BOS after lung transplantation is lower in patients receiving 

tacrolimus versus cyclosporine [72] and that switching from cyclosporine to tacrolimus 

stabilises lung function [24, 73]. 

Among available treatments, the most evidence exists for azithromycin [74-81], including data 

from a randomised, placebo-controlled trial [82]. In observational studies, azithromycin was 

associated with a FEV1 increase of 16–18% predicted [74, 75, 78], and an absolute FEV1 

increase of 0.11–0.86 L [74, 78-80]. However, response rates were only 29–50% in these 

studies, indicating that ≥50% of patients showed no improvement [74, 75, 78-81]. Factors 

associated with a greater likelihood of response were airway neutrophilia (detected by BAL) 

[79, 81] and early treatment initiation [76]. In the randomised study, 9/23 patients on 

azithromycin (39%), but none of those in the placebo group, responded to treatment with a 

FEV1 increase of ≥10% predicted (p=0.002). The difference in FEV1 between the azithromycin 

and placebo groups was 0.278 L (p<0.001) [82]. Where safety data were reported, 

azithromycin was generally well tolerated [75, 82]. One patient developed laryngeal oedema 



(serious) that resolved after azithromycin discontinuation [75]. The most frequent adverse 

effects were gastrointestinal disorders. The recent ISHLT consensus states that azithromycin 

should be initiated as early as possible, even before any definite BOS diagnosis has been made 

[3], based on its effects on lung function [76, 77, 81]. The optimal dosage and duration of 

azithromycin have not been established [78, 80, 81]. BOS may occur despite long-term 

maintenance azithromycin.  

The leukotriene antagonist montelukast has also been investigated for BOS treatment [83-85]. 

Montelukast is an oral treatment for persistent asthma [86], showing antifibrotic effects in 

animal models of BOS after lung transplantation [87]. In a pilot study of 11 patients with low 

neutrophilia on BAL (<15%) who were expected to be poor responders to azithromycin, 

montelukast slowed FEV1 decline [85]. Similarly, attenuation of FEV1 decline was seen in a 

retrospective study of 153 BOS patients, which also showed significantly longer survival in 

patients with response to montelukast than in those who did not respond [83]. However, a 

randomised, placebo-controlled trial failed to demonstrate any effect of montelukast on FEV1 

or graft survival in BOS patients, although benefit was seen in patients with early-stage BOS 

[84]. As this study only included 15 patients in each treatment arm, further research in larger 

patient cohorts is warranted. 

Second-line options include extracorporeal photopheresis (ECP) or total lymphoid irradiation 

(TLI) [3]. ECP slows the rate of FEV1 decline in patients with CLAD-BOS [88] and is likely more 

effective in patients with the BOS than the RAS phenotype [89]. Some data support an 

improvement in survival among patients with CLAD receiving ECP, but overall, the evidence 

supporting ECP in BOS is considered to be Class IIB, level C [90]. Moreover, ECP is expensive, 

not universally available, and potentially burdensome for some patients. It requires secure 

venous access and multiple treatment sessions initially over a short period [90]. On the other 



hand, ECP is generally well tolerated, with no major adverse effects reported in a large patient 

series [90]. 

TLI has been shown to slow the rate of FEV1 decline in BOS patients, including those not 

responding to azithromycin [91, 92], but studies to date have been small and observational 

[90]. In addition, not all patients are able to complete the required number of treatment 

sessions due to bone marrow suppression or infection [91]. 

Re-transplantation remains an option in carefully selected patients with BOS who fail available 

first- and second-line treatment options.  

GVHD-BOS 

Other manifestations of chronic GVHD or non-infectious complications have been described, 

including interstitial lung diseases, but specific management of these conditions differs from 

the approach to BOS [7]. 

The first step in managing BOS after HSCT is to ensure that comorbidities and potential 

precipitating factors (e.g. GERD) are managed, and that immunosuppressive treatment is 

optimised [60]. Treatment of BOS is often additive to that targeting the extrapulmonary 

manifestations of GVHD; therefore, clinicians should manage the immunosuppression as a 

whole (figure 1b). Long-term corticosteroids are not considered beneficial for BOS after HSCT 

but may be part of therapy for GVHD.  

Currently, there is limited evidence to guide treatment of BOS after HSCT [93]. The European 

Society for Blood and Marrow Transplantation recommends the combination of fluticasone, 

azithromycin and montelukast (FAM), with a steroid pulse and rapid taper over 1 month (class 

2A evidence) [93]. This recommendation was based on data from a non-randomised study in 

36 patients with BOS after HSCT who received FAM plus a steroid burst (planned to be 4 weeks 



total of prednisone commencing at 1 mg/kg/day and initiating taper after 1 week) [94]. 

Notably, most patients were on standard treatment for chronic GVHD (i.e. sirolimus or a 

calcineurin inhibitor), which likely contributed to BOS control. After 3 months, only 6% of 

patients met the definition of treatment failure (FEV1 decline of ≥10%) and 17% met the 

definition at 6 months [94]. Patient-reported outcomes showed significant improvements from 

baseline at 3 months, including in social functioning, mental and emotional well-being, the 6-

minute walk test and symptom severity. FAM was generally well tolerated and only one 

patient discontinued treatment because of adverse events [94]. 

The data for azithromycin alone are less robust [95]. While one study suggested that 

azithromycin alone as a preventive strategy for BOS may be linked to relapse, more recent 

larger studies did not show increased risk of relapse with azithromycin post-GVHD, although 

increased risk of secondary cancers with higher use of concomitant steroids was observed [96, 

97]. A combination of inhaled long-acting bronchodilator plus inhaled corticosteroid has been 

shown to improve FEV1 at 1 month (by 200 mL and 12%) in newly diagnosed patients with 

mild-to-moderate BOS, without the use of systemic corticosteroids [98]. Patients may also 

benefit from supportive care including prophylaxis for infection, pulmonary rehabilitation, 

nutritional support and treatment for GERD [60, 99]. 

There are no standard second-line treatment approaches to lung chronic GVHD, so these are 

determined by national, local, or institutional guidelines [93]. Some retrospective data support 

the use of ECP, with ECP improving survival in HSCT with BOS without significantly impacting 

pulmonary function [100]. Given the overall paucity of data, enrolment in a clinical trial should 

be prioritised as a second-line treatment approach [60, 93]. 

In the USA, other agents for chronic GVHD are being explored: the Bruton’s tyrosine kinase 

inhibitor ibrutinib is approved for the second-line treatment of chronic GVHD [101], as is the 



Janus kinase (JAK) inhibitor ruxolitinib, but there are no data regarding their efficacy for BOS 

[102]. One trial evaluated the use of a tumour necrosis factor-α inhibitor, etanercept, and 

showed benefit (i.e. ≥10% improvement in absolute FEV1 or FVC) in one-third of patients with 

BOS [103].  

As with CLAD, the ultimate treatment option is a lung transplant [104]. 

Future directions 

Hypothesis-driven novel approaches 

Any novel therapeutic approach for BOS management is driven by the understanding of the 

disease pathogenesis of OB. In this regard, the immunogenicity of the allograft is considered to 

be important, as OB develops due to an injury-response mechanism, where the small airways 

are targeted as non-self after upregulation of HLA on respiratory epithelial cells [105]. Early 

studies showed that bronchiolar epithelial cells from lobectomy samples of former smokers 

expressed both Class 1 and Class 2 HLAs, as did small airways in explants from patients 

undergoing re-transplantation for OB [106, 107]. Despite this promising groundwork, the 

potential role of HLA presentation on small airway epithelia has only recently been 

reconsidered with the acceptance of the relevance of antibody-mediated rejection as a cause 

of allograft injury [108]. Indeed, the presence of donor-specific antibodies against Class 2 HLAs, 

especially those against HLA-DQ2, is considered a major risk factor for CLAD development 

[109]. 

Ischaemia plays an important role in scar formation after injury, and damage to the 

“watershed” microvasculature of the terminal bronchioles appears to compound the 

geometric factors which determine why small airways bear the brunt of the rejection response 

[110]. OB lesions seen on micro-CT scans are essentially scars at focal segments of small 



airways where the remnants of the external elastic lamina are best visualised on 

histopathology by elastin van Gieson staining [4]. While the upstream bronchiole may appear 

normal or simply show thickening of the basement membrane, the acinus subtended by the 

affected bronchiole is excluded from gas exchange [4]. Evidence for an immunological 

aetiology for BOS is supported by a retrospective analysis of transbronchial lung biopsies, 

where the severity of lymphocytic bronchiolitis was strongly correlated with the time to 

develop BOS [111]. 

Understanding the fundamental pathogenesis of BOS, and applying this knowledge in clinical 

practice is essential to mitigate the risk of BOS after lung transplantation or HSCT. Since HLA 

presentation is thought to be the main target, efforts should be directed towards effective 

prevention of trigger events which upregulate antigen presentation and damage small airways. 

Trigger events likely include T-cell-mediated ACR, CARV infections with lower respiratory tract 

tropism (such as respiratory syncytial virus), certain coronavirus infections, bacterial infections 

(such as P. aeruginosa, mycoplasma, and chlamydia) and inflammation from aspiration of 

gastric contents [112]. The possibility of autoimmunity to cryptic self-antigens liberated by 

these triggers is supported by the presence of self-antigens in microvesicles and the 

development of autoantibodies against Type V collagen and K-α1 tubulin [113, 114].  

Novel therapies will need to embrace these concepts to successfully prevent tissue damage 

and modify aberrant repair. A multifaceted approach that includes risk factor management for 

the triggers outlined above is essential, starting with a global response to ameliorate the toxic 

effects of air pollution on small airways and protect airways from direct/indirect exposure to 

cigarette smoke and e-cigarette emissions [115]. 

In line with these hypotheses, several agents have been or are being investigated for the 

treatment of BOS after lung transplantation or HSCT, as discussed below. 



Aerosolised liposomal cyclosporine 

Aerosolised cyclosporine delivers immunosuppressive therapy directly to the allograft, where 

it acts locally at the immune activation site, limiting systemic exposure [116]. A liposomal 

cyclosporine formulation for aerosolised delivery (Zambon), currently undergoing phase III 

development, has been granted orphan drug status by the US Food and Drug Administration 

[117]. This formulation showed good lung deposition after nebuliser administration in lung 

transplant recipients [116]. In a randomised study, adding aerosolised liposomal cyclosporine 

to standard care improved or stabilised a range of lung function parameters and was 

significantly more effective than standard care alone [118], but this study was open-label 

without placebo control. Treatment was well tolerated, with no increase in serious adverse 

events with aerosolised liposomal cyclosporine versus standard care alone; adverse events 

included conjunctivitis, pharyngitis and productive cough [118].  

The Boston clinical trial program is investigating aerosolised liposomal cyclosporine in patients 

with BOS after lung transplantation or HSCT (table 2); results will become available over the 

next 2–3 years. 

JAK inhibitors 

JAK inhibitors are used for the treatment of solid tumours and are in development for 

autoimmune conditions [119]. Ruxolitinib (Incyte, Novartis) is approved for the use of steroid-

refractory GVHD in the USA [102] and is the most studied agent from this class for the 

treatment of BOS after HSCT or bone marrow transplantation. To date, published data are 

limited to small case series or case studies in adults or children with steroid-resistant BOS [120-

123]. However, some studies have suggested a potential role for these agents in the treatment 

of BOS [120-123]. An open-label phase II study (NCT03674047) is underway in the USA in 

patients with newly diagnosed or established BOS after HSCT (completion expected in March 



2023).  

B-cell–directed therapies 

B cells are important mediators of chronic GVHD [124, 125] and are implicated in the 

development of CLAD [126]; thus, treatments inhibiting B-cell activation may be useful for BOS 

treatment after lung transplantation or HSCT. However, B-cell–directed therapies tend to be 

associated with significant safety concerns, including cytopenias, immunosuppression and 

infections [127, 128]. 

Rituximab is a chimeric human/mouse monoclonal antibody against CD20 that has cytolytic 

activity against B cells and is approved for the treatment of B-cell lymphomas [127]. Small case 

series suggest that rituximab may be effective in improving lung function in patients with BOS 

after lung transplantation with concurrent antibody-mediated rejection [129-131]. There are 

less data regarding its use in patients with BOS after HSCT. One report of three cases described 

lung function stabilisation in only one patient, but the authors acknowledged that rituximab 

was only initiated in severely ill patients and its efficacy if used at an earlier stage of BOS could 

not be precluded [131]. 

Alemtuzumab is an anti-CD52 monoclonal antibody approved for use in B-cell lymphomas 

[128]. A database analysis suggested that using alemtuzumab as part of the induction regimen 

reduced the 5-year risk of BOS after lung transplantation compared with basiliximab-based 

induction or no induction [132]. Two retrospective studies and a case series (n=10) reported 

slowing or reversal lung function decline with alemtuzumab in a high proportion of patients 

with BOS after lung transplantation [133-135]. Alemtuzumab appeared to be similarly effective 

to ECP [134]. Patients with early-stage BOS were more likely to respond to alemtuzumab than 

those with late-stage BOS [132]. Notably, this strategy would mitigate anticancer and anti-

infection control in patients with BOS after HSCT and would thus be associated with higher 



risk. 

Antifibrotic treatments 

The antifibrotic agents pirfenidone and nintedanib are used in the treatment of chronic 

fibrosing pulmonary conditions, such as idiopathic pulmonary fibrosis [136, 137], leading to 

speculation that they may ameliorate the fibrotic changes in BOS after transplantation. 

Preclinical studies demonstrated antifibrotic effects with pirfenidone in animal models of BOS 

or post-transplant pulmonary complications [138-141]. Preliminary data from a case series of 

11 RAS patients showed that pirfenidone stabilised lung function during long-term treatment 

and provided a bridge to a second lung transplant in three patients (27%) [142]. Published data 

with nintedanib are limited to case reports: one showed a clinical benefit in a patient with BOS 

after HSCT [143], and another showed no benefit in a patient with BOS after lung 

transplantation [144]. 

Clinical trials with both agents are underway in post-transplant patients with BOS (table 3). The 

results of the EPOS trial (pirfenidone vs placebo) were negative [145]. Another small phase II 

study (PIRCLAD; NCT03359863) is also investigating pirfenidone in patients with RAS (n=10), 

with completion expected in October 2021. A potential role for mesenchymal stem cell 

therapy is being explored in a randomised controlled study in Australia, but results are not yet 

available. 

Conclusions 

Management strategies for BOS after lung transplantation or HSCT are similar, although a key 

difference is the need to manage systemic GVHD in HSCT patients. Currently, treatment 

options for either condition are limited and novel treatments are urgently needed, particularly 

treatments which not only slow or stabilise disease progression but also potentially reverse the 



pathological changes and thereby provide clinically meaningful survival and quality of life 

outcomes.  
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Tables 

TABLE 1 Diagnosis of BOS after lung transplantation or HSCT [3, 41] 

CLAD-BOSa after lung transplantation [3] GVHD-BOS [41] 

Persistent (present for >3 weeks) decrease in 

FEV1 of ≥20% from the reference baseline 

valueb after exclusion of other possible 

causes 

FEV1 <75% of predicted with ≥10% decline 

over <2 years; FEV1 should not correct to 

>75% predicted with albuterol and absolute 

decline for corrected values should remain 

≥10% over 2 years 

Obstruction on spirometry (FEV1/FVC ratio of 

<0.7) 

FEV1/vital capacity ratio of <0.7 or the fifth 

percentile of predictede 

No evidence of restrictionc Absence of respiratory tract infection 

documented with investigations and 

directed by clinical symptomsf 

No CT evidence of pulmonary or pleural One of the two supporting features of BOS: 



fibrosisd (1) evidence of air trapping on expiratory CT, 

or small airway thickening or bronchiectasis 

by high-resolution chest CT, or (2) evidence 

of air trapping by pulmonary function 

testingg 

aFor diagnostic criteria in other CLAD phenotypes, see Verleden et al. J Heart Lung Transplant 

2019;38(5):493-503.[3] 

bBaseline value is calculated as the mean of the best two postoperative FEV1 measurements 

taken >3 weeks apart. 

cReduction in total lung capacity of ≥10% from baseline. 

dParenchymal opacities and/or pleural thickening indicative of pulmonary and/or pleural 

fibrosis and likely to cause a restrictive physiology. 

eVital capacity included FVC or slow vital capacity, whichever is greater; the fifth percentile of 

predicted is the lower limit of the 90% confidence interval; use lower limits of normal for 

pediatric or elderly patients. 

fFor example, chest radiographs, CT scans, microbiological cultures (sinus aspiration, upper 

respiratory tract viral screen, sputum culture, bronchoalveolar lavage). 

gResidual volume >120% predicted or residual volume/total lung capacity elevated outside the 

90% confidence interval. 

BOS: bronchiolitis obliterans syndrome; CLAD: chronic lung allograft dysfunction; CT: 

computed tomography; FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity; 

HSCT: haematopoietic stem cell transplant. 



TABLE 2 Clinical trials with aerosolised liposomal cyclosporine 

Study Clinical trial 

registration number 

Phase Design (N) Treatments Primary endpoint Completion 

date 

BOS after single or double lung transplantation 

Iacono et al. 2019 

(single or double 

LTx) [118] 

NCT01650545 IIb Open-label, 

parallel (21) 

LCsA 5 or 10 mg 

+ SOC vs SOC 

1) a composite of BOS PFS, defined as 

time from randomisation to ≥20% 

decline in FEV1, re-transplantation or 

death, whichever occurred first 

(prolonged mechanical ventilation and 

irreversible respiratory failure equivalent 

to ≥20% decline of FEV1), and 

2) BOS grade progression by grade 

changes from randomisation to study 

completion 

Sep 2017 

BOSTON-1 (single 

LTx) 

NCT03657342 III Randomised, 

single-blind 

(110) 

LCsA 5 mg + SOC 

vs SOC 

Mean change in FEV1 from baseline to 

week 48 

July 2023 

BOSTON-2 (double 

LTx) 

NCT03656926 III Randomised, 

single-blind 

(152) 

LCsA 10 mg + 

SOC vs SOC 

Mean change in FEV1 from baseline to 

week 48 

July 2023 



BOSTON-3 (OLE for 

BOSTON-1 and -2) 

NCT04039347 III Open-label 

(220) 

LCsA 5 mg or 10 

mg 

Mean change in FEV1 from baseline to 

week 24 

Apr 2024 

BOS after HSCT 

BOSTON-4 NCT04107675 II Randomised, 

single-blind (24) 

LCsA 2.5, 5 or 10 

mg vs placebo 

Safety and tolerability May 2022 

BOS: bronchiolitis obliterans syndrome; FEV1: forced expiratory volume in 1 second; HSCT: haematopoietic stem cell transplant; LCsA: aerosolised liposomal 

cyclosporine; LTx: lung transplantation; OLE: open-label extension; PFS: progression-free survival; SOC: standard of care. 



TABLE 3 Clinical trials with antifibrotic treatments 

Clinical trial 

registration 

number (name) 

Patients (target n) Phase Design Treatments Primary endpoint Completion 

date 

Nintedanib 

NCT03805477 BOS after HSCT (40) II Open-label Nintedanib 150 mg BID Adverse events leading to treatment 

interruption or discontinuation 

Feb 2021 

NCT03283007 

(INFINITY study) 

Grade 1–2 BOS after 

LTx (80) 

III Randomised, 

quadruple-blind 

Nintedanib 150 mg BID 

vs placebo 

Reduction in the rate of FEV1 decline 

from baseline to month 6 

Jun 2023 

Pirfenidone 

NCT03315741 BOS after HSCT (30) I Open-label Pirfenidone ≤2403 

mg/day 

Number of patients requiring a dose 

reduction for >21 days due to adverse 

events 

Feb 2022 

NCT03473340 

(STOP-CLAD) 

CLAD after LTx (60) II Randomised, 

double-blind 

Pirfenidone 801–2403 

mg/day vs placebo 

Percent change in functional small 

airways disease as measured by 

parametric response mapping (HRCT) at 

week 24 

Mar 2022 

NCT02262299 

(EPOS) 

Grade 1–3 BOS after 

LTx (90) 

II/III Randomised, 

double-blind 

Pirfenidone 801–2403 

mg/day vs placebo 

Change in FEV1 decline from baseline to 

month 6 

Dec 2019 

BID: twice daily; BOS: bronchiolitis obliterans syndrome; CLAD: chronic lung allograft dysfunction; FEV1: forced expiratory volume in 1 second; HRCT: high-



resolution computed tomography; HSCT: haematopoietic stem cell transplant; LTx: lung transplantation. 



Figure legend 

FIGURE 1 Treatment approach for BOS after (a) lung transplantation, and (b) HSCT. ACR: acute 

cellular rejection; AMR: antibody-mediated rejection; ATG: antithymocyte globulin; AUC: area 

under the plasma concentration-time curve; BOS: bronchiolitis obliterans; CNI: calcineurin 

inhibitor; CLAD: chronic lung allograft dysfunction; ECP: extracorporeal photopheresis; GERD: 

gastroesophageal reflux disease; GVHD: graft-versus-host disease; HSCT: haematopoietic stem 

cell transplant; IVIG: intravenous immunoglobulin; JAK: Janus kinase; LCsA: aerosolised 

liposomal cyclosporine; TLI: total lymphoid irradiation.  

 

 



Supplementary Materials 

SUPPLEMENTARY TABLE S1 Phenotypes of chronic lung allograft dysfunction [1] 

 BOS RAS Mixeda Undefinedb 

Obstruction (FEV1/FVC <0.7)  X     

Restriction (≥10% ↓ in TLC) X   X OR  

CT opacitiesc X     X 

aBy definition, all cases that transition from a BOS to a RAS phenotype and vice versa will meet 

these criteria. 

bUndefined means definite CLAD but with two possible combinations of variables making it 

difficult to categorise as one of the other phenotypes. 

cParenchymal opacities and/or pleural thickening consistent with a diagnosis of pulmonary 

and/or pleural fibrosis. 

BOS: bronchiolitis obliterans syndrome; CLAD: chronic lung allograft dysfunction; CT: 

computed tomography; FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity; 

RAS: restrictive allograft syndrome; TLC: total lung capacity. 

 

 

 

 



SUPPLEMENTARY TABLE S2 Other conditions/scenarios affecting pulmonary function in lung transplant or haematopoietic stem cell transplant (HSCT) 

recipients that need to be excluded during the diagnostic work-up of patients with suspected chronic lung allograft dysfunction or graft-versus-host-disease 

bronchiolitis obliterans syndrome 

Lung transplantation [1] HSCT [2] 

A. Conditions in which it may be valid to recalculate/rest FEV1 reference value 

 Decreasing lung due to normal aging process 

 Surgical factors (e.g. transplant lung resection, chest wall surgery, phrenic 

nerve damage) 

 Mechanical factors (e.g. persistent pleural effusion, persistent lung oedema 

due to significant kidney/heart/liver failure, airway stenosis, 

myopathy/neuropathy/Parkinson’s disease, weight gain, native lung 

hyperinflation after single-lung transplant 

 Localised infection with chronic scarring (e.g. abscess/empyema/mycetoma) 

B. Factors that cannot be differentiated easily from CLAD and do not ever allow 

recalculation/resetting of the FEV1 reference value 

 Any from (A) above where there is not stability for ≥6 months 

 Infection 

 Idiopathic pneumonia syndrome 

 Cryptogenic-organising pneumonia 

 Pulmonary fibrosis 

 Late radiation effects 

 Asthma 

 Chronic obstructive pulmonary disease 

 Tracheomegaly 

 Tracheobronchomalacia 

 α1-antitrypsin deficiency 



 Infiltration with tumour 

 Infiltration of the allograft with proven disease recurrence from the underlying 

transplant indication (e.g. LAM, sarcoidosis) 

 Drug or other induced pulmonary toxicity (e.g. sirolimus, methotrexate, 

amiodarone, radiotherapy) 

 Pulmonary arterial strictures or emboli 

 Acute/subacute generalised infection 

 Acute/subacute cellular or antibody-mediated rejection 

 Acute/subacute effects of aspiration 

C. Failing to reach normal predicted lung function (i.e. low FEV1 reference value 

such that FEV1 is ≤80% of the recipient predicted value)  

 May include an age difference between donor and recipient where older donor 

lungs are implanted or when an intra-operative allograft reduction 

surgery/lobectomy is performed 

FEV1: forced expiratory volume in 1 second; HSCT: haematopoietic stem cell transplant; LAM: lymphangioleiomyomatosis.  
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