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Abstract
Background Immune cells play a major role in the pathogenesis of COPD. Changes in the distribution
and cellular functions of major immune cells, such as alveolar macrophages (AMs) and neutrophils are
well known; however, their transcriptional reprogramming and contribution to the pathophysiology of
COPD are still not fully understood.
Method To determine changes in transcriptional reprogramming and lipid metabolism in the major
immune cell type within bronchoalveolar lavage fluid, we analysed whole transcriptomes and lipidomes of
sorted CD45+Lin−HLA-DR+CD66b−Autofluorescencehi AMs from controls and COPD patients.
Results We observed global transcriptional reprogramming featuring a spectrum of activation states,
including pro- and anti-inflammatory signatures. We further detected significant changes between COPD
patients and controls in genes involved in lipid metabolism, such as fatty acid biosynthesis in GOLD2
patients. Based on these findings, assessment of a total of 202 lipid species in sorted AMs revealed
changes of cholesteryl esters, monoacylglycerols and phospholipids in a disease grade-dependent manner.
Conclusions Transcriptome and lipidome profiling of COPD AMs revealed GOLD grade-dependent
changes, such as in cholesterol metabolism and interferon-α and γ responses.

Introduction
COPD is characterised by progressive airflow obstruction, inflammation in the airways and systemic
comorbidities, such as cardiovascular diseases and diabetes [1]. It is a leading cause of morbidity and
mortality worldwide [2], and induces a substantial and increasing economic and social burden [3, 4].
Current guidelines for COPD patient classification use the Global Initiative for Chronic Obstructive Lung
Disease (GOLD) criteria on the basis of spirometry-estimated severity of airflow limitation and range from
mild (GOLD grade 1) to very severe (GOLD grade 4) disease [5]. Cigarette smoking is the leading
environmental risk factor for COPD, yet even for heavy smokers, fewer than 50% develop COPD during
their lifetime, indicating that the disease initiates from a complex interaction between environment and
genome. Some genetic factors, e.g. deficiency of α-1 antitrypsin [6] or single-nucleotide polymorphisms in
MMP12 [7] have been associated with the risk to develop COPD.
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Innate immune cells are key players in protecting the lung from airway infections and their impairment
plays a major role in COPD pathogenesis and exacerbation episodes [1, 8, 9]. Although changes in cellular
distribution and functions within the alveolar space have been described in COPD before [10], these
findings are far from being complete. Furthermore, the advent of omics technologies even extending to
metabolomics [11], as well as a better understanding of cell type classification requires revisiting these
aspects of innate immune cell biology of the alveolar space, both in healthy individuals and COPD
patients. Alveolar macrophages (AMs) are described to be the most abundant cells in humans [12]. Under
physiological conditions, AMs are the major cell type on the luminal surface of the alveolar space and are
major regulators of the initiation and resolution of inflammation [13, 14] and surfactant metabolism [15].
AMs catabolise pulmonary surfactants, which are composed of phospholipids and proteins and humans
lacking functional AMs develop pulmonary proteinosis [16].

Recent reports have shown that in respiratory diseases, such as asthma, COPD and pneumonia a lipidomic
remodelling of the bronchoalveolar lavage fluid (BALF) is observed, with changes in the levels of
cholesterol, sphingomyelins, phospholipids and fatty acids being the most prominent [17–19]. In particular,
the role of sphingolipids and cholesterol metabolism are believed to play a role in the pathogenesis of
COPD [20, 21]. Nevertheless, changes of the lipid metabolism within AMs in COPD patients have not
been addressed so far.

In this study, we hypothesised that transcriptional changes leading to altered lipid metabolism occur in a
disease grade-dependent manner. Using multi-colour flow cytometry (MCFC), we defined AMs as the
major cell type in COPD patients for which we provide clear evidence of global transcriptional
reprogramming, which differed between GOLD grade 2 and GOLD grade 3/4 COPD patients. Among the
major alterations in the AM transcriptome of COPD patients, we identified genes associated with lipid
metabolism, which was linked to significant changes in several lipid species by lipidomics analysis.

Methods
Human specimens
Human studies were approved by the ethics committees of the University of Bonn and University Hospital
Bonn (local ethics vote 076/16). All patients provided written informed consent according to the
Declaration of Helsinki before specimens were collected. Patients with COPD were diagnosed and
stratified according to the guidelines of GOLD [5]. Eligible patients were aged 18 years or older and were
either current, past or nonsmokers (table E1). Age-matched individuals suffering from chronic idiopathic
cough, demonstrating an exquisitely sensitive cough reflex without underlying pathology [22], served as
control donors. Patients with other pulmonary diseases (termed “other” (figure 1a)) were diagnosed as
asthma, asthma–COPD overlap, bronchiectasis, cancer, fibrosis, pneumonia and sarcoidosis (table E2), but
were excluded from further evaluation within this study.

Bronchoscopy procedure
Bronchoscopy was performed as a part of the diagnostic workup by two bronchoscopists through oral
access and with light conscious sedation and was performed in the middle lobe or, if not accessible, the
lingular lobe. Warmed saline (six syringes of 20 mL each) was instilled into the airways to enable BALF
recovery.

BALF processing
Human BALF was obtained from all patients included in the study (control, COPD, other) through
bronchoscopy. BALF specimens were washed with PBS, suspended with 0.02% EDTA-2Na and
washed again for final re-suspension with 2% fetal calf serum (FCS)/1 mM EDTA.
CD45+Lin−HLA-DR+CD66−Autofluorescence+ AMs were sorted using a FACS Aria III cell sorter (BD
Biosciences, USA).

Cell counting
Total cell counts were determined with (1:5) Trypan Blue exclusion (Sigma-Aldrich) under an optical
microscope. BALF cells were diluted 1:10 in the Trypan Blue solution and counted in a Neubauer
haemocytometer.

Flow cytometry/FACS
Single-cell suspensions were stained with Live/Dead yellow fluorescent dye (Thermo Fisher Scientific,
USA) for 15 min at room temperature and were washed with PBS at 300×g for 5 min at 4°C. They were
then re-suspended in 100 µL PBS and blocked with 5 µL human FcR blocking reagent (Miltenyi,
Germany) for 15 min on ice and were subsequently stained with the listed anti-human antibodies (table
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FIGURE 1 Identification of myeloid immune populations in the bronchoalveolar lavage fluid (BALF) of COPD and control patients. Schema of the
pipeline for collection and processing of human BALF samples. Of 177 BALF samples, 69 satisfied the quality criteria (>30% recovery rate and no
blood and/or mucus contamination) and were included in the study for multiple colour flow cytometry, transcriptomics and/or lipidomics. a) 61
patients suffering from asthma, asthma–COPD overlap (ACO), bronchiectasis, cancer, fibrosis, pneumonia or sarcoidosis were excluded from the
study. b) Representative multicolour flow cytometry (MCFC) analysis of the myeloid compartment of a control patient. c) Absolute numbers of
myeloid immune cells in the BALF of control, Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 2 and GOLD3/4 COPD patients
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E4) in buffer containing PBS, 2% FCS, 1 mM EDTA for 30 min on ice. Cells were spun at 300×g for
5 min at 4 °C and re-suspended in buffer containing PBS, 2% FCS, 1 mM EDTA for analysis. Data
acquisition was performed on a FACS Aria III cell sorter. Analysis was performed with FlowJo v.10
software (Tree Star, USA).

Cytospin preparation
Cytospins were obtained by centrifuging 2×105 cells in 200 µL PBS on microscope slides at 20% power
for 5 min. Excess buffer was carefully discarded and slides were air dried for 3 min followed by fixation
with 100% methanol for 5 min at 4°C. The slides were subsequently washed with PBS and stained with
1:20 Giemsa solution (Sigma, USA) for 25 min at room temperature. A final rinsing step with H2O and air
drying before mounting followed. Cell morphology was examined by microscopic evaluation of stained
cells using an Axio Lab A1 microscope (Zeiss, Germany).

RNA extraction and library preparation
Total RNA was isolated from human AMs with the miRNeasy Micro kit (QIAGEN, Germany) according
to the manufacturer’s protocol. cDNA libraries were prepared from 5 ng total RNA with the SMART-seq2
protocol [23] and were tagmented with the Nextera XT kit (Illumina, USA). Library size selection was
carried out with AMPure beads (Beckman-Coulter, USA). Libraries were sequenced for SR 75 cycles on a
NextSeq500 system (Illumina) using High Output v2 chemistry. Base call files were converted to fastq
format and demultiplexed using bcl2fastq v.2.20.

Data pre-processing and RNA-sequencing analysis
The 75 bp single-end reads were aligned to the human reference transcriptome hg38 from UCSC by
kallisto v.0.44.0 using default parameters. Data were imported into DESeq2 (v.1.10.1; [24]) using the
TXimport (v.1.2.0, [25]) package. DESeq2 was used for the calculation of normalised counts for each
transcript using default parameters. All normalised transcripts with a maximum over all group means <10
were excluded resulting in 33032 present transcripts. Unwanted or hidden sources of variation, such as
batch, sex and smoking status were removed using the sva package [26]. The normalised rlog-transformed
expression values were adjusted according to the five surrogate variables identified by sva using the
function removeBatchEffect from the limma package [27]. Differentially expressed (DE) genes were
defined by a p-value cut-off of 0.05 and an adjusted p-value (independent hypothesis weighting) <0.5.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) [28] was performed on all present genes of the dataset using the
gene ontology set of biological processes. Information of gene ontology was obtained from the biological
process gene set “c5.bp.v7.0.symbols.gmt”, downloaded from the Molecular Signatures Database
(MSigDB). All present genes were used as background (universe).

Linear support vector regression
Linear support vector regression [29] was employed to characterise the relative contribution of 28 different
activation signatures derived from XUE et al. [30] to the control and COPD patients (1000 permutations).

Filtering for transcription factors, epigenome, surfaceome and secretome
All present transcripts were filtered and sorted by their variance in the dataset. The 20 most variable genes
of each category were selected and visualised in heat maps. Transcription factor (TF) lists were extracted
from FULTON et al. [31], the epigenome gene list was derived from the literature, surface and secretome
markers were extracted from the Human Protein Atlas [32, 33].

Construction of coexpressed network analysis: automated
Coexpressed network analysis (CoCena2) was performed to elucidate similarities and differences within the
gene expression patterns of the three different patient groups. Pearson correlation was calculated on the
6000 most variable genes within the dataset using the R package Hmisc (v.4.3-0; [34]). Data were filtered
for significant (p-value <0.05, Bonferroni correction p<0.05) and positive (r-value >0) correlation values.
The group fold change (GFC) was calculated for each gene and each condition on the inverse logarithmic
count data using the R package gtools (v.3.8.2; Unbiased clustering was performed using the R package

calculated with traditional gating. Data are from 8–29 patients per group except for mast cells GOLD3/4 (n=2) and are represented as mean±SD.
Data are represented as mean±SEM and were analysed with an unpaired two-tailed t-test. d) Giemsa staining of cytospins for sorted BALF myeloid
cell types. RR: recovery rate; AM: alveolar macrophage; DC: dendritic cell; . Scale bars=10 µm. *: p<0.05.
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igraph (v.1.2.4.1; [35]). The clustering algorithm “cluster_louvain” was selected as it achieves the highest
modularity score. Clusters with fewer than 35 genes are not shown. Network generation was performed
with the R package igraph. The network information was imported to and exported from Cytoscape using
the R package RCy3 (v.2.6.2; [36]).

Biological function-related bioinformatic analysis of network modules
GSEA was performed on the patient group-related modules identified by CoCena2 using the R package
ClusterProfiler (v.3.12.0; [37]). Information of hallmark genes was obtained from the hallmark gene set “h.
all.v6.1.symbols.gmt”, downloaded from MSigDB. All genes present in the network were used as
background (universe).

Lipidomics
Sorted AMs (5×104) pelleted and frozen at −80°C until analysis. Extraction mix (chloroform 1:5
methanol-containing internal standards) was spiked to the pellets before sonication. Samples were treated
with chloroform and 1% acetic acid, the lower phase was transferred after centrifugation, and let evaporate
in the vacuum concentrator (45°C for 10 min). After addition of spray buffer and sonication, samples were
analysed separately with a Thermo Q Exactive Plus spectrometer equipped with the HESI II ion source for
shotgun lipidomics.

Lipidomics analysis
LipidXplorer software was used for analysis using custom mfql files to identify sample lipids and internal
standards. Absolute amounts were calculated using the internal standard intensities followed by
normalisation on the sum of all measured lipid species per sample. %mol values were averaged for each
patient group, log2-transformed and then used for fold change calculations. CoCena2 was used to find
patient group-specific coregulated lipid species using Pearson correlation and clustering using the
“cluster_louvain” algorithm.

Statistics
A two-tailed Welch’s unpaired t-test was used to analyse data from two groups. Equality of population
variance was assessed with the F-test statistic for two independent groups. A nonparametric Wilcoxon test
was used to perform a pairwise comparison between patient groups for all enriched macrophage activation
signatures. For more than two groups, normality and homoscedasticity were first assessed using the
Shapiro–Wilk and Levene tests in R (v.3.6.1). A nonparametric Kruskal–Wallis test with Dunn’s multiple
correction post hoc was used in figure E3 because the data did not follow a normal distribution. Statistical
significance was inferred when p<0.05.

For a full list of the methods, see the supplementary material.

Results
Macrophages are the most abundant cell type in the alveolar space in COPD
We first evaluated the cell type distribution in the BALF to ensure that AMs are the most abundant cell
type in control and COPD samples, the latter of which an enrichment of neutrophils had been postulated
[38]. We performed MCFC integrating markers to determine all major immune cell types expected within
the alveolar space [39]. Individuals with chronic coughing served as controls (table E1). Only BALF
samples of the highest quality following quality criteria established previously for the processing of BALF
[40], such as recovery rate >30% and absence or minimal blood/mucus contamination were included in the
study (figure 1a). Out of 177 screened BALF samples in the clinic, 72 were derived from COPD patients,
44 from control individuals, while patients suffering from asthma, ACO, bronchiectasis, cancer, fibrosis,
pneumonia or sarcoidosis were excluded (table E2). 69 patients (36 COPD and 33 controls) finally
qualified for further analysis (table E3).

We stained for markers of the myeloid cell compartment (figure 1b and table E5), whereas lymphocytes
were labelled with antibodies against CD3, CD19 and CD56 (figure 1b). Our data show that AM numbers
undergo a nonsignificant increase in COPD patients, whereas we could detect a statistically significant
upregulation (p<0.05) in the neutrophil numbers of GOLD3/4 grade patients compared to controls (figure
1c). Eosinophil and monocyte numbers varied widely within groups and reached no significance, whereas
mast cells were found to be significantly higher (p<0.05) in GOLD3/4 compared to GOLD2 COPD
patients (figure 1c).

Lymphoid cells were of much lower frequency and using a second panel for lymphoid cell markers (figure
S1a and table E5), we observed that only innate lymphoid cells (ILCs) were statistically significantly
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(p<0.05) changed in all COPD samples (figure S1b and c), with a similar trend when taking GOLD
grades into account (figure S1b). Within ILCs, ILC1s were the only significantly increased (p<0.05) ILC
population in COPD patients (figure S1d). Cell type classification was also confirmed on sorted cells by
Giemsa staining of cytospins (figure 1d). Collectively, AMs are the most abundant cell type in BALF,
which was then our focus for subsequent transcriptome and lipidome analyses.

Transcriptional changes in AMs within the alveolar space of COPD patients
To elucidate molecular changes of AMs as the most prevalent cells within the alveolar space, we sorted
CD45+Lin−HLA-DR+CD66b−Autofluoreschencehi AMs from the BALF of nine COPD and six control
patients and generated whole transcriptomes by RNA sequencing (figure 2a). Principal-component analysis
(PCA) of all present genes (figure 2b) and hierarchical clustering of the 25% most variable genes within
the dataset (figure S2a) revealed a clear disease grade-dependent structure within the data suggesting
significant differences between COPD GOLD2, GOLD3/4 and control samples.

Next, we calculated DE genes between GOLD2 or GOLD3/4 COPD and control patients, respectively.
There were 563 DE genes (229 up, 334 down, p<0.05, fold change (FC) >1.5) between GOLD2 and
control, 1456 (618 up, 838 down, p<0.05, FC>1.5) between GOLD3/4 and control and 1147 (572 up, 575
down, p<0.05, FC>1.5) between GOLD2 and GOLD3/4 COPD patients (figure 2c), which we visualised
in Volcano plots for all pairwise comparisons (figure 2d).

We first assessed overall transcriptional changes. We provide information for the top 20 altered TFs,
epigenetic modulators, cell surface molecules (surfaceome) and soluble mediators as micro-environmental
interactors (figure S2b–e). Upregulated TFs included ETS2 in COPD patients consistent with its function
as a biomarker for loss of lung function [41] (figure S2b). Consistent with the reported dysregulation of
histone deacetylase (HDAC) and sirtuin epigenetic signalling in AMs from COPD patients [42–45], the
expression of histone-modifying enzymes HDAC9 and SETD1A was downregulated in GOLD3/4 COPD
(Figure S2c). Regarding the surfaceome of the AMs, we measured decreased antigen presentation
molecules (HLA-DQA2 and CD1B) [46, 47] and CCR2 expression in GOLD3/4 COPD patients
(figure S2d). Notably, expression of the ligand chemokine to CCR2, CCL2, was elevated in the
secretome-associated gene set of GOLD3/4 COPD patients, similar to other members of the CC family of
chemokines, including CCL8 and CCL20 (figure S2d), highlighting the role of chemokines in COPD
pathophysiology [48]. Finally, we detected the downregulation of MMP7 and MMP9 in GOLD3/4 COPD
patients, with MMP12 being expressed significantly higher only in GOLD2 COPD patients (figure S2e), in
agreement with the role of metalloproteinases in the progression of COPD [49–52].

Activation state analysis indicates changes in lipid metabolism
We have previously reported that macrophage activation follows a multi-dimensional model of cell
activation [30]. However, for AMs in COPD, it has been proposed that AMs in COPD follow a dual
polarisation model with deviation towards an anti-inflammatory phenotype [47, 49, 53, 54] with no hints
on alterations in lipid metabolism. To analyse how the observed transcriptional changes in COPD AMs
related to our multi-dimensional model of activation states, we performed linear support vector regression
utilising our previous human macrophages activation spectrum model based on 29 conditions [30] (figure
3a). Our activation spectrum model could be grouped into nine major activation programs (c1–9) and were
used here as the bait to deconvolute the AM transcriptomes from COPD and control patients. The COPD
and control transcriptomes were enriched in a spectrum of activation signatures ranging from
pro-inflammatory to anti-inflammatory, as well as those extracted from fatty acid-stimulated macrophages
(c5 module signature), which show deviations in lipid metabolism. AMs from GOLD2 COPD patients
exhibited significantly lower enrichment (p<0.05) of the c4 module signature (P3C/PGE2, P3C and PGE2

stimulation) compared to GOLD3/4 COPD and control patients and c8 module signatures (TNF-α/P3C,
TNF-α and P3C stimulation) in comparison with GOLD3/4 COPD patients (figure 3a). In addition, COPD
GOLD2 AMs showed a higher enrichment (p<0.05) of the c5 module signatures (lauric acid (LA), linoleic
acid (LiA), oleic acid (OA), palmitic acid (PA) and stearic acid (SA) stimulation) compared to AMs from
control patients (figure 3a).

Based on these results indicating potential changes in lipid metabolism-associated-genes, we next
performed GSEA for either GOLD2 or GOLD3/4 COPD patients compared to controls (figure 3b and c).
Lipid-related gene sets, such as fatty acid catabolic process, fatty acid oxidation and regulation of
cholesterol biosynthetic process were enriched in AMs from GOLD2 COPD patients (figure 3b). AMs
from GOLD3/4 COPD patients presented with enrichment in cholesterol and lipid storage compared to
controls (figure 3c).
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FIGURE 3 Overlay of human macrophage activation states in alveolar macrophages (AMs) from COPD patients show lipid term enrichment. Overall,
29 macrophage activation signatures from [30] were used as input to identify the relative fraction of these activation signatures in COPD and
control patients. Grouping of activation signatures in nine clusters was used as proposed in [30]. a) Data were statistically analysed with the
nonparametric Wilcoxon test. Gene set enrichment analysis (GSEA) using the gene ontology (GO) database filtered for “fat” and “lipid” as reference
signatures. b) Normalised enrichment scores (NES) and enrichment p-values for the five most enriched gene ontology (GO) terms for the
comparison Global Initiative for Chronic Obstructive Lung Disease (GOLD)2 COPD versus control and c) GOLD3/4 COPD versus control patients. Heat
map of the mean expression of the 20 most variable genes filtered by d) the GO term fatty acid metabolism and e) fatty acid catabolic process.
IFN: interferon; HDL: high-density lipoprotein; IL: interleukin; GC: glucocorticoid; upLPS: ultra pure LPS; IC: poly(I:C); P3C: Pam3CSK4; PG:
prostaglandin; LA: lauric acid; LiA: linoleic acid; OA: oleic acid; PA: palmitic acid; SA: stearic acid; TNF: tumour necrosis factor; sLPS: soluble LPS;
TPP: TFNF/PGE2/P3CXXX; . *: p<0.05; **: p<0.01.
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To highlight the genes that are involved in the lipid-associated phenotype of COPD AMs, we visualised
the 20 most variable genes for the gene ontology term “fatty acid metabolism” of the c5 module from
figure 3a (figure 3d) and “fatty acid catabolic process” from figure 3b (figure 3e). Several genes that are
involved in cholesterol homeostasis were dysregulated in COPD patients. For example, enzymes involved
in fatty acid metabolism, such as ACAT2, FAAH, MLCYD and ACOX2 or enzymes that synthesise
diacylglycerols (LPIN3) were expressed higher in GOLD2 COPD patients. On the contrary, the
acyltransferase CRAT and the triglyceride synthesis enzyme LPIN2 were overexpressed in GOLD3/4
COPD patients. Fatty acid synthase FASN and the anti-inflammatory TF ATF3 [55, 56] were both
downregulated in COPD patients irrespective of GOLD grade (figure 3d and e). These findings strongly
support that AMs do not follow a simple polarisation model, but rather display a multi-activation
phenotype with a shift towards lipid activation signatures.

Coexpression analysis reveals changes in cholesterol homeostasis in COPD
Coexpression network analysis is an alternative to statistical methods describing changes in transcriptome
data, such as the calculation of DE genes based on a set fold change and p-value [57]. To further
investigate active gene programs in AMs, we performed gene coexpression analysis using CoCena2 (figure
4a). The clustering of the genes within the constructed network led to the identification of groups of
transcriptionally similarly regulated genes within the dataset. The mean GFC of these gene modules in
GOLD2, GOLD3/4 COPD and control patients were visualised in a heat map (figure 4b). We detected 11
modules, three of which demonstrated GOLD grade-associated average expression; for instance, modules 7
and 8 had a higher GFC in GOLD2 COPD patients, modules 3 and 4 were GOLD3/4-related, while
modules 9–11 had a higher GFC in AMs from control patients.

Next, GSEA was applied to concatenated modules per disease group (control: 1, 2, 6, 9, 10, 11, GOLD2:
5, 7, 8, GOLD3/4: 3, 4) to link the coexpressed genes to biological processes (figure 4c). While genes of
control patients were enriched in apical junctions, genes from the modules enriched in AMs derived from
GOLD2 patients suggested changes in cholesterol homeostasis in addition to the findings based on
statistical analysis (figure 3). However, GSEA of modules enriched in AMs derived from GOLD3/4
patients were not revealing any enrichment of terms related to lipid metabolism, but rather terms associated
with cell cycle and the secretion of pro-inflammatory cytokines.

The coexpression of genes associated with cholesterol homeostasis were not previously described to be
altered in AMs of COPD patients. Therefore, we investigated the GOLD2-associated modules in more
detail and identified genes involved in sterol biosynthesis (DHCR7, SQLE), cholesterol transportation to
cells (LDLR) and fatty acid metabolism (FADS2) (figure 4d). In contrast, genes of the interferon response
(CXCL10, IFIT3, IFITM1, IFITM3, OAS1, RSAD2, and ISG15) (figure 4e) and genes involved in the G2M
checkpoint including the proliferation marker MKI67, cyclin-dependent kinases (CDK1) and DNA
replication machinery (TOP2A, CENPA) (figure 4f) were highly expressed in GOLD3/4 AMs.

In summary, AMs derived from the BALF of COPD patients show numerous transcriptional changes that
suggest broad reprogramming including genes involved in lipid metabolism with different functionalities
that follow GOLD grade-specific patterns.

Lipidome analysis of AMs reveals GOLD-specific changes in COPD
The AMs are the major cell type in the alveolar space being involved in lipid metabolism, e.g. of the
surfactant [58]. Performing a transcriptome analysis of AMs derived from COPD and control patients
using two different mathematical approaches identified reprogramming of lipid metabolism. To elucidate
whether the changes we observed in these cells’ transcriptomes in COPD is associated with changes in
their lipidome, CD45+Lin−HLA-DR+CD66b−Autofluoreschencehi AMs were sorted from the BALF of
eight COPD and seven control patients and were used for mass spectrometry-based lipidomics
(figure 5a). Seventeen different lipid classes including a total of 202 lipid species were quantified.
Glycerophospholipids, especially the phosphatidylcholines (PCs), alongside phosphatidylethanolamines
(PEs), phosphatidylinositols (PIs) and phosphatidylserines (PSs), the sphingolipids (ceramides (Cer) and
sphingomyelins (SMs)) and the monoacylglycerols (MAGs) constituted the major lipid mass of AMs
(figure 5b). Comparison of the AM lipidome of COPD with that of control patients indicated most
prominent changes in the cholesterol ester (CE) and MAG classes (figure 5b) and quantification of the
mean GFC revealed disease severity-specific changes in the analysed lipid classes (figure 5c). In
accordance with the predicted change in cholesterol metabolism, AMs from GOLD2 COPD patients
exhibited an upregulation of CE, but also downregulation of hexosylceramides (HexCer). In contrast, AMs
from GOLD3/4 COPD patients showed an increase in MAG and diacylglycerols (DAGs) and a decrease in
the PC class. GOLD grade-specific patterns were reflected as well on the single lipid species level,
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revealing the diverse changes within each lipid class (figure 5d and e), all in all prompting us to
investigate this in greater detail.

For this purpose, we determined lipid-lipid level correlations using the CoCena2 pipeline. We identified
nine different modules encompassing similarly regulated lipid species across the disease groups (figure 5f).
Modules 1–3 showed enriched lipid species in GOLD2, whereas module 8 encompassed lipid species
specifically enriched in GOLD3/4 COPD patients (figure 5f).

A closer look at the GOLD2-specific modules revealed enrichment for many unsaturated PC (e.g. PC(32:2,
36:3, 38:4, 38:5, 40:4) and CE (CE(16:1, 18:0, 18:1, 18:2, 18:3, 20:4)), as well as a few SM (e.g. SM
(18:0, 22:1, 24:0,24:2)), lysophosphatidylcholines (LPCs) (e.g. LPC(20:4, 22:5, 22:6)) and Cer, such as
Cer(d18:1/24:0) or (d18:1/24:1) (figure 5g). On the other hand, distinct lipid species were correlated in the
module specific for GOLD3/4 AMs, which showed an accumulation of neutral lipids, such as saturated
MAGs (MAG(16:0, 18:0)) and DAGs (DAG(32:0, 34:0, 36:0)) (figure 5h). Taken together, AMs from
COPD patients display changes in their lipidome, which, in addition to their transcriptome, are GOLD
grade-associated and could constitute a hallmark in the pathogenesis of COPD.

Discussion
Chronic inflammatory diseases such as COPD are associated with functional and transcriptional alterations
of immune cells involved in the pathophysiological processes and disturbances of organ-related
homeostatic functions, e.g. surfactant biology in the lung. Here we focused on the most abundant immune
cell type in the alveolar space, namely AMs to determine transcriptional changes particularly in those
genes associated with lipid metabolism. By defining the AM transcriptomes, we observed numerous
GOLD grade-specific changes in COPD patients. Evident changes in gene expression related to lipid
homeostasis were further evaluated by lipidome profiling of AMs, which demonstrated that prominent lipid
changes correlate with disease severity.

We focused on AMs, the most prevalent immune cell in the alveolar space of COPD patients and
investigated their transcriptomes. Previously, AMs were shown to convert to an anti-inflammatory
phenotype in COPD smokers based on the simple paradigm of M1, M2 polarisation [47, 49, 54].
Additionally, a recent article found that some of those cells may carry a dual M1, M2 pattern in severe
COPD [53]. However, we have previously demonstrated that macrophages follow a multi-dimensional
model of activation [30]. Comparison of these various activation signatures with the transcriptome of AMs
from COPD patients revealed that these cells can be better described by various activation signatures
(including PGE2 (c4, c8) and lipid (c5) signatures). To further explore the overall transcriptional changes in
AMs derived from COPD patients, we provide the data for further easy inspection at FASTGenomics.org.
Here we focused on the changes related to lipid metabolism.

AMs maintain lung function by supporting the air–liquid interface on the alveolar surface, which, when
compromised, results in augmented surface tension and pulmonary proteinosis [16]. It has been shown that
lipid homeostasis in COPD is perturbed in both humans [21] and cigarette smoke-induced mouse models [59].
In addition, decreased BALF levels of cholesterol, SM and phospholipids correlate with loss in lung
function in COPD patients [17]. Our analysis shows that AMs from GOLD2 COPD patients are enriched
in PC and cholesterol esters, and express higher levels of lysosomal lipase LIPA, which suggests that in
mild severity stages, AMs may contribute to the decrease in surfactant lipids in the alveolar space by
increasing their surfactant catabolism rate. In contrast, in more severe stages, AMs are characterised by the

FIGURE 4 Coexpression network analysis uncovers lipid metabolism-associated functions for alveolar macrophages (AMs) in COPD. a) Schematic
representation of the bioinformatics workflow for coexpression network analysis of the 6000 most variable genes in the dataset by CoCena2.
b) CoCena2 cluster-condition heat map. c) Significant enrichment (q-value <0.1) of hallmark genes within patient groups. Patient group modules
consist of the respective cluster-condition heatmap modules. d) CoCena2 network with Global Initiative for Chronic Obstructive Lung Disease
(GOLD) stage 2-associated genes within the hallmark term “Cholesterol homeostasis” marked by black edging and coloured according to their
cluster name. Each node represents one gene in the network and each edge represents a coexpression. The expression levels are presented in
more detail in the following heat map. e) CoCena2 network with GOLD3/4-associated genes within the hallmark term “interferon-α response”
marked by black edging and coloured according to their cluster name. Each node represents one gene in the network and each edge represents a
coexpression. The expression levels are presented in more detail in the following heat map. f ) Genes enriched within the hallmark term “G2M
checkpoint” marked by black edging and coloured according to their cluster name. Each node represents one gene in the network and each edge
represents a coexpression. The expression levels are presented in more detail in the following heat map. GFC: group fold change; GSEA: gene set
enrichment analysis; DN: downregulated; IL: interleukin; JAK: Janus kinase; STAT: signal transducer and activation of transcription.

https://doi.org/10.1183/23120541.00915-2020 11

ERJ OPEN RESEARCH ORIGINAL RESEARCH ARTICLE | W. FUJII ET AL.



a)

Lipidomics data

(202 lipid species)

% mol class-wise
comparison

(cut-off=0.75,
R²=0.36)

Network construction
Nodes=501
Edges=184

Clustering 
(label propagation)

Hierarchical clusteringGFC calculation

b)

Pearson correlation

c)

d) e) f)

g)

Module 8

CL
Cer
CE DAG

HexCer
DiHexCer LPC

LPC-O

MAG

PC−O
PC
PE−O

PE
PI
PS

SM

  GOLD3/4 versus control

Lipid species

  GOLD2 versus control

-2
-1
0
1
2

GOLD2
GOLD3/4

Control

GOLD2
GOLD3/4

Control

h)

Control

GOLD2

GOLD3/4

0

25
0

50
0

75
0

10
00

Normalised mol·mL–1 values

CL
Cer
CE
DAG
HexCer
DiHexCer
LPC
LPC-O
MAG

PC−O
PC
PE−O
PE
PI
PS
SM

Control
GOLD2

GOLD3/4

−2

−1

0

1

2

lo
gF

C

lo
gF

C

Lipid species

−2
−1
0
1
2

S
ca

le
s 

m
ea

n
n

o
rm

al
is

ed
 c

o
u

n
ts

A
ve

ra
ge

 G
FC

S
ca

le
s 

m
ea

n
n

o
rm

al
is

ed
 c

o
u

n
ts

0.025 0.5

p-value

GOLD2
GOLD3/4

Control

Module 3
C

o
n

tr
o

l

G
O

LD
2

G
O

LD
3/

4

Species counts

Module 2

C
L

D
A

G

M
A

G

LP
C

LP
C

−O C
E

C
er

P
C

−O S
M

H
ex

C
er

D
iH

ex
C

er P
C

P
E P
I

P
E

−O P
S

−3

−2

−1

0

1

2

−2

−1

0

1

2

0 20 40

1

2

3

4

5

6

7

8

DA
G

(3
6:

0)
DA

G
(3

4:
0)

DA
G

(3
2:

0)
M

AG
(1

8:
0)

M
AG

(1
6:

0)

P
I(

36
:4

)
P

C
−O

(3
6:

1)
P

I(
38

:3
)

P
I(

38
:4

)
P

S
(3

6:
1)

P
C

(3
6:

5)
P

C
−O

(3
2:

1)
C

er
(d

18
:1

/2
4:

1)
P

C
(3

6:
4)

P
E

(3
8:

5)
P

C
(3

8:
4)

C
er

(d
18

:1
/2

4:
0)

P
C

(3
6:

3)
P

C
(3

0:
1)

P
C

−O
(3

4:
1)

P
I(

38
:6

)
C

E
(2

2:
0)

P
I(

38
:5

)
P

I(
40

:6
)

P
I(

40
:5

)
P

C
(3

8:
5)

P
C

(3
8:

6)
P

C
(3

2:
2)

C
L(

70
:0

)
P

C
−O

(3
6:

0)

C
E

(1
6:

1)
P

C
(4

2:
1)

P
C

−O
(4

0:
5)

P
C

(4
2:

2)
P

C
−O

(4
0:

4)
C

E
(2

2:
1)

P
C

−O
(4

2:
2)

P
C

−O
(4

0:
3)

P
C

−O
(4

2:
4)

C
L(

70
:4

)
C

L(
70

:3
)

P
C

−O
(4

2:
3)

P
E

(3
4:

0)
P

E
(4

0:
3)

C
E

(2
4:

1)
P

E
(4

0:
4)

C
L(

74
:7

)
LP

C
(2

0:
4)

P
C

(4
0:

1)
P

C
−O

(3
6:

2)
C

E
(2

0:
2)

P
C

−O
(3

8:
3)

LP
C

(2
0:

3)
C

E
(1

8:
0)

S
M

(2
2:

1)
P

C
(4

0:
3)

LP
C

(2
2:

5)
C

E
(1

8:
2)

LP
C

(2
2:

6)
P

C
(4

2:
3)

C
E

(2
0:

3)
C

E
(1

8:
1)

P
C

(4
0:

5)
P

C
(3

8:
3)

P
C

−O
(3

4:
0)

P
C

(4
0:

4)
LP

C
(2

0:
5)

C
E

(1
8:

3)
P

C
(4

0:
0)

P
C

−O
(3

4:
2)

S
M

(2
6:

0)
S

M
(2

4:
0)

S
M

(2
4:

2)
C

E
(2

0:
4)

S
M

(1
8:

0)
LP

C
(1

8:
0)

LP
C

(1
6:

1)
LP

C
(1

8:
1)

C
E

(2
2:

2)
P

E
(4

0:
1)

P
C

−O
(3

8:
4)

P
C

−O
(3

6:
3)

C
E

(2
0:

1)

FIGURE 5 Quantitative lipidomics of alveolar macrophages (AMs) of COPD patients describe disease severity.
a) Schematic representation of the analysis workflow for analysis of the 202 lipid species assessed by
lipidomics of AMs from bronchoalveolar lavage fluid of 11 COPD and four control patients. b) Mean mol% per
patient group for lipid class sums of lipid species normalised to total identified lipid content. c) Hierarchical
clustering of average log2 fold change (FC) of mol% of lipid class sums. d) Average log2 FC of mol% for single
lipid species per lipid class for Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 2 versus
control or e) GOLD3/4 versus control. Bubble size indicates p-value. f ) CoCena2 cluster-condition heat map.
g) Hierarchical clustering of the average lipid abundance for lipid species encompassed in the GOLD2-specific
modules 2 and 3 and h) GOLD3/4-specific module 8. GFC: group fold change; CE: cholesteryl ester;
Cer: ceramide; CL: cardiolipin; DAG: diacylglycerol; DiHexCer: dihexosylceramide; HexCer: hexosylceramide;
LPC-O: ether-lysophosphatidylcholine; LPC: lysophosphatidylcholine; MAG: monoacylglycerol; PC-O: ether-
phosphatidylcholine; PC: phosphatidylcholine; PE-O: ether-phosphatidylethanolamine; PE: phosphatidylethano-
lamine; PI: phosphatidylinositol.
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enrichment in saturated MAGs and DAGs, which indicates a degradation defect is very likely due to the
accumulation of glycerolipids.

Recently, lipidome analysis of perturbed macrophages showed that changes in lipid composition correlate
with functional responses [60]. AMs exhibit a foam-like phenotype with augmented transforming growth
factor-β secretion in response to silica dust and cholesterol uptake [61]. Other findings were changes in
cholesterol biology. Here one could postulate that the balance between cholesterol synthesis and the liver X
receptor (LXR) pathway acts as a rheostat that controls AM inflammatory responses. In GOLD2 patients,
cholesterol synthesis was upregulated and LXR signalling was repressed. In contrast, in GOLD3/4 COPD
patients, cholesterol synthesis was downregulated, which would be consistent with the upregulation of the
LXR pathway and the induction of lipogenesis [62]. This switch could have implications in AM biology in
COPD, as LXR activation confers antiviral protection [63] and inflammation resolution [64].

In addition, the observed heightened levels of CE and SM in AMs from GOLD2 COPD patients may be
responsible for the dysregulation of AM functionalities, such as efferocytosis of apoptotic cells as shown
before in rats exposed to cigarette smoke [65]. Dampened PI levels curtail viral infections in mice via
Toll-like receptor pathway inhibition [66]. Our data provide the enriched interferon responses as additional
mechanistic insight in AMs from GOLD3/4 patients.

As with every exploratory study, some of the limitations of our study need to be mentioned. First, the
control cohort consisted of patients suffering from chronic idiopathic cough, which might be regarded as a
potential confounder given the presence of lipid-laden macrophages in human BALF samples [67].
However, the assessment of these patients demonstrated that they suffered from an exquisitely sensitive
cough reflex without any underlying lung pathology. On average, the control group was also younger than
the COPD group and too small to thoroughly investigate differences between smokers and nonsmokers in
COPD and control patients. To alleviate any confounding age, smoking status effects in our transcriptome
analysis, we computationally removed technical and unknown variance before downstream analysis. We
suggest that any effect of age or smoking on high-dimensional data, including lipidomics might be indeed
interesting questions for future studies.

Taken together, although the numbers of AMs are not significantly changed in the alveolar space in
COPD, we conclude that they undergo transcriptional reprogramming that leads to GOLD grade-dependent
changes in lipid metabolism. Elucidation of the concomitant alterations in the transcriptome and lipidome
of AMs aids the understanding of their role in COPD and provides druggable molecular pathways, such as
cholesterol metabolism and interferon-α and γ responses.
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