Online supplement

Oscillometry and Computed Tomography Findings in Patients with Idiopathic Pulmonary

Fibrosis

Yuji Yamamoto^{*}, M.D., Keisuke Miki, M.D., Ph.D., Kazuyuki Tsujino, M.D., Ph.D., Tomoki Kuge, M.D., Fukuko Okabe, M.D., Takahiro Kawasaki, M.D., Takanori Matsuki, M.D., Hiroyuki Kagawa, M.D., Mari Miki, M.D., Ph.D., Hiroshi Kida, M.D., Ph.D.

Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan

*Corresponding author: Yuji Yamamoto, M.D., Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Address: 5-1-1 Toneyama, Toyonaka, Osaka, 560-8552, Japan. Phone: +81-6-6853-2001, Fax: +81-6-6853-3127, E-mail: cyyamamoto1110@gmail.com

Supplementary table 1. Definition of high-resolution computed tomography findings

HRCT finding	Definition		
Airspace consolidation	Homogeneous increase in pulmonary parenchymal attenuation that obscured		
	the underlying vessels		
Honeycombing	Clustered cystic airspaces from several mm to 1 cm in size with		
	well-defined and thick walls were seen in the subpleural regions		
Architectural distortion	Abnormal displacement of bronchi, pulmonary vessels, interlobar fissures,		
	or interlobular septa		
Traction bronchiectasis	Irregular bronchial dilatation within or around areas with parenchymal		
	abnormality		

HRCT, high-resolution computed tomography.

Supplementary table 2. High-resolution computed tomography scores

Score	0	1	2	3	4
Architectural	Absent	Present			
distortion					
Traction	Absent	Bronchial dilatation	Bronchial dilatation	Bronchial dilatation	
bronchiectasis		involving bronchi distal to	involving bronchi distal to	involving bronchi proximal to	
		the fifth generation	the fourth generation	the third generation bronchi	
Interstitial	Absent	Ground-glass attenuation	Ground-glass and	Reticular opacity and	Coarse reticular opacity and
fibrosis		without reticulation	fine reticular opacity	microcysts < 3 mm	large cysts > 3 mm

Supplementary table 3. Results of multivariate analyses assessing interactions between treatment for idiopathic pulmonary fibrosis and oscillometric parameters (n = 80)

Parameter	Pirfenidone		Inhaled		Nintadanih		Oral	
	FILLE	ndone	N-acetylcysteine		Nintedanib		corticosteroids	
	std β	p value	std β	p value	std β	p value	std β	p value
R5	-0.111	0.350	0.137	0.246	-0.073	0.535	-0.103	0.372
R20	-0.114	0.331	0.136	0.245	-0.101	0.385	-0.157	0.171
R5-R20	-0.075	0.531	0.104	0.384	0.005	0.968	0.036	0.760
X5	-0.040	0.742	-0.076	0.524	0.019	0.876	0.010	0.935
Fres	0.139	0.247	0.024	0.841	0.038	0.745	0.091	0.435
ALX	0.075	0.531	0.033	0.783	-0.035	0.771	-0.023	0.843

ALX, low-frequency reactance area; Fres, resonant frequency; R5 and R20, respiratory system resistance at 5 and 20Hz, respectively; std β , standardized partial regression coefficient; X5, respiratory system reactance at 5Hz.

Supplementary table 4. Results of multivariate analysis assessing interactions between forced expiration volume in 1s/forced vital capacity and oscillometric parameters (n = 80)

Parameter	std β	p value
R5	0.198	0.324
R20	indeterminate	indeterminate
R5-R20	-0.259	0.229
X5	-0.246	0.598
Fres	0.533	0.021
ALX	-0.470	0.369

ALX, low-frequency reactance area; Fres, resonant frequency; R5 and R20, respiratory system resistance at 5 and 20Hz, respectively; std β , standardized partial regression coefficient; X5, respiratory system reactance at 5Hz.