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Abstract
Background Computed tomography (CT) visual emphysema score is a better predictor of mortality than
single quantitative CT emphysema measurements in COPD, but there are numerous CT measurements that
reflect COPD-related disease features. The purpose of this study was to determine if linear combinations of
quantitative CT measurements by principal component analysis (PCA) have a greater association with
forced expiratory volume in 1 s (FEV1) lower limit of normal (LLN) annualised change (ΔFEV1) than
visual emphysema score in COPD.
Methods In this retrospective, longitudinal study, demographic, spirometry and CT images were acquired.
CT visual emphysema score and quantitative analysis were performed; low attenuation area <950 HU
(LAA950) and 12 other quantitative CT measurements were investigated. PCA was used for CT feature
extraction. Multiple linear regression models for baseline FEV1 LLN and 6-year ΔFEV1 were used to
determine associations with visual emphysema score and CT measurements. A total of 725 participants
were analysed (n=299 never-smokers, n=242 at-risk and n=184 COPD).
Results Quantitative CT measures (LAA950 and PCA components) were independently statistically
significant (p<0.05) in predicting baseline FEV1 LLN, whereas visual emphysema score was not
statistically significant in any baseline model. When predicting 6-year ΔFEV1, only visual emphysema
score was significant (p<0.05) in models with LAA950 and PCA combination of emphysema
measurements. In the model with PCA using all CT measurements predicting 6-year ΔFEV1, visual
emphysema score (p=0.021) along with one PCA component (p=0.004) were statistically significant.
Conclusions PCA with a combination of CT measurements reflecting several different COPD-related
disease features independently predicted baseline lung function and increased the relative importance of
quantitative CT compared with visual emphysema score for predicting lung function decline.

Introduction
COPD is characterised by irreversible airflow limitation [1] as a result of increased airflow resistance due to
small airway disease and increased lung compliance due to emphysema. Emphysema affects the airspaces
distal to the terminal bronchiole, and is defined as the enlargement and destruction of the alveolar walls [1].
Clinically, emphysema is evaluated by a radiologist who scores the presence and severity of the disease using
computed tomography (CT) images [2, 3]. Although visual scoring of emphysema is the clinical standard, it
is time consuming and there is inherent inter- and intra-observer variability [3].

Quantitative CT imaging of the lung enables automated, reproducible and objective measurements, and
numerous studies have demonstrated quantitative CT measures of emphysema predict important outcomes
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in COPD, such as exacerbations [4] and mortality [5]. However, a previous study that investigated the
relative contributions of visual scoring and quantitative CT emphysema measurements for predicting
mortality in COPD showed visual scoring outperformed the quantitative measurements [6]. It is known that
visual scoring of emphysema captures several relevant morphological features, such as emphysema lesion
size and distribution, in addition to overall emphysema extent, and can distinguish emphysema from small
airway disease and image noise [7]. Therefore, while quantitative CT measurements are developed to
characterise a single disease feature, visual scoring may be more holistic and take into consideration other
information contained in the image.

In addition to CT emphysema [8], quantitative CT imaging enables many different disease features in
COPD to be investigated, such as gas trapping [9], airway remodelling [10] and vascular pruning [11]. In
fact, there is the potential for hundreds of measurements to be extracted using different quantitative
methods. However, statistical models may be unreliable when a large number of predictors are included [12],
and therefore fewer and more highly curated measurements are often considered. Principal component
analysis (PCA) is an unsupervised feature extraction method that generates new, independent variables that
are linear combinations of all inputted measurements [13]. PCA takes a data-driven, holistic approach to
feature extraction that may be more similar to that of visual scoring of emphysema.

We hypothesise that PCA, which generates a linear combination of multiple quantitative CT measurements,
will have a greater association with COPD outcomes than visual emphysema score. Therefore, the
overarching objective of this study was to investigate the association of PCA linear combinations of
quantitative CT measurements and visual emphysema score for predicting annualised forced expiratory
volume in 1 s (FEV1) change.

Materials and methods
Study participants
Participants from the longitudinal, multicentre Canadian Cohort Obstructive Lung Disease (CanCOLD)
study cohort were evaluated [14]. Study groups (never-smokers, at-risk and COPD) were determined
spirometrically as defined by the European Respiratory Society/American Thoracic Society technical
standard [15]. At visit 1 (baseline visit), demographic information, spirometry and CT imaging were
collected. At visit 3, which occurred 3 years after baseline, spirometry was performed. At visit 0, which
occurred 3 years prior to baseline, spirometry was performed. For the participants evaluated in this study,
the mean±SD time between visit 3 and visits 1 and 0 was 3.2±0.3 and 5.6±1.7 years, respectively. A
flowchart detailing the selection process for analysis is shown in supplementary figure S1. Current
smoking may increase lung density due to inflammation [16], therefore we excluded current smokers from
our analysis. However, analysis performed with current smokers is included in the supplementary material.
Our final cohort for this study was 725 participants: n=299 never-smokers, n=242 ever-smokers/at-risk and
n=184 COPD.

Pulmonary function measurements
Spirometry measurements were performed according to Global Initiative for Chronic Obstructive Lung
Disease criteria for measurement of FEV1 and forced vital capacity (FVC) [17]. Lower limits of normal
(LLN), which account for age, sex, ethnicity and height of subjects, were calculated using the Global Lung
Function Initiative reference equations [18]. Annualised FEV1 LLN change was calculated as the change in
FEV1 LLN between baseline and follow-up, divided by the time between baseline and follow-up (ΔFEV1);
ΔFEV1 was calculated for the visit 3 (3-year) follow-up and between the visit 0 and visit 3 (6-year)
follow-up. Annualised FEV1 change, measured in mL per year, was calculated using the following
formula:

DFEV1 ¼
FEV1ðfollow-upÞ � FEV1ðbaselineÞ
Dateðfollow-upÞ � DateðbaselineÞ

CT image acquisition
CT images were acquired according to the CanCOLD study protocol [14], from nine sites across Canada,
using multislice CT scanners (⩾16 detectors) with subjects in a supine position at full-inspiration and
full-expiration from the base to the apex of the lung. The CT parameters used for acquisition were:
120 kVp, 40 mAs, 0.5 s gantry rotation, 1.25 pitch and 1 mm slice thickness. The images were
reconstructed using low (“b35f”) and high spatial frequency (edge enhancing) reconstruction algorithms
and the smallest field of view that contains both lungs.
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CT image analysis
Images were scored qualitatively by two experienced chest radiologists (C.J.H. and J.A.L.) who were
blinded to all subject characteristics, following the Fleischner Society glossary of terms for thoracic
imaging [2]. Bronchiolitis and emphysema were visually assessed by the radiologists; however, only visual
scoring of emphysema was used in this study. For scoring emphysema, the lungs were divided into six
zones: upper-left and upper-right above the carina, middle-left and middle-right between the carina and
inferior pulmonary veins, and lower-left and lower-right. The extent of zonal emphysema was scored on a
5-point scale: 0=no emphysema, 1=1–25% (trivial), 2=26–50% (mild), 3=51–75% (moderate) and 4=76–
100% (severe–very severe) [19]. Therefore, whole lung visual emphysema scores can range from 0 to 24.
The weighted κ agreement has been previously reported [19] and was considered “substantial” for
emphysema (0.58 (95% CI 0.38–0.78)).

Quantitative CT image analysis was performed using commercially available VIDA software (VIDA
Diagnostics, Coralville, IA, USA). A total of 13 CT measurements were extracted. Densitometry
measurements included: low attenuation area ⩽−950 HU on full-inspiration CT (LAA950) [8], low
attenuation area ⩽−910 HU on full-inspiration CT (LAA910) [20], low attenuation area ⩽−856 HU on
full-expiration CT (LAA856) [9], Hounsfield units at the 15th percentile (HU15) [21], mean lung
density [20], and disease probability measure (DPM) emphysema and air trapping measurements [22].
Emphysema clustering was measured using the low attenuation clustering (LAC) slope [23]. Airway
dimensions were measured as the average wall area percent (WA%) [24] and lumen area [25] using RB1,
RB4, RB10, LB1 and LB10 airway segments. The square root of the airway wall area for a theoretical
airway with 10 mm internal perimeter (Pi10) [26], total airway count (TAC) [10] and vessel volume [11]
were also measured. All CT measurements were extracted from full-inspiration CT images, except LAA856

which was extracted from full-expiration CT images and the DPM measurements which use the registration
of inspiration-to-expiration CT images for calculation.

Statistical analysis
Statistical analysis was performed using SPSS version 28.0 (IBM, Armonk, NY, USA). Descriptive
statistics were analysed for demographic, pulmonary function test, and quantitative and qualitative CT
imaging measurements. ANOVA with Tukey’s post-hoc test was used to compare study groups. For the
PCA, first highly correlated CT measurements (Pearson coefficient |r|>0.9) were removed for redundancy.
Next, PCA analysis was performed for emphysema only (i.e. LAA950, HU15, DPMemphysema and LAC) and
all CT measurements. PCA with a varimax rotation was performed for the all-CT measurements analysis.
For dimension reduction, a threshold of eigenvalue <1 was used to determine which variables will be used
for further analyses. Multiple linear regression models for baseline FEV1 LLN and 3- and 6-year ΔFEV1

LLN were constructed to determine the associations of visual emphysema score with quantitative CT
measurements (LAA950, PCA of emphysema measurements and PCA of all CT measurements), after
adjusting for CT make/model, age, sex, race, pack-years, smoking status, body mass index (BMI), CT lung
volume/total lung capacity, comorbidities (asthma, tuberculosis, heart disease, systemic hypertension or
diabetes), use of respiratory medications (bronchodilator, inhaled steroid and oral steroid), visual
emphysema score and LAA950. In the models for ΔFEV1 LLN, baseline FEV1 LLN was included as a
covariate. To account for positive skewing, our measures of qualitative and quantitative emphysema were
transformed using a log(x+1) and log(x) transformation, respectively, prior to placing the variables into our
multiple linear regression models. A p-value of <0.05 was used to represent statistical significance.

Results
Subject cohort and demographics
Table 1 shows subject demographics, pulmonary function, and quantitative and qualitative CT imaging
measurements for all 725 subjects, stratified into study groups (n=299 never-smokers, n=242 at-risk and
n=184 COPD). The COPD group had younger subjects than the other study groups (p<0.05) and fewer
subjects of Caucasian race (p<0.05); however, there were no differences between study groups for sex and
BMI (p>0.05). Pack-years increased and baseline pulmonary function measurements worsened with
increasing COPD severity, as expected (p<0.05).

A three-dimensional reconstruction of the emphysema, airway tree and vessel segmentation for
representative never-smoker, at-risk, mild COPD and moderate–severe COPD participants is shown in
figure 1. It is visually apparent that as COPD disease severity increases, emphysema worsens and there are
fewer visible airways and vessels in the lung. For the quantitative CT measurements, all CT measurements
were statistically worse in COPD compared with the never-smokers (p<0.05) and at-risk participants
(p<0.05), except for Pi10 which was not different in the at-risk group (p>0.05). For the qualitative CT
measurements, visual emphysema score was statistically worse in COPD compared with the never-smokers
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(p<0.05) and at-risk participants (p<0.05). A histogram detailing the distribution of emphysema score
across our study cohort is shown in supplementary figure S2.

Principal component analysis
A Pearson correlation heatmap showing the correlations among all quantitative CT measurements is
provided in supplementary figure S3. Tables 2 and 3 show PCA component loadings of CT emphysema
only measurements and all CT measurements, respectively. As shown in table 2, when only the CT
emphysema measurements were considered, four CT emphysema measurements were input into a PCA
after removing highly correlated measurements. One component was extracted, explaining 64.26% of the
variance in data. This component was most representative of LAA950, HU15 and DPMemphysema, with these
three measurements contributing the highest weight to the component.

When all CT measurements were considered (table 3), 10 CT measurements were input into the PCA after
removing highly correlated measurements. Of these, three components explained 67.70% of the variance in
data. The first component was emphysema dominant, with LAA950, HU15 and DPMemphysema contributing

TABLE 1 Demographics, pulmonary function and imaging measurements (n=737)

Never-smoker (n=299) At-risk (n=242) COPD (n=184)

Demographics
Age, years 67±9 67±9 65±10¶

Female, n (%) 129 (43) 91 (38) 80 (43)
Caucasian, n (%) 287 (96) 232 (96) 174 (95)¶

BMI, kg·m−2 27±5 28±5 28±5
Pack-years, years 0±0 24±21# 18±24#,¶

Pulmonary function
FEV1, L 2.79±0.77 2.74±0.72 2.26±0.74#,¶

FVC, L 3.75±1.05 3.76±0.98 3.89±1.14
FEV1/FVC, % 75±6 73±6# 58±7#,¶

RV/TLC, % 38±8 38±8 43±10#¶

FEV1 LLN, L 2.04±0.51 2.08±0.46 2.15±0.57#

FEV1/FVC LLN, % 64.7±2.7 64.4±2.6 65.1±2.7¶

FEV1 z-score 0.09±1.01 −0.19±1.01# −1.41±1.09#,¶

Mild COPD, n (% of COPD group) 0 (0) 0 (0) 154 (84)#,¶

Moderate–severe COPD, n (% of COPD group) 0 (0) 0 (0) 30 (16)#¶

ΔFEV1(3-year) LLN, mL per year −29.9±7.2 −30.7±6.8 −30.4±6.7
ΔFEV1(6-year) LLN, mL per year −30.2±6.7 −30.9±6.3 −30.8±6.5

Quantitative imaging
LAA856, % 58±17 59±15 64±12#,¶

LAA910, % 22±13 23±12 28±13#,¶

LAA950, % 4±4 4±4 6±6#,¶

HU15, HU −915±21 −917±21 −926±18#,¶

Mean lung density, HU −824±33 −826±31 −838±25#,¶

LAC −2.00±0.25 −2.01±0.23 −1.91±0.31#,¶

TAC, n 213±71 206±65 152±58#,¶

Pi10, mm 3.95±0.16 3.98±0.16 3.98±0.17#

Lumen area, mm2 20±6 22±8 18±6#,¶

Wall area, % 62±3 62±4 64±3#,¶

Vessel volume, cm3 144±42 151±39 153±39#

DPMair trapping, % 42±17 37±14# 46±15#,¶

DPMemphysema, % 4±4 4±4 7±8#,¶

Qualitative imaging
Visual emphysema score 0.26±0.83 0.99±1.84# 1.60±3.17#,¶

Data are presented as mean±SD, unless otherwise stated. BMI: body mass index; FEV1: forced expiratory volume
in 1 s; FVC: forced vital capacity; RV: residual volume; TLC: total lung capacity; LLN: lower limit of normal;
ΔFEV1: FEV1 annualised change; CT: computed tomography; LAA856: low attenuation area ⩽−856 HU on
full-expiration CT; LAA910: low attenuation area ⩽−910 HU on full-inspiration CT; LAA950: low attenuation area ⩽
−950 HU on full-inspiration CT; HU15: Hounsfield units associated with the 15th percentile of the CT density
histogram; LAC: low attenuation cluster; TAC: total airway count; Pi10: square root of the airway wall area for a
theoretical airway with 10 mm internal perimeter; DPM: disease probability measure. Significance of difference
(p<0.05): #: significantly different from never-smoker group; ¶: significantly different from at-risk group.
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the highest weight. The second component was airway dominant, with TAC, lumen area and WA%
contributing the highest weight. For the third component, the Pi10 measurement contributed the highest
relative weight.

Multiple linear regression models for annualised FEV1 change
Table 4 shows the various multiple linear regression models generated for baseline FEV1 LLN and 6-year
ΔFEV1 using quantitative CT measurements and visual emphysema score, adjusted by covariates. In the
first multiple linear regression model with visual emphysema score and LAA950 (Model 1), visual
emphysema score was statistically significant in predicting 6-year (p=0.048) ΔFEV1 but not baseline FEV1

(p>0.05). LAA950 was statistically significant in predicting baseline FEV1 (β=0.293, p<0.001) but not
6-year ΔFEV1 (p>0.05). In the second multiple linear regression model with visual emphysema score and

TABLE 2 Computed tomography (CT) emphysema measurement principal component analysis: rotated
component matrix

Component 1 (64.26%)

LAA950, % 0.931#

HU15, HU −0.875#

LAC 0.295
DPMemphysema, % 0.922#

LAA950: low attenuation area ⩽−950 HU on full-inspiration CT; HU15: Hounsfield units associated with the 15th
percentile of the CT density histogram; LAC: low attenuation cluster; DPM: disease probability measure. #:
representative quantitative CT measurements. Kaiser–Meyer–Olkin measure of sampling adequacy: 0.706;
Bartlett’s test of sphericity: p<0.0001.
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FIGURE 1 Three-dimensional coronal computed tomography (CT) reconstruction of the emphysema density
mask, airway tree and vessel tree for a representative never-smoker participant (62-year-old female; FEV1 97.8%
predicted; FEV1/FVC 0.78; LAA950 0.58%; TAC 210; vessel volume 106.38 mL), an at-risk participant (67-year-old
female; FEV1 84.4% predicted; FEV1/FVC 0.73; LAA950 1.73%; TAC 177; vessel volume 124.10 mL), a mild COPD
participant (49-year-old male; FEV1 92.3% predicted; FEV1/FVC 0.68; LAA950 5.42%; TAC 151; vessel volume
212.27 mL) and a moderate–severe COPD participant (44-year-old male; FEV1 68.9% predicted; FEV1/FVC 0.62;
LAA950 7.09%; TAC 106; vessel volume 182.60 mL). FEV1: forced expiratory volume in 1 s; FVC: forced vital
capacity; LAA950: low attenuation area ⩽−950 HU on full-inspiration CT; TAC: total airway count.
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the PCA component of CT emphysema only measurements (Model 2), visual emphysema score was
statistically significant in predicting 6-year (p=0.027) ΔFEV1 but not baseline FEV1 (p>0.05). The PCA
emphysema component was statistically significant in predicting baseline FEV1 (β=0.095, p=0.043) but not
ΔFEV1 (p>0.05). In the third multiple linear regression model with visual emphysema score and the PCA
component of all CT measurements (Model 3), visual emphysema score was statistically significant in
predicting 6-year (p=0.021) ΔFEV1 but not baseline FEV1 (p>0.05). For baseline FEV1, all three PCA
components were statistically significant (p<0.03), with the Pi10 dominant PCA component having the
greatest relative weight (β=0.687, p<0.001). In the models predicting 6-year ΔFEV1, only the Pi10
dominant component was statistically significant (6-year: β=−0.108, p=0.004). Sensitivity analyses show
similar results in 3-year ΔFEV1 (supplementary table S4) and in our dataset with current smokers included
(supplementary table S5).

Discussion
Here we aimed to investigate the association of linear combinations of quantitative CT measurements
reflecting various disease-related features with lung function change over time. While previous COPD

TABLE 3 All quantitative computed tomography (CT) imaging measurement principal component analysis:
rotated component matrix

Component 1 (28.17%) Component 2 (25.25%) Component 3 (14.27%)

LAA950, % 0.906# −0.084 0.015
HU15, HU −0.870# 0.182 −0.101
LAC 0.319 0.099 −0.328
TAC, n 0.087 −0.827# 0.018
Pi10, mm −0.031 0.418 0.711#

Lumen area, mm2 0.107 −0.799# 0.364
Wall area, % −0.055 0.930# 0.067
Vessel volume, cm3 0.540 −0.164 0.590
DPMair trapping, % 0.040 0.294 −0.541
DPMemphysema, % 0.907# −0.006 −0.159

LAA950: low attenuation area ⩽−950 HU on full-inspiration CT; HU15: Hounsfield units associated with the 15th
percentile of the CT density histogram; LAC: low attenuation cluster; TAC: total airway count; Pi10: square root
of the airway wall area for a theoretical airway with 10 mm internal perimeter; DPM: disease probability
measure. #: representative quantitative CT measurement(s). Kaiser–Meyer–Olkin measure of sampling adequacy:
0.597; Bartlett’s test of sphericity: p<0.0001; rotation method: varimax with Kaiser normalisation, rotation
converged in four iterations; cumulative % variance: 67.700.

TABLE 4 Multiple linear regression models for baseline forced expiratory volume in 1 s (FEV1) and annualised change in FEV1 (ΔFEV1) with
computed tomography (CT) measurements

Visit 1 FEV1 LLN, L 6-year ΔFEV1 LLN, L per year

Adjusted R2 Standardised estimate p-value Adjusted R2 Standardised estimate p-value

Model 1: Base+LAA950+VES 0.097 0.531
LAA950, % 0.293 <0.001 −0.063 0.053
VES −0.013 0.749 −0.058 0.048

Model 2: Base+emphysema QCTs+VES 0.045 0.529
PCA emphysema component 0.088 0.044 −0.008 0.805
VES 0.016 0.706 −0.066 0.027

Model 3: Base+PCA components+VES 0.454 0.534
PCA QCT component 1 0.242 <0.001 −0.043 0.208
PCA QCT component 2 0.069 0.029 0.006 0.831
PCA QCT component 3 0.685 <0.001 −0.108 0.004
VES 0.042 0.197 −0.069 0.021

LLN: lower limit of normal; LAA950: low attenuation area ⩽−950 HU on full-inspiration CT; VES: visual emphysema score; QCT: quantitative CT;
PCA: principal component analysis. Base model covariates include: CT make/model, pack-years, smoking status, CT lung volume/total lung capacity,
comorbidities (asthma, tuberculosis heart disease, systemic hypertension or diabetes) and use of respiratory medications (bronchodilator, inhaled
steroid and oral steroid). Visit 0 FEV1 LLN was included for 6-year ΔFEV1 LLN. Bold indicates statistical significance (p<0.05).
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imaging studies have investigated the use of PCA for feature selection [27] and cluster analysis [27, 28], to
the best of our knowledge, no other studies have used PCA to generate new linear combinations of
quantitative CT measurements when assessing the relative importance of quantitative and qualitative
measures on longitudinal outcomes in COPD. Here we show: 1) when visual emphysema score and
LAA950 were included in the same model, visual emphysema score was significantly associated with FEV1

annualised change over time, but LAA950 was not, 2) when visual emphysema score and the PCA linear
combination of CT emphysema measurements were included in the same model, visual emphysema was
associated with FEV1 annualised change but not the PCA emphysema component, and 3) when visual
emphysema score and the PCA linear combination of all quantitative CT measurements were included in
the same model, both visual emphysema score and PCA component were significant and independent
predictors of FEV1 annualised change.

First, we showed that visual emphysema score was a significant and independent predictor of FEV1

annualised change, but LAA950 was not when included in the same multiple regression model. This
finding agrees with the previous investigation showing visual emphysema score was a better predictor of
mortality than LAA950 [6]. Due to the population-based study design of CanCOLD, the majority of
CanCOLD participants have mild COPD and therefore there is low COPD-related mortality risk during the
short follow-up. Therefore, in our study, we chose to use FEV1 annualised change instead of COPD-related
mortality. Taken together, these findings suggest visual emphysema score contributes independent
information and may be more complex than measurements derived from simple density thresholds [7]. In
another study [7], visual score could be predicted by LAA950, emphysema distribution, presence/absence
of gas trapping, LAC and emphysema type. Therefore, these findings suggest single quantitative CT
measurements may not capture all the disease-related information that is captured by visual emphysema
scoring and more complex CT measurements may be required.

Next, we used PCA analysis to investigate various emphysema-related CT measurements in combination to
predict COPD progression. We showed similar results to the previous model, where visual emphysema was
a significant and independent predictor of FEV1 annualised change, but LAA950 was not when included in
the same multiple regression model. The opposite is again shown when predicting baseline FEV1. These
results suggest that the PCA emphysema component may be a better predictor of baseline lung function
than visual score. It is important to note that while the quantitative CT measurements included in the PCA
(LAA950, HU15, DPMemphysema and LAC) may share conceptual or measurement-driven redundancy, we
accounted for multicollinearity by removing highly correlated measurements. Furthermore, these
measurements have known differences in terms of their associations with lung function and ability to
predict longitudinal outcomes [29–31]. Importantly, some measurements may be more variable than others
and have greater dependence on lung volume [32]. Therefore, due to the variability, several quantitative
CT measurements should be considered and may be complementary. Previous studies have used multiple
quantitative CT measurements that characterise similar information (lung overinflation, emphysema and
airway measurements) in separate models as predictors [33] and in combination (HU15 regional
measurements) as PCA components [34] to predict FEV1 decline. However, to the best of our knowledge,
quantitative CT measurements have not been used in combination as PCA components with visual scoring
to predict lung function decline.

Finally, we showed that when using all CT measurements in combination to predict annualised lung
function change, the PCA components contributed independent information from visual emphysema score.
Similar results are shown in our cohort with current smokers included (supplementary table S5). Three
PCA components were extracted from 10 CT measurements that included a component representative of
emphysema (LAA950, HU15 and DPMemphysema), and two components reflecting segmental airway
structural changes (TAC, lumen area and WA%) and global airway remodelling (Pi10). The first
component representative of emphysema had positive coefficients for LAA950 and DPMemphysema, and a
negative HU15 coefficient, which, taken together, can be interpreted as worse emphysema. The second
component had a negative coefficient for TAC and lumen area, and a positive coefficient for WA%. This
may be interpreted as fewer airways, narrower segmental airway lumens and thinner walls, which are
known to be associated with worse COPD [10]. For the third component, only Pi10 was selected, and
increased Pi10, reflecting increased airway remodelling more globally, is well established to be associated
with increased COPD severity [35]. Among the three PCA components, our results showed that the Pi10
dominant PCA component was the only PCA component that was significant in the model that included all
component measurements and visual emphysema score for predicting lung function decline. This may be
due to the fact that the CanCOLD population is mostly mild COPD, and it is thought that airway disease is
predominant in mild COPD whereas emphysema is more apparent in those with severe COPD. Other
studies have also demonstrated that CT Pi10 is a significant predictor of longitudinal lung function decline
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in COPD over a 3-year [35] and 5-year follow-up [36]. Our results show that quantitative CT measures are
able to predict baseline pulmonary function; however, the qualitative visual score has a comparable relative
importance as quantitative measures when predicting longitudinal outcomes. This finding indicates that
while quantitative CT may not yet outperform visual scoring for predicting lung function decline, it is less
onerous to perform. Developing additional quantitative CT measurements that extract more information,
such as texture-based radiomics or using deep learning, may provide an even more comprehensive method
of evaluating the structural changes in the lung. Future studies should also focus on investigating these
more composite, quantitative CT measurements in COPD patients for other outcomes, such as symptom
worsening, hospitalisations/healthcare utilisation and mortality.

Identifying predictive biomarkers and developing prognostic models can provide clinicians with important
information about risks of a specific end-point for their individual patients. The ultimate goal of prognostic
models in clinical practice is to assist decision making regarding treatment strategy, interventions or
hospital admission. Our results show that the combination of multiple predictors, from both visual and
quantitative CT assessment, provided the strongest association with lung function decline and may provide
a more comprehensive method of evaluation by incorporating different features of the disease.

There are limitations of our study that should be noted. The CanCOLD study is a population-based study
and therefore is a relatively mild COPD cohort. Our findings cannot be generalised to more severe COPD
cases. Due to the mild population and short follow-up duration, mortality and healthcare utilisation (i.e.
hospitalisations and emergency room visits) could not be used as an outcome in our models. Future studies
will focus on investigating these outcomes in CanCOLD and validation cohorts with longer follow-up
duration such as COPDGene or SPIROMICS. We also note that because the cohort we investigated had
relatively mild COPD, there was only a slightly greater 3- and 6-year change in FEV1 between the
never-smoker and COPD groups, but it was not statistically significant. However, previous studies have
shown that while FEV1 decline may be subtle and not statistically significant in COPD subjects compared
with never-smokers, imaging measurements can more sensitively capture the structural disease changes that
occur over short periods of time [37]. Therefore, our findings demonstrate that baseline CT measurements
that reflect underlying lung disease can predict decline in lung function, even over short periods of time
when only very subtle changes in FEV1 are likely to occur. Long-term follow-up is, however, required to
confirm these findings. Another limitation of the study was that CT images were acquired across multiple
centres, with different CT systems. While a protocol was used for standardisation of image acquisition,
there is still potential for variability due to different CT models, acquisition parameters and reconstruction
kernels [38] to impact the quantitative measurements. Furthermore, measurements such as DPM [22]
require both an inspiratory and expiratory CT image. Coaching participants to achieve the target lung
volumes during image acquisition is important, since insufficient breath-hold volumes can impact the
quantitative CT measurements [39]. We also acknowledge the PCA focused on only CT imaging
measurements, and therefore pulmonary function tests and clinical variables were not included. A future
study could explore the impact of these additional clinical/lung function variables as PCA components for
predicting lung function decline. Finally, there are additional measurements, such as texture radiomics [40],
regional lobular analysis [41] and parametric response mapping [42], that were not included in this study.
Future work could include these measurements to explore their association with lung function decline.

In conclusion, our results show that the inclusion of multiple quantitative CT measurements reflecting
different COPD-related disease features as PCA components increased the relative importance of
quantitative CT compared with visual emphysema scoring for predicting lung function decline. Our results
will aid in the understanding of COPD progression by showing that the inclusion of numerous CT
measurements that reflect different pulmonary abnormalities as linear combinations can predict lung
function decline.

Provenance: Submitted article, peer reviewed.

Acknowledgements: The authors would also like to thank the men and women who participated in the study and
individuals in the CanCOLD Collaborative Research Group.

CanCOLD Collaborative Research Group: Jonathon Samet (Keck School of Medicine of USC, Los Angeles, CA, USA);
Milo Puhan ( John Hopkins School of Public Health, Baltimore, MD, USA); Qutayba Hamid, Carolyn Baglole,
Palmina Mancino, Pei-Zhi Li, Zhi Song, Dennis Jensen and Benjamin McDonald Smith (McGill University, Montreal,
QC, Canada); Yvan Fortier and Mina Dligui (Sherbrooke University, Sherbrooke, QC, Canada); Kenneth Chapman,
Jane Duke, Andrea S. Gershon and Teresa To (University of Toronto, Toronto, ON, Canada); J. Mark Fitzgerald and

https://doi.org/10.1183/23120541.00523-2022 8

ERJ OPEN RESEARCH ORIGINAL RESEARCH ARTICLE | M.C. KOO ET AL.



Mohsen Sadatsafavi (University of British Columbia, Vancouver, BC, USA); Christine Lo, Sarah Cheng, Elena Un,
Michael Cheng, Cynthia Fung, Nancy Haynes, Liyun Zheng, LingXiang Zou, Joe Comeau, Jonathon Leipsic and
Cameron Hague (UBC James Hogg Research Centre, Vancouver, BC, Canada); Brandie L. Walker and Curtis
Dumonceaux (University of Calgary, Calgary, AB, Canada); Paul Hernandez and Scott Fulton (University of
Dalhousie, Halifax, NS, Canada); Shawn Aaron and Kathy Vandemheen (University of Ottawa, Ottawa, ON, Canada);
Denis O’Donnell, Matthew McNeil and Kate Whelan (Queen’s University, Kingston, ON, Canada); Francois Maltais
and Cynthia Brouillard (University of Laval, Quebec City, QC, Canada); Darcy Marciniuk, Ron Clemens and Janet
Baran (University of Saskatchewan, Saskatoon, SK, Canada).

Data availability: Data analysed during the study were provided by the CanCOLD study. Requests for data should
be directed to the provider (https://cancold.ca/data-access/).

Conflict of Interest: All authors have nothing to disclose.

Support statement: M. Kirby acknowledges support from the Natural Sciences and Engineering Research Council
Discovery Grant, the Early Researchers Award Program and the Canada Research Chair Program (Tier II). Funding
information for this article has been deposited with the Crossref Funder Registry.

References
1 Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management

and Prevention of COPD. 2021. Available from: http://goldcopd.org/
2 Hansell DM, Bankier AA, MacMahon H, et al. Fleischner Society: glossary of terms for thoracic imaging.

Radiology 2008; 246: 697–722.
3 Barr RG, Berkowitz EA, Bigazzi F, et al. A combined pulmonary-radiology workshop for visual evaluation of

COPD: study design, chest CT findings and concordance with quantitative evaluation. COPD 2012; 9: 151–159.
4 Han MLK, Kazerooni EA, Lynch DA, et al. Chronic obstructive pulmonary disease exacerbations in the

COPDGene study: associated radiologic phenotypes. Radiology 2011; 261: 274–282.
5 Johannessen A, Skorge TD, Bottai M, et al. Mortality by level of emphysema and airway wall thickness. Am J

Respir Crit Care Med 2013; 187: 602–608.
6 Lynch DA, Moore CM, Wilson C, et al. CT-based visual classification of emphysema: association with mortality

in the COPDGene study. Radiology 2018; 288: 859–866.
7 Gietema HA, Müller NL, Nasute Fauerbach PV, et al. Quantifying the extent of emphysema: factors associated

with radiologists’ estimations and quantitative indices of emphysema severity using the ECLIPSE cohort. Acad
Radiol 2011; 18: 661–671.

8 Gevenois PA, de Vuyst P, de Maertelaer V, et al. Comparison of computed density and microscopic
morphometry in pulmonary emphysema. Am J Respir Crit Care Med 1996; 154: 187–192.

9 Schroeder JD, McKenzie AS, Zach JA, et al. Relationships between airflow obstruction and quantitative CT
measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive
pulmonary disease. AJR Am J Roentgenol 2013; 201: W460–W470.

10 Kirby M, Tanabe N, Tan WC, et al. Total airway count on computed tomography and the risk of chronic
obstructive pulmonary disease progression findings from a population-based study. Am J Respir Crit Care Med
2018; 197: 56–65.

11 Cordasco EM, Beerel FR, Vance JW, et al. Newer aspects of the pulmonary vasculature in chronic lung
disease. A comparative study. Angiology 1968; 19: 399–407.

12 Yoo W, Mayberry R, Bae S, et al. A study of effects of multicollinearity in the multivariable analysis. Int J Appl
Sci Technol 2014; 4: 9–19.

13 Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and
Prediction. 2nd Edn. New York, Springer, 2009.

14 Bourbeau J, Tan WC, Benedetti A, et al. Canadian Cohort Obstructive Lung Disease (CanCOLD): fulfilling the
need for longitudinal observational studies in COPD. COPD 2014; 11: 125–132.

15 Stanojevic S, Kaminsky DA, Miller MR, et al. ERS/ATS technical standard on interpretive strategies for routine
lung function tests. Eur Respir J 2022; 60: 2101499.

16 Shaker SB, Stavngaard T, Laursen LC, et al. Rapid fall in lung density following smoking cessation in COPD.
COPD 2011; 8: 2–7.

17 Graham BL, Steenbruggen I, Barjaktarevic IZ, et al. Standardization of spirometry 2019 update. An official
American Thoracic Society and European Respiratory Society technical statement. Am J Respir Crit Care Med
2019; 200: E70–E88.

18 Quanjer PH, Stanojevic S, Cole TJ, et al. Multi-ethnic reference values for spirometry for the 3–95-yr age
range: the global lung function 2012 equations. Eur Respir J 2012; 40: 1324–1343.

https://doi.org/10.1183/23120541.00523-2022 9

ERJ OPEN RESEARCH ORIGINAL RESEARCH ARTICLE | M.C. KOO ET AL.

https://cancold.ca/data-access/
https://www.crossref.org/services/funder-registry/
http://goldcopd.org/
http://goldcopd.org/


19 Tan WC, Hague CJ, Leipsic J, et al. Findings on thoracic computed tomography scans and respiratory
outcomes in persons with and without chronic obstructive pulmonary disease: a population-based cohort
study. PLoS One 2016; 11: e0166745.

20 Muller NL, Staples CA, Miller RR, et al. “Density mask”. An objective method to quantitate emphysema using
computed tomography. Chest 1988; 94: 782–787.

21 Gould GA, MacNee W, McLean A, et al. CT measurements of lung density in life can quantitate distal airspace
enlargement – an essential defining feature of human emphysema. Am Rev Respir Dis 1988; 137: 380–392.

22 Kirby M, Yin Y, Tschirren J, et al. A novel method of estimating small airway disease using inspiratory-to-
expiratory computed tomography. Respiration 2017; 94: 336–345.

23 Mishima M, Hirai T, Itoh H, et al. Complexity of terminal airspace geometry assessed by lung computed
tomography in normal subjects and patients with chronic obstructive pulmonary disease. Proc Natl Acad Sci
USA 1999; 96: 8829–8834.

24 Nakano Y, Wong JC, de Jong PA, et al. The prediction of small airway dimensions using computed
tomography. Am J Respir Crit Care Med 2005; 171: 142–146.

25 Tiddens HAWM, Paré PD, Hogg JC, et al. Cartilaginous airway dimensions and airflow obstruction in human
lungs. Am J Respir Crit Care Med 1995; 152: 260–266.

26 Grydeland TB, Dirksen A, Coxson HO, et al. Quantitative computed tomography: emphysema and airway wall
thickness by sex, age and smoking. Eur Respir J 2009; 34: 858–865.

27 Kim S, Lim MN, Hong Y, et al. A cluster analysis of chronic obstructive pulmonary disease in dusty areas
cohort identified three subgroups. BMC Pulm Med 2017; 17: 209.

28 Burgel PR, Paillasseur JL, Caillaud D, et al. Clinical COPD phenotypes: a novel approach using principal
component and cluster analyses. Eur Respir J 2010; 36: 531–539.

29 Dirksen A, Friis M, Olesen KP, et al. Progress of emphysema in severe alpha-1-antitrypsin deficiency as
assessed by annual CT. Acta Radiol 1997; 38: 826–832.

30 Stolk J, Dirksen A, van der Lugt A, et al. Repeatability of lung density measurements with low-dose
computed tomography in subjects with alpha-1-antitrypsin deficiency-associated emphysema. Invest Radiol
2001; 36: 648–651.

31 Lynch DA, Al-Qaisi MA. Quantitative computed tomography in chronic obstructive pulmonary disease.
J Thorac Imaging 2013; 28: 284–290.

32 Madani A, van Muylem A, Gevenois PA. Pulmonary emphysema: effect of lung volume on objective
quantification at thin-section CT. Radiology 2010; 257: 260–268.

33 Yuan R, Hogg JC, Paré PD, et al. Prediction of the rate of decline in FEV1 in smokers using quantitative
computed tomography. Thorax 2009; 64: 994–949.

34 Hoesein FAAM, van Rikxoort E, van Ginneken B, et al. Computed tomography-quantified emphysema
distribution is associated with lung function decline. Eur Respir J 2012; 40: 844–850.

35 Hoesein FAAM, de Jong PA, Lammers JWJ, et al. Airway wall thickness associated with forced expiratory
volume in 1 s decline and development of airflow limitation. Eur Respir J 2015; 45: 644–651.

36 Oelsner EC, Smith BM, Hoffman EA, et al. Prognostic significance of large airway dimensions on computed
tomography in the general population the Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study. Ann Am
Thorac Soc 2018; 15: 718–727.

37 Kirby M, Eddy RL, Pike D, et al. MRI ventilation abnormalities predict quality-of-life and lung function changes
in mild-to-moderate COPD: longitudinal TINCan study. Thorax 2017; 72: 475–477.

38 Gierada DS, Bierhals AJ, Choong CK, et al. Effects of CT section thickness and reconstruction kernel on
emphysema quantification relationship to the magnitude of the CT emphysema index. Acad Radiol 2010; 17:
146–156.

39 Bankier AA, O’Donnell CR, Boiselle PM. Quality initiatives. Respiratory instructions for CT examinations of the
lungs: a Handson guide. Radiographics 2008; 28: 919–931.

40 Refaee T, Wu G, Ibrahim A, et al. The emerging role of radiomics in COPD and lung cancer. Respiration 2020;
99: 99–107.

41 Gurney JW, Jones KK, Robbins RA, et al. Regional distribution of emphysema: correlation of high-resolution
CT with pulmonary function tests in unselected smokers. Radiology 1992; 183: 457–463.

42 Galbán CJ, Han MK, Boes JL, et al. Computed tomography-based biomarker provides unique signature for
diagnosis of COPD phenotypes and disease progression. Nat Med 2012; 18: 1711–1715.

https://doi.org/10.1183/23120541.00523-2022 10

ERJ OPEN RESEARCH ORIGINAL RESEARCH ARTICLE | M.C. KOO ET AL.


	Quantitative computed tomography and visual emphysema scores: association with lung function decline
	Abstract
	Introduction
	Materials and methods
	Study participants
	Pulmonary function measurements
	CT image acquisition
	CT image analysis
	Statistical analysis

	Results
	Subject cohort and demographics
	Principal component analysis
	Multiple linear regression models for annualised FEV1 change

	Discussion
	References


