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ABSTRACT
Introduction: Exhaled-breath analysis of volatile organic compounds could detect lung cancer earlier,
possibly leading to improved outcomes. Combining exhaled-breath data with clinical parameters may
improve lung cancer diagnosis.
Methods: Based on data from a previous multi-centre study, this article reports additional analyses. 138
subjects with non-small cell lung cancer (NSCLC) and 143 controls without NSCLC breathed into the
Aeonose. The diagnostic accuracy, presented as area under the receiver operating characteristic curve
(AUC-ROC), of the Aeonose itself was compared with 1) performing a multivariate logistic regression
analysis of the distinct clinical parameters obtained, and 2) using this clinical information beforehand in
the training process of the artificial neural network (ANN) for the breath analysis.
Results: NSCLC patients (mean±SD age 67.1±9.1 years, 58% male) were compared with controls
(62.1±7.0 years, 40.6% male). The AUC-ROC of the classification value of the Aeonose itself was 0.75
(95% CI 0.69–0.81). Adding age, number of pack-years and presence of COPD to this value in a
multivariate regression analysis resulted in an improved performance with an AUC-ROC of 0.86 (95% CI
0.81–0.90). Adding these clinical variables beforehand to the ANN for classifying the breath print also led
to an improved performance with an AUC-ROC of 0.84 (95% CI 0.79–0.89).
Conclusions: Adding readily available clinical information to the classification value of exhaled-breath
analysis with the Aeonose, either post hoc in a multivariate regression analysis or a priori to the ANN,
significantly improves the diagnostic accuracy to detect the presence or absence of lung cancer.
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Introduction
Lung cancer remains the leading cause of cancer-related death worldwide, accounting for ∼5% of total
mortality in many countries [1]. Unfortunately, most patients present with late-stage disease (stages III
and IV) and there are limited effective treatment options with consequently high mortality rates (5-year
survival rate <10%) [2, 3]. Currently, the only screening method leading to reduced lung cancer mortality
in high-risk groups is annual low-dose computed tomography (LDCT) [4, 5]. However, LDCT screening
for lung cancer has also resulted in a notable rate of false-positive cases, leading to unnecessary invasive
procedures, risks due to radiation exposure and unnecessary anxiety [4–8]. In Europe, results of the
Dutch–Belgian lung cancer screening trial (NELSON) are awaited before a decision on implementation of
screening programmes in Europe will be made [9]. Hence, there is an increasing demand for innovative,
noninvasive, point-of-care diagnostic tools to detect lung cancer at an early stage.

Exhaled-breath analysis with electronic nose technology is a technique based on detecting combinations of
volatile organic compounds (VOCs) that are exhaled in very low concentrations. These VOCs reflect
pathophysiological processes, such as infection, inflammation and neoplasms [10–12]. VOCs are of interest
since they might be directly related to the presence of diseases, they can be tested noninvasively and pattern
recognition techniques can serve as classifiers for diseases. Several studies on exhaled-breath analysis have
supported the hypothesis that VOC patterns alter when lung cancer is present [13–20].

Recently, we reported results of a study (including 290 subjects) differentiating subjects with lung cancer,
including classification into subtypes of lung cancer, from healthy individuals by means of exhaled-breath
analysis with the Aeonose (The eNose Company, Zutphen, the Netherlands) [13]. In this study, an
artificial neural network (ANN) was trained using exhaled-breath data only.

The Aeonose was able to diagnose patients with non-small cell lung cancer (NSCLC) with a sensitivity of
94%, a negative predictive value (NPV) of 85% and an area under the receiver operating characteristic
curve (AUC-ROC) of 0.76. Subtyping NSCLC into adenocarcinoma and squamous cell carcinoma also
showed promising results.

These diagnostic parameters were based on the analysis of exhaled VOCs only and did not take into
account any of the subjects’ risk factors, such as age, sex, smoking status (number of pack-years) and
presence of COPD. This paper describes the potential of adding specific clinical information to the
classification value obtained from the Aeonose on the diagnostic accuracy to diagnose lung cancer. The
hypothesis was that adding clinical information would improve the diagnostic performance. This was
assessed in two ways: first, the clinical information was added afterwards to the classification value of the
Aeonose as obtained from the ANN by applying multivariate logistic regression analysis, and second, by
using this clinical information a priori in the training process of the ANN.

Methods
Data were obtained from a previous prospective, multi-centre study where subjects suspected for lung
cancer, as well as healthy volunteers, were asked to participate [13]. The originally collected breath samples
were currently used for additional analyses. The four secondary teaching hospitals participating were
Medisch Spectrum Twente (Enschede, the Netherlands), Bernhoven (Uden, the Netherlands), Medisch
Centrum Leeuwarden (Leeuwarden, the Netherlands) and Deventer Ziekenhuis (Deventer, the Netherlands).
For patients with confirmed lung cancer based on histopathology, staging was established according to the
seventh edition of the American Joint Committee on Cancer TNM (tumour, node, metastasis) staging
system [21]. The control group consisted of suspected subjects with a rejected diagnosis based on imaging
and/or derived histopathology and healthy volunteers. Healthy volunteers with a minimum age of 50 years
were recruited through an advertisement on the hospitals’ websites. There were two exclusion criteria for all
subjects: another active malignancy in the past 5 years or the inability to perform a complete Aeonose
measurement. Demographic data were collected including age, sex, body mass index, smoking status,
number of pack-years, and presence of COPD, hypertension and diabetes mellitus.

The Aeonose is a handheld electronic nose device containing three metal-oxide sensors [13, 22, 23]. This
device is a noninvasive, easy-to-use, low-cost tool that is, once trained and validated, able to perform real-time
analysis to detect lung cancer. Temporary storage of the breath sample is not required. Subjects were instructed
to breathe through the Aeonose for 5 minutes with their nose clipped to prevent nose breathing.

The study protocol was approved by the medical ethics committee of Medisch Spectrum Twente and by
the board of directors at each participating centre. All subjects gave informed consent.

Statistical analysis
Continuous variables are reported as mean with corresponding standard deviation or as median with
interquartile range. Nominal variables are reported as numbers with corresponding percentages. To assess
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differences between the groups, either the t-test for normally distributed continuous variables,
Mann–Whitney U-test for skewed distributed continuous or ordinal variables, or Chi-squared test for
nominal and categorical variables was applied. Number of pack-years was categorised as 0, 1–20, 21–40 and
>40 pack-years. Based on clinical reasoning, we assumed a strong relationship between smoking status and
number of pack-years, which was confirmed (p<0.001). Number of pack-years contained most relevant
information. Therefore, we excluded smoking status as clinical variable from the multivariate analysis.

Data from exhaled breath were analysed using Aethena, a proprietary, dedicated software package from The
eNose Company. The software package comprises techniques for data pre-treatment, data compression methods,
ANN training and classification to assess the probability of lung cancer, ranging a single value between −1 and 1
[23]. ANNs have been developed as an alternative statistical technique to perform multifactorial analyses by
interconnecting nodes with weighted connection lines to predict outcomes or classifying values on an
individualised basis [24]. Sensitivity, specificity, positive predictive value (PPV) and NPV were calculated for the
diagnosis of lung cancer based on the classification by the Aeonose, and receiver operating characteristics (ROC)
curves were composed with a corresponding AUC-ROC with 95% confidence interval.

Clinical variables that were univariately associated with the presence of lung cancer (p<0.15) were entered
in a multivariate logistic regression analysis where variables with the highest p-values were eliminated
step-by-step (backward method) until the fit of the model decreased significantly, based on the −2 log
likelihood. This analysis was based on clinical variables only.

Subsequently, two types of multivariate analysis were performed where breath data were included. First,
another multivariate logistic regression analysis, consistent with the aforementioned method, was
performed together with the classification value of the Aeonose as obtained from the ANN. Second,
clinical variables that were univariately associated with the presence of lung cancer (p<0.15) were added to
the vector containing breath profile information once data compression had been realised. These extended
vectors (one per subject) were used for training the ANN.

Sensitivity, specificity, positive predictive value (PPV), NPV and AUC-ROC were then calculated for the
diagnosis of lung cancer according to the selected multivariate logistic regression model and the extended
ANN. These outcomes were compared with the diagnostic accuracy obtained by the classification result of
the exhaled-breath analysis only. The multivariate regression model was internally validated by 1000
iterations of bootstrap.

All statistical tests were two-sided with a significance level at 0.05. SPSS version 24.0 (IBM, Armonk, NY,
USA) was used to perform statistical mathematics.

Results
A total of 281 subjects were included, of whom 138 had confirmed NSCLC. The control group consisted
of 143 subjects without lung cancer of whom 59 were suspected for lung cancer but were considered
negative after investigation, and 84 subjects were healthy volunteers (figure 1). Table 1 provides a
description of the study participants including clinical characteristics for both groups.

FIGURE 1 Flow chart showing the
different groups. NSCLC: non-small
cell lung cancer.

All subjects
n=281

Confirmed NSCLC
n=138

Control group:
No NSCLC

n=143

Initially suspected 
for lung cancer

n=59

Healthy volunteer
n=84
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Lung cancer patients were significantly older (mean age 67.1±9.1 years), more likely to be male and a
current or ex-smoker, had smoked more pack-years, and were more often diagnosed with COPD than
subjects in the control group. Almost 75% of the NSCLC patients were classified as stage III or IV disease.

Table 2 shows that sex, age, smoking status, number of pack-years, presence of COPD and the
classification value obtained by the Aeonose were univariately associated with the presence of lung cancer.
Subsequently, we added these candidate variables to a multivariate regression analysis, which showed that
age, number of pack-years, presence of COPD and the value of the Aeonose remained significantly
predictive for the presence of lung cancer.

Each additional year of age was associated with a 5% higher chance of having lung cancer (OR 1.05, 95%
CI 1.02–1.09). Subjects who had smoked 1–20 pack-years have a 3.5-fold higher chance of developing lung
cancer (OR 3.5, 95% CI 1.25–9.66), whereas those who had smoked >40 pack-years have a 11.7-fold higher
chance (OR 11.7, 95% CI 4.04–33.87). Patients with COPD had a 2.3-fold increased risk of having lung
cancer (OR 2.27, 95% CI 1.18–4.43). The classification value of the Aeonose was also strongly associated
with the presence of lung cancer (OR 12.7, 95% CI 4.48–35.83).

The multivariate logistic regression analysis based on clinical variables only showed a sensitivity of 93.5%,
a specificity of 50%, a PPV of 64.5% and an NPV of 88.8%. This corresponded with an AUC-ROC of 0.80
(95% CI 0.75–0.85).

When the ANN was trained with exhaled-breath data from the Aeonose only, we found a sensitivity of
94.2%, a specificity of 44.1%, and a PPV and NPV of 61.9% and 88.7%, respectively, with an AUC-ROC of
0.75 (95% CI 0.69–0.81) (table 3). When applying the multivariate logistic regression model including the
resulting value (−1 to 1) of the exhaled-breath data from the ANN in the exact same study population, we
found an improved performance to distinguish NSCLC patients from controls with an AUC-ROC of

TABLE 1 Clinical characteristics of subjects

Confirmed
NSCLC

Total control
group

Suspected, proven
negative

Healthy
volunteer

p-value

Subjects n 138 143 59 84
Age years 67.1±9.1 62.1±7.0 65.2±8.8 59.8±4.3 <0.001¶

Males 80 (58.0%) 58 (40.6%) 31 (52.5%) 27 (32.1%) <0.001+

Smoking status
Current smokers 49 (35.5%) 19 (13.3%) 13 (22.0%) 6 (7.1%) <0.001+

Ex-smokers 82 (59.4%) 76 (53.1%) 32 (54.2%) 44 (52.4%)
Never-smokers 7 (5.1%) 48 (33.6%) 14 (23.7%) 34 (40.5%)

Smoking exposure
pack-years
0 7 (5.1%) 48 (33.6%) 14 (23.7%) 34 (40.5%)
1–20 30 (21.7%) 53 (37.1%) 18 (30.5%) 35 (41.7%) <0.001+

21–40 53 (38.4%) 25 (17.5%) 17 (28.8%) 8 (9.5%)
>40 48 (34.8%) 17 (11.9%) 10 (16.9%) 7 (8.3%)

COPD 66 (47.8%) 22 (15.4%) 21 (35.6%) 1 (1.2%) <0.001+

BMI kg·m−2 25.6±4.6 25.9±4.8 26.9±5.9 25.2±3.8 0.104
Type of NSCLC
Adenocarcinoma 88 (63.8%)
Squamous cell
carcinoma

41 (29.7%)

Large cell carcinoma 4 (2.9%)
NOS 5 (3.6%)

NSCLC stage#

I 25 (14.5%)
II 15 (10.8%)
III 39 (28.3%)
IV 64 (46.4%)

Data are presented as mean±SD or n (%), unless otherwise stated. NSCLC: non-small cell lung cancer;
BMI: body mass index; NOS: not otherwise specified.#: according to the seventh edition of the American
Joint Committee on Cancer TNM staging system; ¶: after Games–Howell correction, there was a
significant difference between healthy volunteers and confirmed NSCLC and healthy volunteers and
suspected, proven negative subjects; +: after Holm–Bonferroni correction, there was a significant
difference between healthy volunteers and confirmed NSCLC and suspected proven negative subjects.
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0.86 (95% CI 0.81–0.90). By choosing a relevant threshold value in the ROC curve, focusing on high
sensitivity and high NPV, the analysis showed a sensitivity of 95.7%, a specificity of 59.7%, and a PPV and
NPV of 69.5% and 92.5%, respectively. The bootstrap analysis for internal validation showed similar
regression coefficients compared to our original model showing robustness of the model.

When training the ANN with exhaled-breath data together with the clinical variables that were
univariately associated with the presence of lung cancer, we found an improved diagnostic performance as
well to distinguish NSCLC patients from controls, showing an AUC-ROC of 0.84 (95% CI 0.79–0.89). By
choosing an appropriate threshold value in the ROC diagram, we observed a sensitivity of 94.2%, a
specificity of 49.0%, and a PPV and NPV of 64.0% and 89.7% respectively. Figure 2 shows the combined
ROC curve showing the improved performance of both multivariate models.

Discussion
This study assessed the impact of combining exhaled-breath analysis and clinical parameters in diagnosing
lung cancer. We showed that adding readily available clinical information to the classification value of
exhaled-breath analysis by the Aeonose in a relatively easy-to-perform multivariate regression model
improved the diagnostic accuracy, expressed as AUC-ROC, from 0.75 to 0.86 to diagnose lung cancer in a
noninvasive way. When extending the vector containing compressed breath data with clinical variables,
and in this way training the ANN to distinguish between sick and healthy individuals, the diagnostic
accuracy, expressed as AUC-ROC, increased from 0.75 to 0.84. Minor differences were observed compared
to our previous performed analysis due to the somewhat smaller sample size because of missing
information on pack-years (previous study: n=290, AUC-ROC 0.76) and the fact that outcomes of
frequently training an ANN can slightly fluctuate.

It turns out that logistic regression analysis and ANN are equally capable of increasing classification
quality of lung cancer diagnosis. We expected to see rather improved accuracy when entering a

TABLE 2 Results of the univariate and multivariate logistic regression analyses for diagnosing
lung cancer

Variable Univariate analysis Multivariate analysis β#

Sex 2.01 (1.26–3.20) 1.42 (0.76–2.58) 0.34
Age 1.08 (1.05–1.11) 1.05 (1.02–1.09) 0.05
BMI 0.99 (0.94–1.04) −
Smoking status −
Current smoker 17.49 (6.79–45.06)
Ex-smoker 7.56 (3.23–17.69)
Never smoked Ref.

Smoking exposure pack-years
0 Ref. Ref.
1–20 3.88 (1.56–9.65) 3.48 (1.25–9.66) 1.25
21–40 14.77 (5.89–37.04) 10.20 (3.66–28.46) 2.32
>40 19.36 (7.36–50.91) 11.69 (4.04–33.87) 2.46

COPD 4.90 (2.80–8.58) 2.29 (1.18–4.43) 0.83
Diabetes mellitus 0.70 (0.30–1.64) −
Aeonose classification value [13] 24.20 (9.71–60.33) 12.67 (4.48–35.83) 2.54

Data are presented as odds ratio (95% confidence interval) unless otherwise stated. β: regression
coefficient. BMI: body mass index; −: not added to the multivariate model. #: constant −5.54.

TABLE 3 Diagnostic performance of the three investigated prediction models

Positive/negative Optimal cut-off Sensitivity Specificity PPV NPV AUC-ROC (95% CI)

Clinical variables only 138/143 0.32 93.5% 50.0% 64.5% 88.8% 0.80 (0.75–0.85)
Aeonose result only 138/143 −0.38 94.2% 44.1% 61.9% 88.7% 0.75 (0.69–0.81)
Multivariate logistic regression model 138/143 0.27 95.7% 59.7% 69.5% 92.5% 0.86 (0.81–0.90)
Extended ANN 138/143 −0.65 94.2% 49.0% 64.0% 89.7% 0.84 (0.79–0.89)

PPV: positive predictive value; NPV: negative predictive value; AUC-ROC: area under the receiver operating curve; ANN: artificial neural
network.

https://doi.org/10.1183/23120541.00221-2019 5

LUNG CANCER | S. KORT ET AL.



combination of clinical and exhaled-breath data directly to the untrained ANN, because it considers
possible interactions. Independency of parameters, like breath profile, COPD and pack-years, cannot be
fully assumed so far. As extending exhaled-breath data with clinical parameters followed by classification
by an ANN is more complex than building a multivariate regression model out of single clinical
parameters, the latter is to be recommended for practical use.

Besides ANN and logistic regression analysis, other statistical learning methods for classifying
exhaled-breath data are available, such as random forest and support vector machines [25]. In a previous
study, results from neural network analysis were compared to results obtained from random forest and
support vector machine showing comparable diagnostic performance [26]. In this study, we only focused
on the two statistical learning methods described: logistic regression analysis and neural network analysis.

Previous studies have shown that electronic nose technology based on pattern recognition of VOCs or
identifying VOCs with gas chromatography/mass spectrometry can differentiate between subjects with and
without lung cancer [13, 14, 17, 20, 27–29]. Several studies using techniques for VOC identification have used
logistic regression analysis to identify lung cancer-specific VOCs [30, 31]. However, logistic regression analysis
including clinical parameters in studies using pattern recognition techniques has not been shown often yet.
TIRZÏTE et al. [19] used logistic regression analysis to predict the presence of lung cancer with the Cyranose 320
electronic nose mainly using segments of exhaled breath as input variables for the logistic regression analysis,
but also including a few clinical parameters, such as age, smoking status, smoking history and ambient
temperature. They were able to distinguish subjects with lung cancer from controls with a sensitivity of 96% in
both smokers and nonsmokers, and a specificity >90% in both groups. To our knowledge, no studies have
been performed using clinical variables and exhaled-breath data based on pattern recognition combined in an
ANN to diagnose lung cancer. However, several studies have used ANNs to detect lung cancer without
performing exhaled-breath analysis. These studies mainly focused on clinical parameters and biomarkers
based on blood and genetic abnormalities [32, 33]. As described in our training study, the optimal cut-off
point chosen determines the number of false-positive cases versus the number of missed cases concerning lung
cancer [13]. We focused again on a high sensitivity and a high NPV, since lung cancer has an extremely high
mortality rate if not detected early. By adding the clinical variables to the exhaled-breath data, we saw in both
models that all diagnostic parameters improved, thereby reaching higher sensitivity and NPV compared to the
training study, but we also observed fewer false-positive cases by achieving higher specificity.

In the near future, the results obtained could be proposed to add value in several ways. First, in the case of
implementation of LDCT in Europe, the Aeonose may be deployed after suspicion of lung cancer has been
raised with LDCT. Due to the high NPV with the Aeonose, subjects could be prevented from undergoing
unnecessary invasive interventions and be monitored with prolonged intervals [8]. In addition, there is
current debate about identifying at-risk groups relevant for LDCT screening [34–36]. Combining clinical
parameters and exhaled-breath data in an ANN could indicate the degree of suspicion of lung cancer, and
therefore serve as an adjunct for risk stratification in lung cancer screening, supporting clinical decision
making.
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FIGURE 2 Combined receiver operating characteristic curve showing four predictive algorithms: logistic
regression clinical variables, single Aeonose value, extended artificial neural network (ANN) and logistic
regression including Aeonose value.
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Limitations of our study should also be mentioned. We did not analyse subjects with small cell lung
cancer, nor did we analyse differences between the histological subtypes of NSCLC and lung cancer stages,
since these subgroups were too small to include all relevant variables in the multivariate model. Moreover,
we do not know the influence of food intake by subjects. Eating and drinking was not restricted before the
exhaled-breath measurement. However, the neural network is being trained comparing breath profiles of
positive and negative subjects regardless their food intake. When numbers of subjects are sufficiently large,
it can be assumed that food intake is not relevant as it averages out. It should also be noted that most
subjects had stage III and IV lung cancer (75%). This population differs from the high-risk asymptomatic
subjects suitable for screening, where focus lies in early-stage lung cancer. However, the risk factors
included in the multivariate analysis are applicable for both early- and late-stage lung cancer, so when
exhaled-breath analysis is able to detect early-stage lung cancer, readily available clinical information
should be incorporated in the analysis. Future analysis, including sufficient stage I and II NSCLC, should
indicate whether breath patterns already change early in the course of the disease.

We should also note that in high-dimensional data sets as obtained with the Aeonose, the problem of
overfitting can occur where a prediction model that looks appropriate on training data used to develop it,
will perform poorly on future observations. Combining analytical techniques, such as data compression
and cross-validation, partly overcomes this issue. Currently, an external validation study is performed
where a complete new cohort of subjects is included to totally overcome the issue of overfitting.

Conclusion
Due to the aggressive nature of lung cancer, diagnostic accuracy should be as high as possible. This
diagnostic accuracy to detect the presence or absence of lung cancer by exhaled-breath analysis with the
Aeonose can be improved by adding readily available clinical information, either post hoc in a multivariate
logistic regression model or a priori in the training process to the ANN, compared to the single
classification value based on exhaled-breath data only. As both approaches yielded similar results, the
multivariate logistic regression model should be preferred as its application is more convenient.
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