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ABSTRACT
Background: Percutaneous microwave ablation is clinically used for inoperable lung tumour treatment.
Delivery of microwave ablation applicators to tumour sites within lung parenchyma under virtual
bronchoscopy guidance may enable ablation with reduced risk of pneumothorax, providing a minimally
invasive treatment of early-stage tumours, which are increasingly detected with computed tomography
(CT) screening. The objective of this study was to integrate a custom microwave ablation platform,
incorporating a flexible applicator, with a clinically established virtual bronchoscopy guidance system, and
to assess technical feasibility for safely creating localised thermal ablations in porcine lungs in vivo.
Methods: Pre-ablation CTs of normal pigs were acquired to create a virtual model of the lungs, including
airways and significant blood vessels. Virtual bronchoscopy-guided microwave ablation procedures were
performed with 24–32 W power (at the applicator distal tip) delivered for 5–10 mins. A total of eight
ablations were performed in three pigs. Post-treatment CT images were acquired to assess the extent of
damage and ablation zones were further evaluated with viability stains and histopathologic analysis.
Results: The flexible microwave applicators were delivered to ablation sites within lung parenchyma
5–24 mm from the airway wall via a tunnel created under virtual bronchoscopy guidance. No
pneumothorax or significant airway bleeding was observed. The ablation short axis observed on gross
pathology ranged 16.5–23.5 mm and 14–26 mm on CT imaging.
Conclusion: We have demonstrated the technical feasibility for safely delivering microwave ablation in the
lung parenchyma under virtual bronchoscopic guidance in an in vivo porcine lung model.
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Introduction
While curative surgical resection [1] remains the gold standard treatment for patients with early-stage lung
cancer, only about 30% of patients are surgical candidates due to comorbid disease, cardiopulmonary
function, or tumour location within the lung [2, 3]. Alternatives to surgery are chemotherapy, stereotactic
body radiation therapy (SBRT), or percutaneous thermal ablation modalities. SBRT is the most widely
used; while recent studies have demonstrated good local control with SBRT, some patients are ineligible
due to prior ionising radiation exposure or tumour location within the lung [4]. Several thermal ablation
modalities (radiofrequency (RF) ablation, microwave ablation (MWA), cryoablation) have been applied
clinically with needle-based applicators inserted into the lung via an image-guided transcutaneous
approach. A recent multi-centre prospective study reported similar 2-year overall survival rate for patients
with stage IA nonsmall cell lung cancer treated with SBRT and percutaneous MWA [5]. Unlike SBRT,
thermal ablation does not employ ionising radiation and thus has a limited toxicity burden, and is
amenable to repeat procedures [6, 7]. While RF ablation is currently the most common thermal ablation
modality [7], MWA offers several advantages for treating lung tumours: microwaves can propagate
through aerated lung and charred tissue that may form around the applicator, enabling use of simplified
energy-delivery algorithms; and provide higher heating rates over a broader tissue area, and can thus more
readily overcome heat sinks due to blood perfusion, airflow in large airways, and ventilation [8].

Although percutaneous thermal ablation approaches have shown promise in clinical use, a significant
complication is the risk of pneumothorax [9]. An experimental study in a porcine model demonstrated
that the creation of an iatrogenic fistula extending from the ablation zone to the pleural space is the likely
cause of pneumothorax after percutaneous ablation [10]. Bronchoscopic transparenchymal nodule
approaches [11] provide safe access to centrally located lung targets and may reduce the risk of
pneumothoraces, when compared to percutaneous approaches, as has been demonstrated during biopsy
procedures [12, 13].

We have recently reported on the development of a flexible, water-cooled MWA catheter for thermal
ablation of lung tumours [14]. The objective of the present study was to integrate the MWA catheter and
energy-delivery system with a clinically established bronchoscopic treatment planning, guidance, and
navigation platform, and to assess the technical feasibility of performing ablation with this system in an in
vivo nonsurvival porcine lung model. The extents of the ablation zone were assessed with post-ablation
computed tomography (CT) imaging and viability staining, and characteristics of the ablation zone were
assessed following histopathologic analysis.

Methods
Bronchoscopic microwave ablation system
We used a custom 1.1 m long, 1.8 mm outer diameter, water-cooled MWA catheter (figure 1), adapted
from the design previously described by PFANNENSTIEL et al. [14]. Microwave power at 2.45 GHz was
coupled to the catheter distal tip via a flexible coaxial cable. Due to cable attenuation, approximately 52%
of the power applied at the catheter input was delivered to the distal tip. Chilled water was circulated
through the catheter to remove waste heat due to attenuation within the coaxial cable. An antenna that
radiates microwaves into surrounding tissue was formed at the distal tip with a balun to restrict radiation
along the applicator axis.

a) b)

FIGURE 1 a) Flexible water-cooled microwave catheter. b) Distal tip of the catheter emerging from the
instrument channel of a flexible bronchoscope, from within a guidance sheath.

https://doi.org/10.1183/23120541.00146-2020 2

LUNG CANCER | J. SEBEK ET AL.



The MWA catheter was delivered to diverse sites within porcine lung through a flexible bronchoscope
(Olympus BF 1T160) with guidance provided by the Archimedes treatment planning and navigation
system. Microwave power was supplied by a solid-state 2.45 GHz generator (GMS 200 W, SAIREM). The
generator was connected to the catheter via 10 ft of RG-393 cable, with an inline power meter (Bird 7022).
A peristaltic pump (Masterflex L/S7015-20) was used to circulate chilled water at 4 °C through the
catheter. The integrated system for bronchoscopic ablation is illustrated in figure 2, with virtual
bronchoscopy navigation using the Archimedes total lung access platform (Broncus Medical, Inc., San
Jose, CA, USA.) [12, 15].

Animals and anaesthesia
All experiments were conducted under a protocol approved by Kansas State University’s Institutional
Animal Care and Use Committee. Bronchoscopy-guided MWA was performed in domestic female pigs
(n=3; weight: 45–50 kg). Planning CT images were acquired 1–4 days prior to the MWA procedures to
generate a virtual airway and blood vessel map using the Archimedes virtual bronchoscopy system. For
both the imaging and ablation procedures, anaesthesia was induced with Telazol (4.4 mg·kg−1,
intramuscular) and xylazine (2.2 mg·kg−1, intramuscular) and followed with atropine sulfate (0.05 mg·kg−1,
intramuscular) to aid intubation. Anaesthesia was maintained by isoflurane at 1.5–3.0% and oxygen.
During ablation procedures, two pigs were allowed to breathe spontaneously; one pig was ventilated by
intermittent positive-pressure ventilation (I:E ratio 1:2, respiratory rate 16–20/min, tidal volume 60–90 mL)
to maintain end-tidal CO2 (PETCO2

) <55 mmHg. Pigs were instrumented for continuous monitoring of
ECG, PETCO2

, arterial oxygen saturation measured by pulse oximetry (SpO2
) and respiratory rate. After

completion of ablation procedures and post-procedure imaging, animals were euthanised under
anaesthesia with 10 mL pentobarbital (390 mg·mL−1) administered intravenously; euthanasia was
administered within 60 min of the last ablation performed in each animal.

Virtual bronchoscopy-guided microwave ablation procedures
Pre-procedural CT images (GE Brightspeed, 16 slices, 120 kV, 240–300 mA, 0.625 mm slice thickness) of
inflated lungs were acquired with anesthetised pigs positioned in a dorsal recumbency to facilitate
treatment planning for virtual bronchoscopy using the Archimedes system. Pigs were rapidly, manually
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FIGURE 2 System for bronchoscopic delivery of microwave ablation. Components include: flexible microwave
catheter; microwave generator and pump for catheter cooling; Archimedes treatment planning, guidance and
navigation system.
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ventilated for approximately 15 breaths to induce apnoea and maintained at a positive end-expiratory
pressure of 12 cm H2O during image acquisition. Airways and blood vessels were automatically segmented
within Archimedes, and used to create a virtual map of the vasculature and airways within the porcine
lungs. Virtual ablation targets were positioned at diverse lung sites as shown in figure 3. The Archimedes
system proposes a path through the airways to guide the bronchoscope to a point of entry (POE) into the
parenchyma. Starting from this POE, a path is proposed by which the bronchoscopist can create a tunnel
to access the target using the Archimedes Airway Access Kit, while minimising the risk of traversing blood
vessels [12, 15].

Bronchoscopy-guided MWA procedures were carried out by a board-certified veterinary surgeon (W.L.B.)
1–4 days following pre-treatment imaging. Pigs were orotracheally intubated and positioned in dorsal
recumbency. An Olympus BF-1T160 bronchoscope was passed into the trachea via the lumen of the
endotracheal tube. A 90-cm flexible sheath with stylet was inserted into the biopsy channel of the
bronchoscope and positioned at the tip of the bronchoscope. As the present study was conducted in
normal porcine lung without tumours, ablation sites were chosen in plausible tumour locations within
diverse lung lobes, including sites in proximity to heatsinks such as large airways and vessels. For each
target, the bronchoscopist used the Archimedes navigation to guide the bronchoscope to the POE
identified during treatment planning. An 18-gauge flexible guarded needle (FlexNeedle) was advanced
through the sheath’s lumen until visible in the endoscopic field. The needle was deployed and used to
puncture the airway into the lung parenchyma, and the sheath was then advanced over the needle until it
entered the parenchyma. The FlexNeedle was withdrawn from the sheath and replaced by the stylet. The
flexible sheath was advanced into the parenchyma to the ablation target site under Archimedes virtual
bronchoscopy and fluoroscopy guidance. The stylet was then removed and replaced by the ablation
catheter. Proper positioning of the ablation catheter was confirmed by real-time fused fluoroscopy [16]
(see figure 4).

After confirming microwave applicator positioning, chilled water was circulated through the catheter and
microwave power was applied. Two ablative doses were considered: 30–32 W for 5 min (n=4), and 24 W
for 10 min (n=4). These power levels refer to power delivered to the distal tip of the catheter, and
correspond to 40 W and 60 W, respectively, at the catheter’s proximal end. A maximum of n=4 ablations
were performed in each pig.

Characterisation of ablation zone extents
Post-procedure CT scans were taken before and following administration of 60 mL Omnipaque 300
injected via an ear vein. Ablation zones were segmented and assessed by a board-certified veterinary
radiologist (D.S.B.). After euthanasia, the lungs were harvested and cut into 5-mm thick sections, which
were immersed into triphenyl tetrazolium chloride, a viability stain that identifies cells with functioning
mitochondria [17]. After staining, photographs of ablation zones were taken, and minimum and
maximum diameters of each ablation zone were measured for the central region (“brown zone”) as well as
outer hyperaemic rim, consistent with published guidelines, as illustrated in figure 5 [18]. Extents of the
ablation zones achieved in both experimental groups were statistically compared using ANOVA with
Scheffe’s post hoc test at a 5% significance level.

Histopathologic assessment of ablation zones
Lung sections were fixed in 10% neutral buffered formalin, allowed to fix for 24 h, and routinely processed
for histopathological examination in an automated tissue processor and embedded in paraffin.
Slide-mounted tissue sections (∼4-μm thick) were stained with haematoxylin and eosin (H&E) and
evaluated by a board-certified veterinary anatomic pathologist (C.K.G.).

Results
A total of eight virtual bronchoscopy-guided ablations were performed in three pigs. Estimates of the
ablation zone extent recorded on gross pathology following vital staining and CT imaging of regions
within the porcine lung, where ablations were performed, are reported in table 1. ANOVA tests at a 5%
significance level indicated that there was no statistically significant difference in ablation zone extents
between the 5- and 10-min ablation groups. One ablation was performed without penetrating through the
airway wall leaving the applicator inside a small airway; we estimate the applicator was in contact with the
airway wall without any appreciable gap. Across all animals, no pneumothoraces were observed.

Figure 6 illustrates examples of ablation zones observed on CT imaging, gross pathology (following vital
staining) and histopathology (H&E-stained sections), following ablations at the two applied energy levels
considered in this study. On histopathology, five distinct regions were observed, as further illustrated in
figure 7.
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Gross examination of the lung showed multiple targetoid lesions in the lung parenchyma following
ablation (figure 6). The H&E-stained sections of these areas showed a central area of necrosis (zone 1) that
was characterised by marked disruption of tissue architecture, hypereosinophilia and nuclear pyknosis
(necrosis) admixed with oedema and haemorrhage. Zone 2 showed marked alveolar oedema characterised

a) b) c)

FIGURE 3 Example of planned target (green sphere) as seen on (a) pre-operative computed tomography image, (b) virtual map of lung airways
and vessels with pathway how to access it (blue line), and (c) several close-up views of virtual map of airway and vessels, illustrating a path for
accessing the target (green) from the airways.

FIGURE 4 Example of fused fluoroscopy-based verification of microwave applicator placement within the targeted lung region.
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by pale eosinophilic proteinaceous material (oedema), zone 3 had mild oedema with often marked dilation
of the airways (emphysema), zone 4 had marked vascular congestion/hyperaemia with mild interstitial
haemorrhage and zone 5 had marked infiltration of macrophages and neutrophils, forming a concentric
inflammatory cell cuff in this zone. Zone 6 represents unaffected lung parenchyma with no microscopic
lesions. There is no microscopic evidence of vascular rupture of arteries and veins in both ablated and
nonablated zones. The small blood vessels in the ablated zones 1–3 showed separation of vascular
endothelium in both the veins and arteries. The vascular endothelial separation is noticed more frequently
in veins and occasionally in arteries in zone 4. No differences in the histological characteristics of tissue
within zones 1–5 were observed for the ablations conducted after penetrating the airway wall into the lung
parenchyma compared with the applicator within the airway.

Discussion
Pneumothorax is the most common and a substantial risk for patients treated with percutaneous MWA,
and treatment of centrally located tumours may be technically challenging [10]. The present study was
designed to assess the technical feasibility of ablating lung tissue in an in vivo porcine model delivered
with a bronchoscopic MWA system integrated with a clinically established virtual bronchoscopy guidance,
treatment planning and navigation platform. No cases of pneumothorax were observed in this study,
demonstrating the feasibility of safely delivering bronchoscopic MWA.

Previously published pre-clinical studies of microwave systems for lung ablation have been restricted to
needle-based applicators delivered using an open surgical or percutaneous approach [17, 19, 20]. In the

FIGURE 5 Example of ablation zone
assessment in terms of maximum
and minimum dimensions of
central brown region as well as
outer hyperaemic rim.

Lung min
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TABLE 1 Estimated dimensions of ablation zones in a plane perpendicular to the applicator insertion along with mean values
and SD

Power W Time min Brown region Hyperaemic region CT dimensions Lung lobe and tunnel length mm

Min mm Max mm Min mm Max mm Min mm Max mm Height mm

32 5 11 13 16 22 15.4 24.5 21 Right cranial, 11.5
32 5 13 14 18 30 21.1 28.8 27.5 Left caudal#

32 5 7 11 19 24 20.4 25.9 26.2 Left caudal, 12
29 5 11 13 13 18 12 17.9 29.2 Right caudal, 8
Mean±SD 10.5±2.5 12.8±1.3 16.5±2.6 23.5±5 17.2±4.3 24.3±4.6 26.0±3.5
24 10 6 10 17 18 13.4 13.4 19.4 Right middle, 10
24 10 9 13 16 18 20.4 24.2 33.2 Left cranial, 24.5
24 10 8 9 4.5 9.8 9.9 Right middle, 13
24 10 9 11 20 24 22.3 27.7 28.8 Right middle, 5
Mean±SD 8 ±1.4 10.7±1.7 17.6±2.1 20±3.5 15.2±8 18.8±8.5 22.8±10.4

CT: computed tomography. #: Ablation delivered with applicator positioned within a small airway.
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present study, extents of ablation zones ranged between 16.5–23.5 mm (30–32 W, 5 min) and 17.6–20 mm
(24 W, 10 min). Although the 32 W, 5 min ablations deliver lower energy (9.6 kJ) to tissue than the 24 W,
10 min (14.4 kJ) ablations, no statistically significant differences in ablation zone extent were observed.
Power delivered from the ablation applicator falls offs centrifugally with increasing distance from the
applicator, with the boundary of the ablation zone limited by heat sinks such as ventilation and blood
perfusion. Using the higher applied power level (32 W) albeit for a shorter time (5 min) probably leads to
heating by direct microwave absorption at greater distances from the applicator, compared to when using
lower power (24 W), thereby compensating for the lower ablation duration. In previously published studies
of MWA with percutaneous needle-based applicators in an in vivo porcine lung model, ablation zone
extents as large as 28–38 mm in diameter have been reported when applying 70 W to a single
needle-based antenna [20]. Due to considerable attenuation within the 1.1-m catheter used in the present
study, only approximately half the power available at the applicator input was available at the antenna
radiating tip. Thus, the power levels employed in this study were only approximately 34–45% of the power
levels used in previous studies with needle-based applicators, leading to smaller ablation zones. Higher
power levels were precluded as benchtop studies illustrated the potential for catheter thermal failure at
power levels exceeding 32 W applied at the catheter tip (60 W at the catheter proximal end). Further
refinements to applicator materials and coolant flow are warranted to enable use of higher power levels
and thus afford creation of larger ablation zones. Another potential contributor to the smaller ablation
zones observed in this study may be the heat sinks due to large blood vessels and airways in the central

5000 μm

a) b) c)

d) e) f)

5000 μm

20

10

0

10

0
mm

mm

FIGURE 6 Example of computed tomography segmented ablation zones following 5 min, 32 W applied power (a) and for 30 W applied power (d).
Corresponding gross images showing focal well-delineated targetoid lesion in the lung parenchyma in (b) and (c) for 32 W input power and (e) and
(f ) for 30 W input power. (c) (32 W) and (f ) (30 W), show corresponding haematoxylin and eosin stained sections of the lung with various zones
marked 1–5 based on the histomorphology of the tissue post-ablation. “B” marks denote bronchi and “V” marks denote blood vessels. Numbers
inside ablation zone represent various altered pathological changes (1–5) following ablation. Zone 6 represents unaffected lung.
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(hilar) region of the lung, which are recognised to contribute to smaller ablation zones compared to when
the same energy is used in peripheral regions [21]. Most previous studies using needle-based microwave
technologies have focused on creating ablation zones in the peripheral lung, distant from larger airways
and blood vessels. Nevertheless, as illustrated in figure 6, the present study demonstrated the feasibility of
creating ablation zones in the vicinity of airways. This presents a distinct advantage of microwave power,

Necrosis

Hyperaemia Inflammation/transition Normal lung

Oedema Mild oedema and emphysema

FIGURE 7 Haematoxylin and eosin stained section of the lung showing various zones (1–5) representing histopathological changes in tissue
following ablation and unaffected lung (zone 6).
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in contrast to radiofrequency ablation technologies, which are severely impeded by the presence of large
airways.

The ablation zone sizes observed on CT post-treatment were generally in good agreement (difference of
1±3 mm) with the extent of the ablation zone as assessed by the hyperaemic rim observed on gross
pathology, and approximately 7–12 mm larger than the central brown zone, similar to previous reports
[22]. The extent of the ablation characterised on CT provided the means for estimating volume of the
ablation zone, which was not feasible with the gross pathology measurement, where determining the axis
of the applicator insertion remains challenging.

Histopathological examination of the tissue excised acutely following ablation showed variability in the
cellular damage from the centre of the lesion to the periphery. The intensity of tissue changes were
directly proportional to the intensity of heating within the tissue, with the centre (closest to the ablation
applicator) being the highest, and decreasing centrifugally. Within zone 1 (∼20% of the affected region),
acute parenchymal lung necrosis was observed with loss of tissue architecture and presence of cellular and
nuclear fragmentation (hypereosinophilia). The remainder of the zones (2–5) showed histopathological
changes consistent with degeneration and acute inflammation. Emphysema (zone 3) is noticed when the
air gets trapped in the alveolar spaces, oedema and congestion (zone 4) are often due to leaky blood
vessels and increased vascular supply respectively, and the outermost inflammatory zone (zone 5) contains
infiltrates of neutrophils and macrophages (to wall-off injury). It is well established that the full extent and
architectural characteristics of coagulative necrosis are not apparent on histology until at least 24–48 h
following thermal ablation [23–25]. For assessing the extent of thermal ablation during acute nonsurvival
studies such as the present study, vital staining techniques that distinguish viable from nonviable tissue as
a marker of mitochondrial activity have been shown to provide a more reliable assessment of the extent of
the treatment zone [26]. Indeed, in human clinical studies where the ablated lung tumour and
surrounding margin of tissue is surgically resected immediately following the ablation, viability stains have
been employed for assessment of the treatment zone as histological assessment of the extent of necrosis is
equivocal at this early timepoint [27–29]. Further studies in animals surviving >3 days following ablation
are warranted to definitively evaluate histopathological features in zones 2–5 at later time points, as well as
to observe changes in the ablation zone as assessed on CT imaging.

The average length of tunnel paths (i.e. distance beyond the airway wall) created to reach the centre of
targeted lung regions was 12 mm, with a maximum tunnel length of 24.5 mm and minimum of 5 mm. No
significant bleeding into the airways was observed. To our knowledge, this is the first study reporting use
of virtual bronchoscopy to guide safe delivery of MWA applicators to sites >2 cm beyond the airway wall;
previous reports of flexible MWA devices in the lung have only been reported in preliminary abstract form
[30, 31]. Previous pre-clinical studies (in canines) and human clinical studies have demonstrated the use of
virtual bronchoscopy to deliver biopsy tools to targets in the lung parenchyma with tunnel lengths up to
48 mm beyond the airway wall [12, 13, 15]. The relatively small airways of porcine lung limited the range
of manoeuvring the 6-mm bronchoscope and restricted tunnel length for accessible targets to be <3 cm.

Ablation systems with flexible applicators employing a variety of energy modalities (radiofrequency
[32–34], microwave [14], laser [35]) are in development for bronchoscopic treatment of lung nodules.
These systems may provide a minimally invasive approach for treatment of localised lung nodules as
detected on CT screening [11, 36]. However, both radiofrequency and laser ablation systems require the
controlled energy delivery due to changes in tissue electrical and optical properties, respectively, at elevated
temperatures. These changes include a sharp drop in electrical conductivity and significant rise of optical
absorption in tissue at temperatures exceeding ∼100 °C limiting further delivery of the current in case of
radiofrequency and the amount of power radiated to distant tissue regions in case of laser [37]. In contrast
to these modalities, microwaves are not impeded by tissue carbonisation at elevated temperatures, and may
thus enable ablation of large tissue volumes without complex energy-delivery algorithms, as previously
demonstrated in pre-clinical studies with needle-based applicators [20, 38]. Since thermal ablation of lung
nodules requires the ablation of a peri-tumoural margin of normal tissue, the ability to heat larger tissue
volumes with microwave applicators provides a theoretical advantage. Further development of our catheter
will enable use of higher power levels.

A limitation of this study was that ablation zones were assessed in normal lung. Lung tumours can have
considerably different electrical, thermal, blood flow and ventilation profiles compared to normal tissue.
Specifically, due to greater ventilation (i.e. heat sink) within normal lung, the ablation zones reported here
may serve as a lower bound for the anticipated size of ablation zones in tumours. As there are no
established large animal models of lung tumours, ablation volumes observed in normal porcine lung may
be used as a guide to anticipate extent of ablation zones in tumours, similar to percutaneous ablation
treatment planning in current clinical use. Future studies may use injected muscle paste/gel to simulate the
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effect of solid/dense tumours within normal lung [39]. Other limitations included the relatively small
number of applied power levels and ablation durations, as well as the lack of a survival study.

Conclusion
We have integrated an MWA platform, incorporating a flexible, water-cooled applicator, with a clinically
established bronchoscopic navigation and guidance platform and demonstrated the technical feasibility of
the system for safely ablating lung tissue in an in vivo porcine model. Ablations were performed by
delivering the applicator to targets in lung parenchyma via 5–24-mm tunnels under the guidance of a
bronchoscopic navigation system. No peri-procedural complications were observed. Further system
development to enable use of higher power levels and pre-clinical survival studies are warranted to assess
the safety and efficacy of this technology in a clinical setting.
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