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Abstract
Purpose Obstructive lung disease is increasingly common among persons with HIV, both smokers and
nonsmokers. We used aptamer proteomics to identify proteins and associated pathways in HIV-associated
obstructive lung disease.
Methods Bronchoalveolar lavage fluid (BALF) samples from 26 persons living with HIV with obstructive
lung disease were matched to persons living with HIV without obstructive lung disease based on age,
smoking status and antiretroviral treatment. 6414 proteins were measured using SomaScan® aptamer-based
assay. We used sparse distance-weighted discrimination (sDWD) to test for a difference in protein
expression and permutation tests to identify univariate associations between proteins and forced expiratory
volume in 1 s % predicted (FEV1 % pred). Significant proteins were entered into a pathway over-
representation analysis. We also constructed protein-driven endotypes using K-means clustering and
performed over-representation analysis on the proteins that were significantly different between clusters.
We compared protein-associated clusters to those obtained from BALF and plasma metabolomics data on
the same patient cohort.
Results After filtering, we retained 3872 proteins for further analysis. Based on sDWD, protein expression
was able to separate cases and controls. We found 575 proteins that were significantly correlated with
FEV1 % pred after multiple comparisons adjustment. We identified two protein-driven endotypes, one of
which was associated with poor lung function, and found that insulin and apoptosis pathways were
differentially represented. We found similar clusters driven by metabolomics in BALF but not plasma.
Conclusion Protein expression differs in persons living with HIV with and without obstructive lung
disease. We were not able to identify specific pathways differentially expressed among patients based on
FEV1 % pred; however, we identified a unique protein endotype associated with insulin and apoptotic
pathways.

Introduction
Improved survival in persons with HIV has led to a higher prevalence of several chronic illnesses
including obstructive lung disease, which affects an estimated 3–23% [1–8]. A major gap in knowledge is
the inability to identify those at risk and a limited understanding of why HIV increases obstructive lung
disease risk independent of smoking status. In the era prior to the common use of combination
antiretroviral therapy pulmonary obstruction was mostly associated with advanced HIV/AIDS and frequent
pulmonary infections [9]. In the antiretroviral treatment era, obstructive lung disease persists as a frequent
comorbidity even in the absence of AIDS or frequent pulmonary infections [1–5, 8, 10–14]. While
pulmonary infections may still have some role in obstructive lung disease development in persons living
with HIV [15], it is highly likely that other factors are involved in HIV-associated obstructive lung disease,
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including the HIV virus itself. This is particularly pertinent as the lung is a reservoir for HIV and site for
HIV replication [16]. Currently no biomarker identifies risk or lends insight into the mechanisms that lead
to a rapid decline of lung function and subsequent obstructive lung disease in persons living with HIV.

The goal of this study was to identify lung-specific biomarkers and corresponding biological pathways
associated with HIV-associated obstructive lung disease using aptamer-based assays to profile the
proteome in bronchoalveolar lavage fluid (BALF) in persons living with HIV comparing those with and
without obstructive lung disease. Included in our analysis is targeted, mass spectrometry-based metabolite
analysis. We employed statistical and computational methods to identify endotypes and proteomic
pathways to lend insight into putative mechanisms of disease.

Methods
We performed a cross-sectional, matched case–control study using BALF and plasma samples previously
collected from two cohorts.

Study population
Cases and controls were persons living with HIV selected from the Pittsburgh and Vancouver Lung HIV
Cohorts [17, 18]. We identified 26 cases with HIV and obstructive lung disease with available BALF;
obstructive lung disease was defined as the ratio of forced expiratory volume in 1 s/forced vital capacity
(FEV1/FVC) <lower limit of normal. Pulmonary function tests were obtained within 3 months of acquiring
the BALF. Participants fasted prior to BALF collection, while the majority, but not all, fasted prior to
plasma collection. Sample size was based on our previously reported study [19]. Controls consisted of 26
individuals with HIV and normal lung function (defined as FEV1/FVC >lower limit of normal and FEV1

>80% of predicted normal) matched on age (±5 years), antiretroviral treatment use and smoking status
(current versus nonsmoker). Participants in the parent cohort studies provided informed consent for BALF
collection and storage; the current study was approved by the University of Minnesota Institutional Review
Board. Parent studies had Institutional Review Board Approval from Pittsburgh and Vancouver.

Sample processing
At study enrolment, BALF was collected as previously described [17, 18]. Samples were stored at −80°C
prior to processing and underwent one freeze–thaw cycle. BALF samples were vortexed and centrifuged at
5000 ×g for 5 min at 4°C followed by separation of the pellet and supernatant for the removal of additional
debris. Samples were prepared for proteomics following SomaScan® Assay specification, specifically
75 μL of sample concentrated to 200 μL·mL−1. To identify metabolites, 10 μL of plasma or 200 μL of
BALF were loaded onto a Biocrates Life Sciences Absolute IDQ p400 HR (Biocrates Life Sciences
catalog number 21018; Biocrates Life Sciences, Innsbruck, Austria) following the manufacturer’s
instructions and as previously reported [20]. Metabolite analysis was performed on a Thermo Scientific Q
Exactive TM, Hybrid Quadrupole-Orbitrap TM (Thermo Fisher Scientific, Waltham, MA, USA), mass
spectrometer equipped with a Thermo Scientific Ultimate 3000 UHPLC equipped with an autosampler,
following manufacturer parameters.

Data cleaning
The SomaScan® proteomics assay data contained 7335 aptamers targeting human proteins. For each
aptamer, we calculated an empirical lower limit of detection (LOD) to filter out those with over 50% of
samples below the LOD. We calculated the LOD as median(aptamer)þ 4:5MAD where MAD(�) is the
median absolute deviation between each sample and the median aptamer level [21]. LODs were calculated
using the detected aptamer levels from buffer samples. We removed 3048 aptamers with over 50% of
samples below the corresponding empirical LOD, retaining 4253 aptamers. We used Fisher’s exact test to
assess if the aptamers removed during this procedure are over-represented in cases versus controls and
found no significant difference in samples above or below the LOD between cases and controls after
adjusting for multiple comparisons. The remaining aptamers mapped to 3872 unique protein targets by the
UniProt ID [22]. For the BALF metabolomic data we removed any metabolites that were either missing
data or below the LOD for >50% of the cohort leaving 252 metabolites. There were 258 metabolites for
plasma. We applied a log(1+x) transformation to both datasets, scaled and centred each protein and
metabolite to have mean 0 and standard deviation 1.

Statistical analysis
We assessed the ability of the proteomic results to separate cases from controls using sparse
distance-weighted discrimination (sDWD) [23], a method to classify subjects based on a large number of
features (i.e., proteins) in the setting when the data are high-dimensional, or when the number of features
exceeds the number of samples. Cases were labelled as 1 while controls were labelled as −1. sDWD

https://doi.org/10.1183/23120541.00332-2022 2

ERJ OPEN RESEARCH ORIGINAL RESEARCH ARTICLE | S. SAMORODNITSKY ET AL.



calculates a score, a linear combination of protein expression levels, for each observation that captures how
confidently cases and controls can be classified based on protein expression: highly positive scores for
cases and highly negative scores for controls reflects good separation between the two classes. An L1
penalty on the coefficients of the proteins induces variable selection. We used cross-validation where we
iteratively held out each case–control pair as a test set and trained the sDWD model on the remaining
pairs. We compared the average, cross-validated sDWD scores for cases and controls using a paired t-test
and the area under the curve (AUC) to assess the overall performance of the classifier. We used the sdwd
R package version 1.0.5 by the authors [23] to implement this method.

We used the Global Lung Initiative standards to calculate FEV1 per cent predicted (FEV1 % pred) [24]. To
investigate the relationship between each individual protein and FEV1 % pred we used the Pearson
correlation in a permutation testing framework to ensure our results were robust to deviations from
normality, and to accommodate scenarios in which multiple aptamers map to the same protein. We first
used a correlation test for each aptamer and FEV1 % pred and combined the p-values for aptamers that
mapped to the same protein using Fisher’s method [25]. This yielded a chi-squared test statistic for each
protein. Then, for 10 000 permutation iterations, we permuted the FEV1 % pred values across the patient
cohort, applied the t-test for the correlation between each aptamer and FEV1 % pred under the permuted
labelling scheme, and combined resulting p-values for aptamers mapping to the same protein using
Fisher’s method to obtain a chi-squared test statistic for each protein. This resulted in 10 000 combined
chi-squared test statistics for each unique protein target. We computed a permutation p-value for each
protein by taking the proportion of chi-squared test statistics that exceeded the chi-squared test statistic
based on the original FEV1 % pred observations. We applied a false discovery rate (FDR) correction [26]
to the permutation p-values to correct for multiple comparisons. The proteins that were significant at the
0.05 level after permutation testing prior to multiple comparisons adjustment were then used in a pathway
over-representation analysis using IMPaLA software [27]. We considered an analogous permutation testing
framework to study the correlation between each protein and FEV1/FVC and diffusing capacity of the lung
for carbon monoxide (DLCO) % predicted.

We identified protein-driven endotypes using K-means clustering. We ran the K-means algorithm 100
times with 10 random start points. For each of the 100 K-means replications, we saved the clustering
scheme that achieved the minimum within-cluster variability across the 10 random start points to ensure an
optimal solution [28]. We tested for individual protein differences between the clusters using the
permutation testing framework described previously. At each permutation iteration, we permuted the cluster
labels across the patient cohort and compared the permuted clusters using a t-test. Proteins that were
significantly different between the clusters at an FDR level of 0.05 were used in pathway
over-representation analysis. To quantify our uncertainty of the K-means clusters, we considered K-means
clustering with 100 bootstrapping replications using the bootcluster package [29] in R.

For comparison, we also applied the same K-means clustering approach on metabolomics data collected
from BALF and plasma in the same patient cohort. We tested for individual metabolite differences between
the resulting clusters and quantified our uncertainty surrounding these clusters using bootstrapping.

Results
Study participant characteristics
Table 1 summarises the demographics of the individuals in our study. This cohort consisted largely of
males (73.1%) with a mean age of 56.7 years. Over half (53.8%) of individuals identified as black and
non-Hispanic and the same percentage identified as a current smoker (mean pack-years 23.1). Lung function
(FEV1) ranged from 21 to 90% of predicted normal in the obstructive lung disease cases (all of whom had
FEV1/FVC <lower limit of normal), compared to from 80 to 128% in the controls. DLCO did not differ
amongst the ∼80% of cases and controls that had it measured. Most individuals (92.3%) were treated with
antiretroviral treatment at the time of sample collection. Two individuals among the cases and three among
the controls exhibited viral loads >50 copies·mL−1, among those for whom we had available viral load data.

BALF proteome differences in obstructive lung disease
We used sDWD to assess the collective power of BALF proteins to distinguish between cases and controls.
This analysis shows a significant difference in the measured proteome between participants with obstructive
lung disease and those without. Figure 1 displays the distribution of sDWD scores for cases and controls
with cross-validation. Large differences in the average sDWD scores for cases and controls suggests better
prediction accuracy based on protein expression. We compared the average scores for cases and controls
under cross-validation using a paired t-test, which yielded a p-value of 0.0027 and an AUC of 0.6538.
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We then considered the correlation between FEV1 % pred and each BALF protein within a permutation
testing framework. Table 2 summarises the top proteins most significantly correlated with FEV1 % pred.
We found that 1305 proteins were significantly correlated with FEV1 % pred at the 0.05 level, prior to
FDR adjustment and 575 proteins were significant at the 0.05 level after FDR adjustment. Proteins
significant at the 0.05 level, prior to adjustment, were filtered into pathway over-representation analysis
using IMPaLA software. Although we found many significant proteins, no pathways met significance after
controlling for multiple comparisons (supplementary table 1S).

We found 1467 proteins were significantly correlated with FEV1/FVC at the 0.05 FDR level (supplementary
table 2S). No proteins were significantly correlated with DLCO % pred after multiple comparisons adjustment.

Endotypes identified by cluster analysis
Heatmaps of the protein expression revealed a visually distinct subgroup of patients who tended to have
lower FEV1 % pred values (figure 2a). We thus constructed protein-driven endotypes using K-means
clustering with 100 replications for K=2 clusters. K-means clustering results were stable across the 100

TABLE 1 Demographics of the patient cohort considered in this study

Case Control Total

Patients n 26 26 52
Sex n (%)
Male 20 (76.9) 18 (69.2) 38 (73.1)
Female 6 (23.1) 8 (30.8) 14 (26.9)

Age years*
Mean±SD 59.6 (8.58) 53.8 (7.30) 56.7 (8.41)
Median (range) 58.0 (44.0–80.0) 54.0 (42.0–76.0) 56.0 (42.0–80.0)

Ethnicity n (%)
Black, non-Hispanic 16 (61.5) 12 (46.2) 28 (53.8)
White, Hispanic/Latino 10 (38.5) 13 (50.0) 23 (44.2)
Asian/Pacific Islander 0 (0) 1 (3.8) 1 (1.9)

Smoker n (%)
Yes 14 (53.8) 14 (53.8) 28 (53.8)
Former 9 (34.6) 7 (26.9) 16 (30.8)
Never 3 (11.5) 5 (19.2) 8 (15.4)

Pack-years*
Mean±SD 31.1 (28.3) 15.2 (13.7) 23.1 (23.4)
Median (range) 29.6 (0–120) 13.6 (0–38.0) 17.2 (0–120)

Receiving ART n (%)
Yes 24 (92.3) 24 (92.3) 48 (92.3)
No 2 (7.7) 2 (7.7) 4 (7.7)

Viral load n (%)
<50 copies 12 (46.2) 18 (69.2) 30 (57.7)
>50 copies 2 (7.7) 3 (11.5) 5 (9.6)
Missing 12 (46.2) 5 (19.2) 17 (32.7)

FEV1 % pred***
Mean±SD 68.0 (15.9) 104 (11.2) 85.8 (22.6)
Median (range) 68.3 (21.0–90.4) 102 (81.3–128) 86.2 (21.0–128)

FEV1 L
Mean±SD 2.07 (0.596) 3.25 (0.746) 2.66 (0.896)
Median (range) 2.09 (0.650–3.29) 3.08 (1.95–4.77) 2.59 (0.650–4.77)

FEV1/FVC
Mean±SD 0.556 (0.113) 0.795 (0.0567) 0.676 (0.150)
Median (range) 0.590 (0.293–0.679) 0.789 (0.689–0.905) 0.684 (0.293–0.905)

DLCO % pred***
Mean±SD 71.6 (26.3) 76.6 (23.1) 74.2 (24.6)
Median (range) 67.6 (36.3–139) 74.5 (14.4–117) 74.5 (14.4–139)
Missing n (%) 6 (23.1) 5 (19.2) 11 (21.2)

Cases and controls were matched based on age, smoking status and ART status. ART: antiretroviral treatment;
FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; DLCO: diffusing capacity of the lung for carbon
monoxide. Asterisks denote variables that were significantly different between cases and controls:
*: significance at the 0.05 level; ***: significance at the 0.001 level.
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replications, with each replication yielding the same clustering scheme of 10 individuals in one cluster and
42 in the other, referred to as Cluster 1 and Cluster 2, respectively. Figure 2b shows the protein expression
across the patient cohort, with observations grouped by their assigned cluster. Table 3 demonstrates that
Cluster 1 was largely male (80%) and on average older than Cluster 2 (62.5 versus 55.3 years). Cluster 1
also largely comprised individuals who identified as black (70%) compared to Cluster 2 where 50% of
individuals identified as black. Cluster 1 also comprised individuals with lower average FEV1 % pred
(63.9 versus 91.0) and lower average FEV1/FVC (0.514 versus 0.714), and 90% of individuals were
diagnosed with obstructive lung disease compared to 40.5% in Cluster 2. DLCO was available for six out of
10 individuals in Cluster 1 and 35 out of 42 in Cluster 2. The average DLCO in Cluster 1 was 0.611 and
0.764 in Cluster 2 (p=0.15). The overall stability of this clustering scheme, as determined under bootstrap
replications, was 89%.

We used an analogous permutation testing scheme to compare proteins across the clusters. The top 10
proteins that were significant at an FDR level of 0.05 are shown in table 4, and all 1279 significant

TABLE 2 Top 11 proteins most significantly correlated with FEV1 % pred

Protein UniProt ID Average correlation Permutation p-value Q-value

NFL P07196 −0.5329880 0.0001000 0.0107545
TM190 Q8WZ59 −0.5138893 0.0001000 0.0107545
RASN P01111 −0.5341348 0.0001000 0.0107545
Ephrin-A2 O43921 −0.5215288 0.0001000 0.0107545
EPN4 Q14677 −0.5653480 0.0001000 0.0107545
CACO2 Q13137 0.5132561 0.0001000 0.0107545
NAL10 Q86W26 −0.5643206 0.0001000 0.0107545
FLRT3:ECD Q9NZU0 0.5840321 0.0001000 0.0107545
kallikrein 8 O60259 −0.5329102 0.0001000 0.0107545
IL-18 Ra Q13478 −0.6274007 0.0001000 0.0107545
RHG05 Q13017 0.5339263 0.0001000 0.0107545

Proteins are ordered based on FDR-adjusted p-values from permutation testing with the Pearson correlation
test. Correlation was calculated by averaging the correlation across all aptamers that map to each protein. FEV1:
forced expiratory volume in 1 s.
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FIGURE 1 Densities of sparse distance-weighted discrimination (sDWD) scores for cases and controls based on
bronchoalveolar lavage fluid protein expression. sDWD scores are a linear combination of protein expression
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classes based on protein expression.
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proteins after FDR adjustment were used for pathway analysis. The top pathway distinguishing these two
clusters involved insulin, with an FDR-adjusted p-value of 0.0312 (table 5). Other top pathways involved
FOXO transcription factors, apoptosis, RNA metabolism and retinol metabolism.

To determine if the proteomic findings extended to metabolomic expression we performed a K-means
clustering on the BALF metabolomics data. We found that the metabolomic expression yielded similar
results to the BALF proteomics data with similar heatmaps of metabolite expression (figure 3). We
obtained a consistent clustering scheme across 100 replications: one cluster with 10 individuals and
another cluster with 42 (supplementary table 4S). However, no cluster was identified using plasma
metabolites (supplementary figure 1S). Asparagine was the most significant BALF metabolite in cluster 1,
while overall acylcarnitines were the predominant metabolites in this cluster (supplementary table 5S).
While the cluster sizes were identical to those obtained using the BALF protein expression data, the
composition of the metabolite clusters differed slightly. There was an overlap of six individuals in the
smaller cluster of 10 between the protein-driven and metabolite-driven clusters (supplementary table 6S).
These six individuals were all male with an average age of 65.7 years and all identified as black.

Discussion
We found that the BALF proteome in persons living with HIV distinguishes those with obstructive lung
disease from those without obstructive lung disease. However, we did not identify any pathways composed
of proteins that were differentially expressed among individuals with high FEV1 % pred and those with
low FEV1 % pred. We did identify an endotype driven by both proteomic and metabolomic BALF
molecular contributors, but not plasma metabolites. Based on the differentially expressed BALF proteins,
this endotype exhibited over-representation of insulin- and apoptosis-related pathways, suggesting that
signal transduction pathways with FOXO and cell cycle are important regulators.

Previous studies identified plasma proteins associated with pulmonary dysfunction in HIV. These include
elevated plasma interleukin (IL)-6, C-reactive protein, endothelin-1 [30] and activation of inflammatory
pathways [31, 32]. We found similar findings in the START cohort where higher plasma levels of IL-6,
high-sensitivity C-reactive protein and serum amyloid A associated with lower FEV1 and FVC [33].
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In addition, unique phenotypes associated with inflammatory pathways have been identified by cluster
analysis in HIV-associated obstructive lung disease [34]. Unlike our current study, these studies were
obtained from blood samples, not direct sampling of the lung. Since the BALF proteome in healthy
persons living with HIV differs significantly from non-HIV controls [35], we sought to identify
lung-specific biomarkers of HIV-associated obstructive lung disease.

This study was designed as a case–control study (obstructive lung disease present/absent) where pairs were
matched based on age, antiretroviral treatment status and smoking status. Though we found the BALF
proteome moderately differentiates cases and controls, we primarily considered FEV1 % pred as an
outcome rather than case–control status due to the heterogeneity in lung function within each group, which
also improved study power. We found 1305 proteins that were significantly correlated with FEV1 % pred
at the 0.05 level and 575 proteins that were significant after FDR adjustment. Our finding that BALF IL-18
Ra is highly correlated with FEV1 % pred is consistent with IMAOKA and colleagues [36] who reported

TABLE 3 Demographics of two K-means clusters determined using protein expression

Cluster 1 Cluster 2 Total

Patients n 10 42 52
Sex n (%)
Male 8 (80.0) 30 (71.4) 38 (73.1)
Female 2 (20.0) 12 (28.6) 14 (26.9)

Age years*
Mean±SD 62.5 (8.61) 55.3 (7.84) 56.7 (8.41)
Median (range) 62.0 (49.0–76.0) 54.5 (42.0–80.0) 56.0 (42.0–80.0)

Ethnicity n (%)
Black, non-Hispanic 7 (70.0) 21 (50.0) 28 (53.8)
White, Hispanic/Latino 3 (30.0) 20 (47.6) 23 (44.2)
Asian/Pacific Islander 0 (0) 1 (2.4) 1 (1.9)

Smoker n (%)
Yes 5 (50.0) 23 (54.8) 28 (53.8)
Former 4 (40.0) 12 (28.6) 16 (30.8)
Never 1 (10.0) 7 (16.7) 8 (15.4)

Pack-years
Mean±SD 31.0 (25.2) 21.3 (22.9) 23.1 (23.4)
Median (range) 32.5 (0–80.0) 16.2 (0–120) 17.2 (0–120)

Receiving ART n (%)
Yes 9 (90.0) 39 (92.9) 48 (92.3)
No 1 (10.0) 3 (7.1) 4 (7.7)

Viral load n (%)
<50 copies 3 (30.0) 27 (64.3) 30 (57.7)
>50 copies 0 (0) 5 (11.9) 5 (9.6)
Missing 7 (70.0) 10 (23.8) 17 (32.7)

FEV1 % pred#

Mean±SD 63.9 (22.6) 91.1 (19.4) 85.8 (22.6)
Median (range) 62.8 (21.0–100) 90.5 (46.7–128) 86.5 (21.0–128)

FEV1 L
Mean±SD 1.87 (0.676) 2.85 (0.843) 2.66 (0.896)
Median (range) 1.79 (0.650–3.06) 2.83 (1.32–4.77) 2.59 (0.650–4.77)

FEV1/FVC
#

Mean±SD 0.514 (0.146) 0.714 (0.124) 0.676 (0.150)
Median (range) 0.549 (0.293–0.694) 0.750 (0.413–0.905) 0.684 (0.293–0.905)

DLCO % pred
Mean±SD 61.1 (21.1) 76.5 (24.7) 74.2 (24.6)
Median (range) 54.7 (43.0–103) 75.0 (14.4–139) 74.5 (14.4–139)
Missing n (%) 4 (40.0) 7 (16.7) 11 (21.2)

Case–control status n (%)*
Case 9 (90.0) 17 (40.5) 26 (50.0)
Control 1 (10.0) 25 (59.5) 26 (50.0)

ART: antiretroviral treatment; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; DLCO: diffusing
capacity of the lung for carbon monoxide. *: significant differences between clusters at 0.05 level; #: significant
differences between clusters at the 0.005 level.
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IL-18 as highly expressed in lung tissue among COPD patients without HIV and that increased expression
associated with a decrease in FEV1 % pred. This has not been previously reported in obstructive lung
disease associated with HIV. We also found the protein ephrin-A2 to be highly associated with FEV1 %
pred and its gene, EFNA2, is associated with weight loss among patients with non-HIV COPD [37].
Despite identifying many proteins significantly correlated with FEV1 % pred, we were not able to detect
pathways reflected by these proteins. This may be due to lack of statistical power in our relatively small
sample size.

We identified two endotypes driven by proteomic expression in BALF that were also identified in the
BALF metabolome. These BALF endotypes were consistently detected across 100 replications with 10
random start values of the K-means clustering algorithm, suggesting these clusters are robust to many
different initialisations of the algorithm. We detected these endotypes in both the BALF proteome and the
metabolome but not the plasma metabolome, though the compositions of the clusters differed slightly
between the BALF proteomic and metabolomic platforms. Both the metabolome and the proteome had a
smaller endotype consisting of 10 individuals, which showed clear differential expression in heatmaps.
There were six individuals who were consistently grouped into this smaller cluster between both sources,
suggesting they possess a unique BALF expression profile apparent in both the proteome and metabolome
(supplementary table 6S). These six individuals all identified as black non-Hispanic males who met the
criteria for obstructive lung disease and exhibited lower FEV1 % pred compared to Cluster 2.

Pathway analysis using the significant proteins identified in cluster 1 revealed several pathways. Among
those were insulin, regulation of FOXO transcription factors and apoptosis pathways. Many of the proteins

TABLE 4 Top 10 proteins significantly different between two K-means clusters determined based on protein
expression

Protein UniProt ID Average test statistic p-value Q-value

Beclin-1 Q14457 −8.960709 0.0001000 0.0035519
Hepatocyte nuclear factor 4-α P41235 6.592431 0.0001000 0.0035519
Mothers against decapentaplegic homolog 3 P84022 6.590634 0.0001000 0.0035519
Ankyrin repeat domain-containing protein 1 Q15327 −4.938720 0.0001000 0.0035519
Neurotrimin Q9P121 −5.468840 0.0001000 0.0035519
Triple functional domain protein O75962 −4.330947 0.0001000 0.0035519
RING finger protein 122 Q9H9V4 7.671931 0.0001000 0.0035519
Adhesion G-protein-coupled receptor F1 Q5T601 10.490794 0.0001000 0.0035519
Calsequestrin-1 P31415 7.972240 0.0001000 0.0035519
Transaldolase P37837 9.138911 0.0001000 0.0035519

p-values determined by permutation testing. Average test statistic calculated by averaging the t-test statistic
across aptamers that correspond to each protein.

TABLE 5 Top nine pathways based on proteins that were differentially expressed between K-means clusters
and were significant at an FDR level of 0.05

Pathway Source Overlapping
genes

All pathway
genes

p-value Q-value

Insulin mammalian INOH 22 31 (82) 1.33e-05 0.0312
Regulation of localisation of FOXO

transcription factors
Reactome 9 9 (12) 4.19e-05 0.0384

Intrinsic pathway for apoptosis Reactome 16 21 (52) 5.28e-05 0.0384
Metabolism of RNA Reactome 57 113 (584) 5.29e-05 0.0384
Retinol metabolism SMPDB 12 14 (37) 6.42e-05 0.0384
Vitamin A deficiency SMPDB 12 14 (37) 6.42e-05 0.0384
Programmed cell death Reactome 29 48 (142) 6.57e-05 0.0384
Apoptosis Reactome 27 44 (127) 8.03e-05 0.0417
Fas INOH 13 16 (24) 8.94e-05 0.0419

FDR: false discovery rate; INOH: Integrating Network Objects with Hierarchies database; SMPDB: The Small
Molecule Pathway Database.
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expressed in these pathways are involved in signal transduction and cell cycle regulation. Two promoter
forkhead box (FOX) proteins were among the proteins in the insulin and FOXO pathways. FOX promoter
expression is increased in epithelial cells in non-HIV COPD patients; however, in patients with mucus
hyperexcretion phenotype it is depleted. This transcription factor is involved in goblet cell differentiation in
the airway epithelium, and aberrant methylation patterns have been described in non-HIV COPD lung
epithelium [38–41].

Pathway analysis of our endotype also revealed an intrinsic pathway for apoptosis as being significant.
Enhanced apoptosis in lung endothelial and epithelial cells is found in non-HIV COPD and is felt to be a
critical step in COPD pathogenesis [42, 43]. In non-HIV COPD, enhanced apoptosis has been associated
with the emphysema phenotype. Computed tomography imaging was not available to quantify emphysema
in our study and the DLCO, which correlates with the emphysema phenotype, did not vary between
endotypes, although the relatively small sample size of Cluster 1 likely limited statistical power.
Accelerated apoptosis is one mechanism proposed for the loss of CD4+ T-lymphocytes in HIV infection
[44]. It is also postulated that HIV-infected persons have increased susceptibility to apoptosis because the
HIV proteins Tat and Nef induce endothelial cell apoptosis [45, 46]. Further investigations are necessary to
determine whether these apoptotic pathways are associated with lymphocyte or lung parenchymal cells.

Our study has a few limitations. Owing to our small sample size and large number of proteins, we were
unable to detect any significantly over-represented pathways reflected by proteins associated with FEV1 %
pred. In a future study with more participants, we may have more power to identify pathways associated
with lung function decline. It would be interesting to recruit HIV-negative controls to assess if
differentially expressed proteins and protein-driven pathways are unique to HIV-modulated obstructive
lung disease or are exhibited across the population of patients with obstructive lung disease. A larger
sample size and validation cohort would also be beneficial to corroborate the endotypes we detected in our
study and their clinical outcomes. Though our study was a matched case–control study, individuals were
not matched based on race or sex, and additional studies would be necessary to validate if these findings
are race- or sex-specific. Though pairs were matched based on smoking status, we did not account for this
in our correlation analysis, which is a limitation. Although not a limitation of the study, we did not find
differences reflected in the plasma metabolome, thus limiting the feasibility in applying these BALF
findings as global biomarkers of lung disease. In addition, a longer, longitudinal study in which protein
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FIGURE 3 Heatmap shows metabolite expression for the study cohort. Columns reflect samples and rows
reflect metabolites. The metabolites are ordered by the direction and magnitude of their correlation with
forced expiratory volume in 1 s % predicted. The samples are grouped within their respective K-means clusters
and the solid black line separates the two groups.
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expression is measured over time may highlight proteins that are relevant to lung function change, as
previous research has shown that proteins associate differently with COPD outcomes at a single time point
versus longitudinally [47].

In conclusion, the proteomic BALF profile distinguishes HIV-associated obstructive lung disease.
Furthermore, a unique endotype was identified in both BALF proteomic and metabolomic profiles that
predominantly were in black men with more severe obstructive lung disease, and this cluster was not found
in the plasma metabolome. The proteomic pathways that were differentially expressed within this endotype
were linked to signal transduction pathways, cell cycle and apoptosis.
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