Supplementary data

Search strategy

- 1. exp heart ventricle function/
- 2. ventricular dilation.mp. or exp ventricular dilatation/
- 3. pulmonary hypertension or exp pulmonary hypertension/
- 4. exp tricuspid annular plane systolic excursion/
- 5. septal motion.mp.
- 6. paradoxal septal motion.mp.
- 7. paradoxical septal motion.mp.
- 8. echocardiography.mp. or exp.echocardiography/
- 9. Exp heart right ventricular failure/
- 10. 2 or 3 or 4 or 5 or 7 or 8 or 9
- 11. Pulmonary embolism.mp. or exp lung embolism/
- 12. 10 and 11

Statistical analysis

We determined Risk Ratio (RR), 95% CI for all-cause short-term death in patients with RVD as assessed at echocardiography. Prediction intervals have been also calculated [14]. Data from individual studies were pooled using the Mantel-Haenszel method; we reported results according to a fixed-effects model in the absence of significant heterogeneity and to a random-effects model in the presence of significant heterogeneity [14,15]. In case data for a meta-analysis of proportions were not available, a meta-analysis of effect size was performed. We calculated the summary ORs with 95% CI from ORs or HRs extracted from the study or calculated as crude ORs from rates. Unadjusted ORs and HRs were considered for the meta-analysis and analyzed together, due to the short-term follow-up (in-hospital or \leq 30 days) [16].

Funnel plots were used to assess for publication bias.

Supplementary Table 1. Characteristics of studies reporting on RVD and included in the critical review. *= mean and standard deviation or median and range. D: days; OBP: observational prospective; OBR: retrospective; NR: not reported; y: yes; Unstable: hemodynamic instability; Pts: patients; RVD: right ventricular dysfunction as comprehensive definition. sPAP: systolic pulmonary artery pressure; RV/LV ratio: right ventricle/left ventricle diameter ratio; TAPSE: Tricuspid Annular Plane Systolic Excursion; PE: pulmonary embolism; ICU: intensive care unit; CCUS: complete compression ultrasonography; cTnl: cardiac troponin I; TTE: transthoracic echocardiography; MDCT: multi-detector CT; MPA: main pulmonary artery; RVPO: right ventricular pressure overload; ESC: European Society of Cardiology; BNP: brain peptide natriuretic peptide; RHT: right heart thrombus; AF: atrial fibrillation; HsTnt: high-sensitive troponin T.

Study	Design	Follow	Pts.	Age*	Male	Un-	RVD	Objective	RVD definition
		up	(N)		%	stable	%		
Ozsu 2010	OBP	30d	108	70 (21-90)	44	no	40	 I) to define low risk patients in an outpatient setting. II) to define high risk patients 	
Bahloul 2019	OBP	In- hospital	75	53 (18)	83	У	45	to evaluate the rate and the outcome of PE in the ICU	RV dilatation or hypokinesia or abnormal movement of the interventricular septum with or without tricuspid regurgitation
Jimenez 2011	OBP	30d	591	74 (65-82)	43	no	20	to assess if a combined strategy with lower CCUS, cTnI, and TTE might offer an advantage in risk stratification	tricuspid systolic velocity greater than 2.6 m/s
Becattini 2011	OBP	In- hospital	460	67 (16)	46	У	50	To identify a criterion for RV dysfunction at MDCT and to evaluate its prognostic value	at least two among: RV/LV >0.9 in the apical four- chamber view, or RV/LV >0.7 in the parasternal long-axis or subcostal four-chamber views, or paradoxical interventricular septal motion, or sPAP over 30 mmHg
Vanni 2011	OBR	ln- hospital	160	70 (15)	42	Y	56	To assess the association between plasma lactate concentration and in- hospital mortality in patients with acute PE.	One of the following: 1) RV dilatation; 2) paradoxical septal systolic motion, or 3) pulmonary hypertension (Doppler pulmonary acceleration time < 90 msec or presence of a right ventricle / atrial gradient > 30 mm Hg).

Vanni 2015	OBP	30d	496	69 (16)	49	no	40	To determine the role of plasma lactate levels in risk assessment of normotensive patients with acute PE	(end-diastolic diameter >30 mm or RV/ LV end- diastolic diameter ratio ≥1 in apical four-chamber view); (2) pulmonary hypertension (estimated RV– right atrial trans-tricuspidal gradient over 30 mm Hg); (3) hypokinesis of the RV free wall (any view).
Vanni 2009	OBP	In- hospital	386	67 (16)	40	no	52	To investigate the prognostic value of electrocardiography alone or in combination with echocardiography in normotensive PE patients	5
Grifoni 2000	OBP	ln- hospital	209	65 (15)	60	У	53	To evaluate the prevalence and short- term prognosis of patients with PE	One of the following: RV dilatation, systolic flattening of the interventricular septum, and Doppler evidence of pulmonary hypertension.
Becattini 2013	OBP	In- hospital	1106	68 (15)	45	У	68	To validate a model for risk stratification	Two of the following: (1) RV/LV > 1 in apical four- chamber view, (2) RV/LV 0.6 in parasternal long- axis or subcostal four-chamber view, and (3) right ventricular-to-right atrial pressure gradient> 30 mm Hg.
Zhu 2008	OBP	14d	520	57 (14)	62	no	48	To assess RVD for prognosis in PE patients identifying optimal echocardiographic indexes	at least two of the following. (1) RV dilatation: RV/LV the parasternal long-axis view >0.6 or RV/LV>1.0; (2) RV hypokinesis; (3) loss of inspiratory collapse of IVC; (4) tricuspid regurgitant jet velocity >2.8 m/s.
Krüger 2004	OBP	In- hospital	50	62(16)	72	У	62	To determine how BNP levels are affected by PE with and without RVD	Presence of any: 1) dilation of the RV (diastolic diameter >30 mm) or a RV/LV >1 in the 4-chamber view; 2) hypokinesis of the RV; 3) abnormal motion of the interventricular septum; or 4) tricuspid valve regurgitation (jet velocity >2.5 m/s).
Post 2009	OBP	14d	192	57 (17)	47	У	74	To evaluate the local therapy regimen	RV dilatation, RV hypokinesis in the apical or subcostal view and/or the presence of paradoxical

									septal wall motion or a newly developed tricuspid regurgitation
George 2014	OBR	30d	785	58.4 (17)	62	NR	44	To compare the prognostic significance of CT-derived RV/LV and TTE detection of RV strain in patients with PE	Any of following: 1) reduced RV systolic function assessed qualitatively on the basis of the RV free wall motion or presence of RV hypokinesia/ dyskinesia/ akinesia; (2) sPAP >36mm Hg; (3) moderate or severe dilatation of the RV determined qualitatively; and (4) abnormal interventricular septal movement
Kumamaru 2016	OBR	14d	236	54.8 (17)	38	Y	22	To develop a clinical prediction rule to identify the subpopulation for which CT-derived data can be used to predict normal RV function	Any of the following: (1) reduced RV systolic function assessed qualitatively based on the RV wall motion; (2) RV hypokinesia/dyskinesia/akinesia; (3) sPAP>36 mmHg; (4) moderate or severe dilatation of RV; and (5) abnormal interventricular septal movement.
Lankeit 2010	OBP	30d	156	67 (53–75)	45	no	45	To assess the role of cardiac cTnT levels using hsTnT in risk assessment	dilatation of the RV in the absence of left ventricular or mitral valve disease
Weekes 2017	OBP	30d	116	59 (26)	59	no	22	To assess early use of POC RVD testing to accurately identify RVD in PE patients	Blunt RV apex; basal RV diameter > 3.8 cm; RV > LV; Minimal to absent movement of RV free wall annulus (tricuspid annular plane systolic excursion < 1.0 cm) and diminished inward movement of RV free wall (fractional change < 18%); Flattened or bowed toward LV.
Binder 2005	OBP	In- hospital	124	60 (18)	40	У	27	To investigate whether the combination of NT- proBNP with imaging increase the prognostic value of either method alone	RV dilatation (end-diastolic diameter >30 mm from the parasternal view or the RV appearing larger than the LV from the subcostal or apical view) combined with right atrial hypertension, ie, absence of inspiratory collapse of the inferior vena cava.
Taylor 2013	OBR	ln- hospital	161	60 (18)	46	У	24	To assess the prognostic value of POC for PE patients in hospital adverse events	RV/LV of ≥1 by qualitative estimate, RV hypokinesis, or a McConnell's sign. RVS was determined by the initial consciousness, lethargy, or delirium.

Dudzinski 2016	OBP	5d	104	58 (17)	52	У	40	To test the hypothesis that CT provides information on RV analogous to TTE	or interventricular septal bowing in concordance with American Society of Echocardiography guidelines
Ohigashi 2010	OBR	In- hospital	50	66 (54-78)	58	У	64	Toevaluatetheusefulness of biomarkersfor the diagnosis of RVD	RV dilatation >30 or RV/LV>1 or RV hypokinesis or paradoxyc septal motion or sPAP>30 mmHg
Zhu 2007	OBP	14d	90	56.8 (14)	57	У	56	to assess 14-day adverse events in combined RVD at TTE and cTnI	At least 2 of the following: RV dilatation (without hypertrophy), loss of inspiratory collapse of inferior vena cava (IVC), RV hypokinesis, tricuspid regurgitant jet velocity > 2.8 m/s
Dellas 2010	OBP	30d	126	67 (51-74)	NR	no	39	To determine H-FABP, alone or in combination with clinical or echocardiographic findings, might reliably predict poor prognosis	RV dilation (end-diastolic diameter >30 mm from the parasternal view or a RV/LV diameter ratio >1.0 from the subcostal or apical views), combined with right atrial hypertension (absence of the inspiratory collapse of the inferior vena cava) in the absence of LV or mitral valve disease
Kaeberich 2015	OBP	30d	588	NR	NR	no	37	Optimised cut-off values for hsTnT and adjustment for age might provide superior prognostic value	RV dilatation combined with right atrial hypertension (absence of the inspiratory collapse of the inferior vena cava)
Lankeit 2008	OBP	30d	112	68 (55-76)	42	У	42	GDF-15 levels on admission to identify serious complications during the acute or long- term phase of PE	RV dilatation (end-diastolic diameter > 30 mm from the parasternal view, or a RV/LV > 1.0 from the subcostal or apical views), combined with right atrial hypertension (absence of the inspiratory collapse of the inferior vena cava)
Keller 2019	OBP	30d	511	69 (54-77)	44	У	51	To investigate the impact of symptoms and initial presentation on treatment and outcome	RV dilatation (RV/LV) or end-diastolic RV diameter>30mm combined with absence of the inspiratory collapse of the inferior vena cava on TTE
Beigel 2019	OBR	ln- hospital	179	66 (16)	47	no	66	To evaluate a cohort of intermediate-risk PE patients with evidence of RV involvement, to	One of the following: a) an increased RV/LV ratio; b) an enlarged RV diameter of>35mm at the mid- ventricular level or>41mm at the base of the RV; or c) RV contractile dysfunction

								identify poor outcomes	
Pruszczyk 2020	OBP	30d	490	64 (18)	53	no	12	to compare echocardiographic parameters for the prediction of adverse 30-day outcome	TAPSE<16 mm and RV/LV <1
Vanni 2017	OBR	30d	994	74 (64-81)	50	no	29	to compare the efficiency of the 2014 ESC model, Bova and TELOS scores	5 ()
Witkin 2019	OBR	7d	326	NR	NR	NR	45	To assess mortality and need for intensive therapies in patients with PE who had TTE evidence of chronic RVPO than patients without chronic RVPO	RV dilatation, hypokinesis or septal bowing or flattening without fulfilling the criteria for chronic RVPO
Ribeiro 1997	OBP	In- hospital	126	NR	56	У	55	To evaluate if the degree of systolic RVD is a predictor of mortality during hospitalization	qualitative evaluation of the RV wall motion;
Palmieri 2008	NR	In- hospital	89	NR	NR	no	NR	increased cTnI and RVD had prognostic relevance in addition to a novel clinically based prognostic risk score	RV dilatation associated with paradoxical
Kostrubiec 2010	OBP	30d	212	64 ± 18	38	У	58	renal dysfunction as independent marker of early mortality in PE, and in addition to troponin-based risk stratification.	a shortened acceleration time of pulmonary
Pieralli 2006	OBP	In- hospital	61	75 ± 14	26	no	57	to investigate the value of BNP for the identification of RV	

								dysfunction and its prognostic value	and (4) pulmonary hypertension (Doppler pulmonary acceleration time 90 ms or the presence of a RV or right atrial gradient 30 mm Hg)
Vieillard- Baron 1001	OBR	ln- hospital	98	NR	NR	У	NR	To examine the prevalence of acute cor pulmonale in PE, diagnosed on the basis of TTE criteria	Combining RV enlargement, as indicated with RV/LV end diastolic area with septal dyskinesia
Barrios 2017	OBP	30d	848	67.4 ± 16.7	49	no	23	to evaluate the optimal approach to assess RV function in normotensive PE patients	
Yalamanchili 2004	OBR	ln- hospital	81	NR	NR	У	27	To report in-hospital mortality in patients with PE with and without increased cardiac troponin I	RV dilation (RV end-diastolic diameter 30 mm), hypokinesia, and paradoxic RV septal systolic motion
Logeart 2007	OBP	In- hospital	67	69 ± 15	56	no	54	well as clinical and electrocardiographic	free wall, inferior cava vena diameter > 10 mm
Gallotta 2008	OBP	In- hospital	90	67 ± 18	26	no	59	To assess adverse outcomes in association with increased troponin I at admission independently of clinical, electrocardiographic, echocardiographic and laboratory information	any of the following findings: 1) paradoxical interventricular septal motion; 2) RV dilation (diastolic diameter >15 mm/m2); 3) low RV systolic function (systolic excursion of the tricuspid anulus <15 mm)

Samaranayake 2015	NR	30d	61	63.1 (27–97)	47	no	86	to determine the rates and factors associated with the development of persistent RVD and/or PHT and all-cause mortality	or MPA to aorta diameter ratio >1.1 and/or (ii) signs of RV dilatation or straightened or leftward
Jimenez 2014	OBP	30d	848	72 (59–80)	49	no	23	to derive a multimarker model for estimating risk in normotensive patients with PE.	wall, and estimated systolic pulmonary artery
Kukla 2015	OBR	In- hospital	975	65.8 (14)	41	У	76	to determine the prevalence of RHT and AF and to assess their impact on outcomes in PE patients	RV/LV ratio >1, acceleration time of RV ejection <90 ms or tricuspid insufficiency peak gradient

Supplementary Table 2. Characteristics of studies reporting on RV/LV and included in the critical review. *= mean and standard deviation or median and range. D: days; OBP: observational prospective; OBR: retrospective; NR: not reported; y: yes; Unstable: hemodynamic instability; Pts: patients; RVD: right ventricular dysfunction; RV/LV ratio: right ventricle/left ventricle diameter ratio; PE: pulmonary embolism; cTnI: cardiac troponin I; TTE: transthoracic echocardiography; MDCT: multi-detector CT; TAPSE: Tricuspid Annular Plane Systolic Excursion.

Study	Design			Age*		Unstable		RV/LV	Objective
		up	(N)		%		RV/LV %	cut off	
Khemasuwan	OBR	In-	211	61	49	У	52	≥1	To identify the most important echocardiographic parameters that predict adverse
2015		hospital		(15)					clinical outcomes in patients with acute PE.
Zanobetti	NR	30d	120	73	43	у	50	≥1	identify 1 or more ECG indices of RV anatomy and function predictors of short-term
2013				(14)					RV dysfunction in patients with PE
Pruszczyk	OBP	In-	411	64	43	no	29	≥1	evaluate the prognostic value of echocardiographic indices of RVD for prediction of
2014		hospital		(18)					adverse clinical outcomes in initially normotensive patients with acute pulmonary embolism
Ciurzyński 2018	OBR	30d	400	66 (20- 101)	48	no	36	≥1	to analyses the prognostic value of a new echocardiographic parameter, TRPG/ TAPSE, for prediction of adverse clinical outcomes in initially normotensive APE patients
Paczyńska 2015	OBP	30d	76	68 (19-94)	46	no	39	≥1	to compare right ventricular RV/LV measured by echocardiography and MDCT with TAPSE as a prognostic factor of APE-related 30-day mortality
Dahhdan 2016	OBR	30d	65	55 (43-72)	48	У	14	≥1	the addition of quantitative echocardiographic markers of RV function would add to clinical parameters to predict outcomes in patients with acute PE
Stein 2010	OBR	In- hospital	900	65 (17)	64	no	26	>1	to further assess in-hospital mortality of stable patients with PE who have RV enlargement and/or an increase of cTnI
Frémont 2008	OBR	In- hospital	950	69 (14)	40	У	28	≥0.6	to determine whether that criterion had independent prognostic value and, if so, to determine the critical cutoff of the ratio with respect to predicting hospital mortality
Kanar 2019	OBR	In- hospital	142	56.9 (13)	58	У	13	>1	was to evaluate RV mechanical functions and dyssynchrony and to consider their relationship with early hospital mortality in patients with APE
Zhu 2008	OBP	14d	520	57 (14.4)	62	У	NR	0.6	To assess RVD for prognosis in PE patients identifying optimal echocardiographic indexes
Sanchez 2010	OBP	30d	570	68 (52–	47	У	NR	NR	to assess the additional prognostic value of echocardiography and biomarkers for stratifying patients with PE in different risk categories

				77)					
Sanchez 2013	OBP	30d	592	67 (52– 77)	47	no	NR	>0.9	to determine whether the combination of echocardiography and biomarkers with the PESI improves the risk stratification of patients with PE compared with the PESI alone
Pruszczyk 2003	OBR	ln- hospital	64	61 (17)	53	no	NR	NR	We checked whether the detection of ongoing RV myocardial injury by the monitoring of cardiac troponin T (cTnT) levels might help in the risk stratification of patients with PE
Pruszczyk 2020	OBP	30d	490	64 (18)	53	no	36	>1	to compare echocardiographic parameters for the prediction of adverse 30-day outcome in normotensive patients with acute pulmonary embolism, and to develop an optimal definition of RVD
Vanni 2011	OBR	In- hospital	384	70 (15)	42	У	43	≥1	To assess the association between plasma lactate concentration and in-hospital mortality in patients with PE
Vanni 2015	OBP	30d	496	69 (16)	49	no	41	≥1	To determine the role of plasma lactate levels in the risk assessment of normotensive patients with acute PE

Supplementary Table 3. Characteristic of studies reporting on TAPSE and included in the critical review

*= mean and standard deviation or median and range. D: days; OBP: observational prospective; OBR: retrospective; NR: not reported; y: yes; Unstable: hemodynamic instability; Pts: patients; RVD: right ventricular dysfunction; RV/LV ratio: right ventricle/left ventricle diameter ratio; PE: pulmonary embolism; MDCT: multi-detector CT; TAPSE: Tricuspid Annular Plane Systolic Excursion; LVOT VTI: left ventricular outflow tract velocity time; BUN: blood urea nitrogen.

Study	Design	Follow up	Ρ	Age*	Male	Unstable	Altered	TAPSE	Objective
	Ū		(N)	0	(%)		TAPSE	cut off	·
							(%)	(mm)	
Lobo 2014	OBP	30d	782	73(59-	49	no	45	>20	To establish the relationship between TAPSE and clinical outcomes in normotensive
				80)					patients with acute symptomatic PE.
Lobo 2014	OBR	30d	1326	72	48	no	46	>20	To establish the relationship between TAPSE and clinical outcomes in normotensive
				(58-80)					patients with acute symptomatic PE.
Khemasuwan	OBR	In-	211	61	49	У	31	≥16	To identify the most important echocardiographic parameters that predict adverse
2015		hospital		(15)					outcome in patients with acute PE.
Zanobetti	NR	30d	120	73 (14)	43	У	47	≥16	To identify 1 or more ECG indices of RV anatomy and function predictors of short-term
2013									RV dysfunction in patients with PE
Pruszczyk	OBP	In-	411	64	43	no	9	≥16	To evaluate the prognostic value of echocardiographic indices of right ventricular
2014		hospital		(18)					dysfunction (RVD) for adverse outcomes in initially normotensive patients with acute
									pulmonary embolism
Yuriditsky	OBR	In-	188	57	49	У	20	≥16	To determine the association between LVOT VTI and in-hospital mortality or adverse
2019		hospital		(17)					outcomes
Ciurzyński	OBR	30d	400	66	48	no	12	≥15	To analyses the prognostic value of a new echocardiographic parameter, TRPG/ TAPSE,
2018				(20-101)					for prediction of adverse outcomes in initially normotensive APE patients
Paczyńska	OBP	30d	76	68 (19-	46	no	17.1	≥15	To compare RV/LV measured by echocardiography and multidetector computed
2015				94)					tomography (MDCT) with TAPSE as a prognostic factor of APE-related 30-day mortality
Dahhdan	OBR	30d	65	55	48	У	20	≥16	The addition of quantitative echocardiographic markers of RV function would add to
2016				(43-72)					clinical parameters to predict outcomes in patients with acute PE
Tatlisu 2017	OBR	In-	252	64	47	У	37.6	≤15	To investigate the association of BUN levels with in-hospital and long-term adverse
		hospital		(15)					clinical outcomes in APE patients treated with the tissue plasminogen activator
Carroll	OBR	In-	455	63	47	У	27	<16	to determine the potential additive value of multiple parameters of RV strain and to
2018		hospital		(16)					evaluate the association of each individual parameter with adverse events in acute PE
Lee	OBP	In-	144	56	50	no	NR	NR	We aimed to evaluate the prognostic value of echocardiographic measurements of RV
2019		hospital		(17)					systolic function for clinical outcomes in patients with acute non-massive PE.

Kanar	OBP	In-	142	57	58	У	NR	NR	To evaluate RV mechanical functions and dyssynchrony and to consider their relationship
2019		hospital		(13)					with early hospital mortality in patients with APE
Pruszczyk 2020	OBP	30d	490	64 (18)	53	no	18		to compare echocardiographic parameters for the prediction of adverse 30-day outcome in normotensive patients with acute pulmonary embolism, and to develop an optimal definition of RVD
Osken 2021	OBR	In- hospital	635	62 (16.3)	46	NR	31		we aimed to compare the ECG and echocardiographic parameters between older and younger patients and to evaluate the predictors of in-hospital mortality among APE patients.

Supplementary Table 4. Characteristics of studies reporting on hypokinesis and included in the critical review

*= mean and standard deviation or median and range. D: days; OBP: observational prospective; OBR: retrospective; NR: not reported; y: yes; Unstable: hemodynamic instability; Pts: patients; RVD: right ventricular dysfunction; RV/LV ratio: right ventricle/left ventricle diameter ratio; PE: pulmonary embolism; MDCT: multi-detector CT; TTE: transthoracic echocardiography.

Study	Design	Follow	Pts	Age*	Male	Unstable	Hypokinesis	Objective
		up	(N)		(%)		(%)	
Zhu 2008	OBP	14d	520	57 (14.4)	62.1	no	78	RVD for prognosis in APE patients identifying optimal echocardiographic indexes
Bikdeli 2018	OBP	30d	15375	65.9 (17.2)	46	У	23	to report the real-world use and predictors of early TTE (within the first 72 hours from diagnosis) in patients with PE, and to explore the association between some of the main TTE findings and 30-day PE-related mortality in unadjusted and adjusted analyses
Kucher 2005	OBP	30d	1035	67 (21-91)	44.1	No	42	we investigated whether echocardiographic RV hypokinesis helps predict early death in the large group of patients enrolled in the International Cooperative Pulmonary Embolism Registry (ICOPER) who presented with a preserved systemic arterial pressure
Dahhan 2016	OBR	30d	69	55 (43- 72)	52	У	45	the addition of quantitative echocardiographic markers of RV function would add to clinical parameters to predict outcomes in patients with acute PE
Park 2012	OBR	30d	56	63.5 (52– 71)	50	У	36	we aimed to test the hypothesis that chest CT is a valuable rapid method of identifying RV dysfunction and predicting poor clinical outcomes, by comparing the two imaging methods in the same patients
Carroll 2018	OBR	In- hospital	455	63 (16.2)	47	у	62	to determine the potential additive value of multiple parameters of RV strain and to evaluate the association of each individual parameter with adverse events in acute PE

Supplementary Table 5. Characteristics of studies reporting on McConnell's sign and included in the critical review

*= mean and standard deviation or median and range. RV: right ventricular dysfunction; D: days; OBP: observational prospective; OBR: retrospective; NR: not reported; y: yes; Unstable: hemodynamic instability; Pts: patients

Study	Desig	Follow	Pts	Age*	Male	Unstable	McConnell's	Objective
	n	up	(N)		(%)		sign (%)	
Pruszczyk	OBP	In-	411	64	43	no	18	evaluate the prognostic value of echocardiographic indices of RVD prediction of pulmonary
2014		hospital		(18)				embolism–related 30-day mortality or need for rescue thrombolysis in initially normotensive patien
								with acute pulmonary embolism
Carroll	OBR	In-	455	63	47	У	14	to determine the potential additive value of multiple parameters of RV strain and to evaluate the
2018		hospital		(16.2)				association of each individual parameter with adverse events in acute PE
Khemasuwan	OBR	In-	211	61	49	У	14	To identify the most important echocardiographic parameters that predict medical ICU, hospital, an
2015		hospital		(15)				long-term mortality in patients with acute PE.
Zanobetti	NR	30d	120	73	43	У	39	identify 1 or more ECG indices of RV anatomy and function predictors of short-term RV dysfunction
2013				(14)				in patients with PE

Supplementary Table 6. Characteristics of studies reporting on sPAP and included in the critical review

*= mean and standard deviation or median and range. RV: right ventricular dysfunction; D: days; OBP: observational prospective; OBR: retrospective; NR: not reported; y: yes; Unstable: hemodynamic instability; Pts: patients; sPAP: systolic pulmonary artery pressure

Study	Design	Follow	Pts	Age*	Male %	Unstable	Increased	PAPs	Objective
		up	(N)				PAPs	cut off	
							%	(mmHg)	
Ribeiro	OBP	In-	126	NR	56	у	76	≤30	The degree of RV systolic dysfunction, as assessed by ED at the time of
1997		hospita I							diagnosis of PE, is a predictor of mortality rate during hospitalization and within 1 year.
Sukhija 2005	OBR	In- hospita I	190	58 (15)	45	У	34	50	The association of in-hospital mortality with different echocardiographic signs of RV dysfunction
Tatlisu 2016	OBR	ln- hospita l	252	64(15)	47	У	NR	NR	To investigate the association of BUN levels with in-hospital and long-term adverse clinical outcomes in APE patients treated with the tissue plasminogen activator
Meneveau 2003	OBP	ln- hospita l	183	66 (14)	44	У	74	>30	To evaluate the in-hospital course and long-term evolution of patients with massive PE submitted to thrombolytic therapy, and to determine the independent predictors of short and long-term prognosis in these patients
Khemasuwa n 2015	-	ln- hospita I	211	61 (15)	49	У	NR	NR	To identify the most important echocardiographic parameters that predict medical ICU, hospital, and long-term mortality in patients with acute PE.
Kanar 2019	OBP	ln- hospita l	142	56.9 (13)	58	У	NR	NR	To evaluate RV mechanical functions and dyssynchrony and to consider their relationship with early hospital mortality in patients with APE

Supplementary Table 7. Characteristics of studies reporting on RV diameter and included in the critical review

*= mean and standard deviation or median and range. RV: right ventricle dysfunction; D: days; OBP: observational prospective; OBR: retrospective; NR: not reported; y: yes; Unstable: hemodynamic instability; Pts: patients; TAPSE: Tricuspid Annular Plane Systolic Excursion; ED: echocardiography Doppler; ICU: intensive care unit.

Study	Design	Follow	Р	Age*	Male	Unstable	Altered RV	RV	Objective
		up	(N)		%		diameter	diameter	
							%	cut off	
								(mm)	
Pruszczyk 2014	OBP	In- hospita I	411	64 (18)	43	no	NR	NR	To evaluate the prognostic value of echocardiographic indices of RVD for prediction of pulmonary embolism–related 30-day mortality or need for rescue thrombolysis in initially normotensive patients with acute pulmonary embolism
Sukhija 2005	OBR	ln- hospita l		58 (15)	45	У	34	≥4.5	The association of in-hospital mortality with different echocardiographic signs of RV dysfunction
Paczyńska 2015	OBP	30d	76	68 (19-94)	46	no	NR	NR	To compare RV/LV ratio measured by echocardiography and multidetector computed tomography (MDCT) with TAPSE as a prognostic factor of APE-related 30-day mortality
Menevea u 2003	OBP	In- hospita I	183	66 (14)	44	У	83	NR	To evaluate the in-hospital course and long-term evolution of patients with massive PE submitted to thrombolytic therapy, and to determine the independent predictors of short and long-term prognosis in these patients
Khemasu wan 2015	OBR	In- hospita I	211	61 (15)	49	У	NR	NR	To identify the most important echocardiographic parameters that predict medical ICU, hospital, and long-term mortality in patients with acute PE
Zanobetti 2013	NR	30d	120	73 (14)	43	У	NR	NR	To identify 1 or more ECG indices of RV anatomy and function predictors of short-term RV dysfunction in patients with PE
Ribeiro 1997	OBP	ln- hospita l	126	NR	56	Y	NR	NR	the degree of RV systolic dysfunction, as assessed by ED at the time of diagnosis of PE, is a predictor of mortality rate during hospitalization and within 1 year.
Bahloul 2019	OBP	In- hospita	75	53 (18)	83	У	NR	NR	to evaluate the rate and the outcome of PE in the ICU

		I							
Grifoni	OBP	In-	209	65	60	У	42.5	>30	To evaluate the prevalence and short-term prognosis of patients with objectively confirmed
2000		hospita		(15)					PE, normal blood pressure, and echocardiographic RV dysfunction
		I							
Pruszczyk	OBP	30d	490	64	53	no	NR	NR	to compare echocardiographic parameters for the prediction of adverse 30-day outcome in
2020				(18)					normotensive patients with acute pulmonary embolism, and to develop an optimal
									definition of RVD

Supplementary Table 7. Adverse outcome definition across different studies included in the meta-analysis of RVD

Study	Adverse outcome definition
Lankeit	need for catecholamine administration (except for dopamine at a rate of 5 mg/kg/min or less) to maintain
2008	adequate tissue perfusion and prevent or treat cardiogenic shock, endotracheal intubation, or cardiopulmonary resuscitation
Becattini	clinical worsening from a stable to an unstable hemodynamic condition that required at least one of the following:
2013	(1) IV catecholamine infusion to maintain adequate tissue perfusion and prevent or treat cardiogenic shock, (2) endotracheal intubation, or (3) CPR.
Binder 2005	Not reported
Kaeberich	adverse 30-day outcome defined as pulmonary embolism-related death, need for mechanical ventilation,
2015	cardiopulmonary resuscitation, or catecholamine administration (except for dopamine at an infusion rate of $\leq 5 \ \mu g$ per kg of body weight per minute)
Vanni	composite of death for any cause and clinical deterioration (defined as progression to shock, mechanical
2009	ventilation, or cardiopulmonary resuscitation, or the need for infusion of a catecholamine, except for dopamine infused at a rate $\leq 5 \ \mu g / kg / min$)
Dellas	1) need for catecholamine administration (except for dopamine at a rate of $\leq 5 \ \mu g/kg/min$) to maintain adequate
2010	tissue perfusion and prevent or treat cardiogenic shock; 2) endotracheal intubation; or 3) cardiopulmonary resuscitation
Keller	adverse outcome (primary study outcome) was defined as PE-related death, need for mechanical ventilation,
2019	cardiopulmonary resuscitation or administration of catecholamines (except for dopamine at an infusion rate of ≤ 5 μ g/kg body weight/min)
Lankeit 2010	(i)need for catecholamine administration (except for dopamine at a rate of ≤5 mg/kg/min) to maintain adequate tissue perfusion and prevent or treat cardiogenic shock; (ii) endotracheal intubation; and (iii) cardiopulmonary
	resuscitation.
Weekes	Signs of clinical deterioration after admission, including escalating ventilatory support,
2017	systolic blood pressure at or below 90 mm Hg, new dysrhythmia, the need for systemic or catheter-based thrombolysis, or advanced PE therapy such as embolectomy or extracorporeal membrane oxygenation
Beigel	any one of the following: 1. A drop in systolic blood pressure to<90 mmHg for at least 15 min, or a drop of blood
2019	pressure of>30 mmHg from baseline, accompanied by signs of end-organ hypoperfusion; 2. The need for
	vasopressor support to maintain adequate organ perfusion or blood pressure of>90 mmHg; 3.The need for
	cardiopulmonary resuscitation; 4. The need for mechanical ventilation; 5. The need for reperfusion (either by
	thrombolysis or surgical embolectomy) and 6. Mortality during hospitalization
Taylor 2013	shock (systolic blood pressure persistently <100 mm Hg refractory to volume loading and requiring vasopressors), respiratory failure requiring intubation, death, and recurrent venous thromboembolism (according to Kline et al.). Additionally, clinical deterioration as evidenced by transition to higher level of care (floor to stepdown, or stepdown to intensive care unit), and major bleeding during hospital admission were included as adverse
Druczezyk	outcomes. at least one of the following: PE related death, ressue thrombolysis, or homodynamic
Pruszczyk 2020	at least one of the following: PE-related death, rescue thrombolysis, or hemodynamic collapse (which was defined as cardiopulmonary resuscitation; or systolic blood pressure
2020	<90 mm Hg for at least 15 minutes with signs of end-organ hypoperfusion; or a need for intravenous catecholamine administration
Zhu 2007	defined as death or at least one of the following: need for vasoactive agents, endotracheal intubation, cardiopulmonary resuscitation
Jimenez 2014	death from any cause, hemodynamic collapse, or adjudicated recurrent PE
Gallotta	development of hemodynamic instability, defined as systolic blood pressure
2008	b90 mm Hg or a blood pressure drop ≥40 mm Hg for N15 min with signs of organ hypoperfusion not due to
	hypovolemia or sepsis; death due to shock or arrhythmias
Post 2009	Not reported

Grifoni	Not reported
2000	
Logeart	In-hospital death or circulatory failure
2006	
Dudinski	a composite of severe clinical deterioration occurring within 5 days of PE diagnosis, defined as: need for
2016	cardiopulmonary resuscitation or advanced cardiac life support, respiratory support with positive pressure
	ventilation or intubation and mechanical ventilation, hemodynamic support with inotropes and/or vasopressors,
	unstable dysrhythmia including ventricular tachycardia or ventricular fibrillation, or need for systemic or catheter-
	directed thrombolysis or surgical thromboembolectomy
Ohigashi	a composite of severe clinical deterioration occurring within 5 days of PE diagnosis, defined as: need for
2010	cardiopulmonary resuscitation or advanced cardiac life support, respiratory support with positive pressure
	ventilation or intubation and mechanical ventilation, hemodynamic support with inotropes and/or vasopressors,
	unstable dysrhythmia including ventricular tachycardia or ventricular fibrillation, or need for systemic or catheter-
	directed thrombolysis or surgical thromboembolectomy

Study	DATISTI		OF BIAS	FLOW AND		APPLICABILITY CONCERNS	DEFERSION
	PATIENT SELECTION	INDEX TEST	REFERENCE STANDARD	FLOW AND TIMING	PATIENT SELECTION	INDEX TEST	REFERENCE STANDARD
Grifoni 2000	©	0	٢	٢	©	٢	©
Ribeiro 1997	8	8	٢	٢	٢	©	©
Post 2009	©	٢	٢	?	٢	٢	0
Becattini 2013	<u>©</u>	?	?	?	٢	?	?
Kruger 2004	8	٢	٢	٢	٢	٢	0
Jiménez 2011	8	٢	٢	٢	8	©	©
George 2014	8	8	٢	?	8	٢	0
Zhu 2008	?	8	8	٢	٢	٢	0
Dellas 2010	8	٢	?	?	٢	?	?
Kaeberich 2015	8	?	?	?	٢	8	8
Becattini 2011	8	8	٢	٢	٢	٢	0
Vanni 2011	8	8	8	٢	٢	٢	٢
Vanni 2015	٢	8	8	٢	٢	٢	٢
Vanni 2009	8	?	?	?	8	?	?
Bahloul 2019	8	8	8	?	?	8	8
Ozsu 2010	©	٢	٢	?	0	٢	©
Keller 2019	©	8	8	8	٢	?	?
Beigel 2019	©	8	8	٢	0	8	?
Kumamaru 2016	8	8	٢	8	8	8	©
Taylor 2013	8	٢	٢	8	8	٢	٢
Dudzinski 2016	?	٢	٢	٢	?	٢	٢
Lankeit 2010	8	?	?	٢	0	٢	0
Weekes 2017	٢	٢	٢	٢	٢	٢	٢
Lankeit 2008	©	٢	?	٢	٢	٢	0
Ohigashi 2010	8	٢	٢	٢	8	٢	0
Zhu 2007	8	?	?	?	8	?	?
Binder 2005	8	٢	٢	٢	8	٢	٢
Kukla 2015	٢	?	?	?	٢	?	?
Witkin 2019	٢	?	?	٢	٢	?	٢
Vanni 2017	©	٢	?	٢	٢	٢	0
Palmieri 2008	٢	?	8	٢	٢	?	٢
Kostrubiec 2005	٢	8	8	٢	٢	٢	٢
Pieralli 2006	8	٢	٢	?	8	٢	٢
Vieillard-Baron 2001	8	?	?	٢	8	?	٢
Barrios 2016	?	?	?	٢	?	?	?
Yalamanchili	8	8	8	?	8	8	8
2004 Logeart 2006	٢	٢	٢	٢	٢	٢	0
	٢	?	8	?	٢	?	٢

Table 8 Risk of bias of RVD studies based on QUADAS2

Pruszczyk 2020	٢	8	8	0	0	8	?
Jimenez 2014	٢	?	?	6	٢	?	?

Table 9 Risk of bias of individual parameters of RV overload based on QUADAS2

Study		RISK	OF BIAS		А	PPLICABILITY CONCERN	S
	PATIENT SELECTION	INDEX TEST	REFERENCE STANDARD	FLOW AND TIMING	PATIENT SELECTION	INDEX TEST	REFERENCE STANDARD
Lobo 2014	©	٢	٢	٢	©	٢	٢
Dahhan 2016	?	8	8	٢	8	0	٢
Ciurzyński2018	٢	8	٢	٢	٢	8	٢
Paczyńska 2015	8	?	?	٢	8	٢	٢
Frémont 2008	٢	?	?	8	8	8	?
Khemasuwan 2015	٢	٢	٢	٢	٢	٢	٢
Pruszczyk 2014	٢	?	?	٢	٢	٢	٢
Stein 2010	?	8	?	?	٢	8	8
Yuriditsky 2019	٢	٢	?	٢	٢	٢	?
Zanobetti 2013	?	٢	٢	?	٢	٢	٢
Tatlisu 2017	?	8	8	8	?	8	8
Kanar 2019	٢	٢	٢	٢	٢	٢	©
Kucher 2005	٢	8	8	?	٢	8	8
Carroll 2018	8	?	?	٢	8	?	?
Bikdeli 2018	8	?	?	?	8	?	?
Park 2012	8	?	?	?	8	?	?

Figure 1A. Meta-analysis on the association between RVD and death by number of Figure 1B. Sensitivity analysis for RVD studies for hemodynamic stable criteria used for the definition of RVD patients

Author	logRisk measure	SE	Risk Ratio	RR	95%-CI	Weight
numberofcriteria = 2						
Zhu 2008	0.72	0.1693		2.05	[1.47; 2.86]	6.2%
Becattini 2013	0.61	0.2304		1.85	[1.17; 2.90]	5.3%
Becattini 2011	0.45	0.2354	- 100-	1.56	[0.99; 2.48]	5.2%
Kostrubiec 2005	0.63	0.2807		1.88	[1.08; 3.26]	4.6%
Vieillard-Baron 2001	0.77	0.7158	*	- 2.15	[0.53; 8.76]	1.4%
Yalamanchili 2004	0.14	0.2879			[0.65; 2.02]	4.5%
Logeart 2006	0.42	0.7173		- 1.53	[0.37; 6.24]	1.4%
Random effects model					[1.46; 2.12]	28.8%
Prediction interval			-		[1.45; 2.14]	
Heterogeneity: $I^2 = 0\%$, $\rho =$	0.75					
numberofcriteria = 1						
Jimenez 2011	0.41	0.1544	- 100	1.51	[1.11; 2.04]	6.4%
Vanni 2011	0.52	0.2483		1.68	[1.04; 2.74]	5.1%
Vanni 2015	0.56	0.2173		1.74	[1.14; 2.67]	5.5%
Grifoni 2000	0.61	0.2829		1.83	[1.05; 3.19]	4.6%
Ozsu 2010	0.04	0.2494		1.04	[0.64; 1.69]	5.0%
Bahloul 2019	0.37	0.2028	- 101	1.45	[0.97; 2.16]	5.7%
KuKla 2015	0.61	0.1717		1.85	[1.32; 2.58]	6.2%
Post 2009	0.97	0.6305		2.65	[0.77; 9.11]	1.8%
Witkin 2019	-0.26	0.2352	- 100	0.77	[0.49; 1.22]	5.2%
Beigel 2019	0.39	0.6761		- 1.48	[0.39; 5.55]	1.6%
Ribeiro 1997	1.29	0.6338			[1.05; 12.61]	1.7%
Vanni 2017	0.29	0.1082			[1.09; 1.66]	7.0%
Pieralli 2006	0.88	0.6575			[0.66; 8.74]	1.6%
Barrios 2017	1.14	0.4870			[1.21; 8.15]	2.6%
Gallotta 2008	0.32	0.3532			[0.69; 2.75]	3.7%
Kruger 2004		0.6594			[0.61; 8.15]	1.6%
Random effects model			\$		[1.28; 1.77]	65.4%
Prediction interval					[1.07; 2.10]	
Heterogeneity: $I^2 = 24\%$, p	= 0.18				500.01900.005	
numberofcriteria = 3						
Palmieri 2008	-0.81	0.1930		0.44	[0.30; 0.65]	5.9%
Random effects model			\diamond	0.44	[0.30; 0.65]	5.9%
Prediction interval						
Heterogeneity: not applicab	le					
Random effects model			\$	1.49	[1.24; 1.79]	100.0%
Prediction interval					[0.71; 3.11]	
Heterogeneity: $l^2 = 64\%$, p	< 0.01	-				

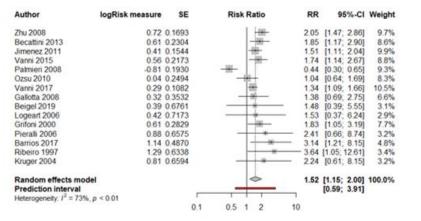


Figure 2A. Meta-analysis on the association between RVD and PE-related death

		RVD	no	RVD				
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI	Weight
Grifoni 2000	13	112	0	97	-+	113.47	[0.23; 56793.25]	1.5%
Kumamaru 2016	3	51	2	185	- 14-	5.44	[0.93; 31.69]	11.3%
Post 2009	10	143	0	49		34.65	[0.07; 17423.10]	1.5%
Ozsu 2010	4	44	2	64	- + +	2.91	[0.56; 15.20]	12.1%
Becattini 2013	16	756	0	350		74.55	[0.15; 37321.59]	1.5%
Jimenez 2011	14	120	23	471	10	2.39	[1.27; 4.50]	22.0%
George 2014	23	344	13	434	ind in the second se	2.23	[1.15; 4.34]	21.7%
Pieralli 2006	4	35	0	26		30.49	[0.06; 15833.73]	1.5%
Logeart 2006	1	36	0	35	·	10.70	[0.02; 6813.48]	1.4%
Zhu 2008	4	198	1	270	- 3#	5.45	[0.61; 48.43]	8.7%
Palmieri 2008	8	48	4	41	Ť	1.71	[0.55; 5.26]	16.9%
Random effects model Prediction interval		1887		2022		3.31	[1.84; 5.97] [0.50; 22.09]	100.0%
Heterogeneity: $I^2 = 0\%$, τ^2	= 0.6333,	p = 0.8	52		0.001 0.1 1 10 1000			

Figure 2B Meta-analysis on the association between RVD and PE-related death in hemodynamically stable patients.

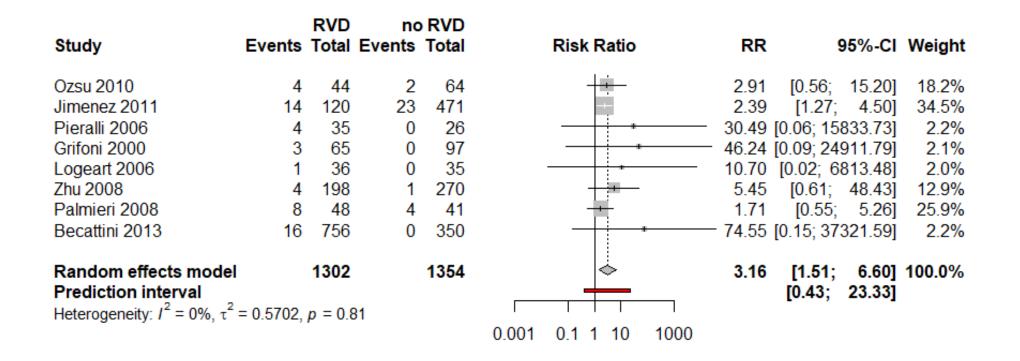


Figure 3 Meta-analysis on the association between RVD and adverse outcome.

Author	logRisk measure	SE	Risk Ratio	RR	95%-Cl	Weight
Grifoni 2000	-0.40 0.2	2166		0.67	[0.44; 1.02]	6.2%
Beigel 2019	0.15 0.1	1731		1.16	[0.83; 1.63]	7.2%
Binder 2005	0.18 0.3	3148		1.19	[0.64; 2.21]	4.4%
Weekes 2017	0.25 0.1	1798	- • •	1.29	[0.91; 1.83]	7.1%
Vanni 2009	0.41 0.1	1999		1.51	[1.02; 2.23]	6.6%
Jimenez 2014	0.42 0.1	1174		1.52	[1.21; 1.91]	8.6%
Dellas 2010	0.45 0.3	3279		1.56	[0.82; 2.97]	4.2%
Becattini 2013	0.46 0.1	1574		1.59	[1.17; 2.16]	7.6%
Kaeberich 2015	0.51 0.2	2029		1.66	[1.12; 2.48]	6.5%
Lankeit 2008	0.61 0.2	2505	- <u></u>	1.85	[1.13; 3.02]	5.5%
Gallotta 2008	0.61 0.4	4974		1.85	[0.70; 4.89]	2.3%
Taylor 2013	0.76 0.1	1981		2.14	[1.45; 3.15]	6.6%
Pruszczyk2020	0.81 0.1	1586		2.25	[1.65; 3.08]	7.6%
Keller 2019	0.84 0.2	2422	+	2.30	[1.43; 3.71]	5.7%
Lankeit 2010	0.94 0.4	4705		2.55	[1.02; 6.42]	2.6%
Ohigashi 2010	0.96 0.6	6509		2.61	[0.73; 9.33]	1.5%
Post 2009	0.99 0.4	4494		2.68	[1.11; 6.47]	2.7%
Dudinski 2017	1.11 0.3	3453	 •	3.05	[1.55; 5.99]	3.9%
Logeart 2006	1.27 0.6			- 3.57	[1.02; 12.58]	1.6%
Zhu 2007	1.46 0.6	6331		- 4.33	[1.25; 14.97]	1.6%
Dandam affaata madal				4 60	T4 40, 0.001	400.00/
Random effects model				1.68	[1.40; 2.02]	100.0%
Prediction interval Heterogeneity: $I^2 = 55\%$, p	< 0.01				[0.92; 3.07]	
Herefogeneity. $I = 55\%$, p	~ 0.01	0.1	0.5 1 2 10			

Figure 4. Meta-analysis on the association between RV/LV and death

	altered F	RV/LV	normal F	RV/LV				
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI	Weight
Paczyńska 2015	5	30	5	32	+	1.07	[0.34; 3.32]	7.5%
Ciurzyński 2018	7	145	8	255	-	1.54	[0.57; 4.16]	8.2%
Dahhdan 2016	2	9	7	43		1.37	[0.34; 5.52]	6.2%
Stein 2010	19	237	22	263	10	0.96	[0.53; 1.73]	10.5%
Pruszczyk2014	9	118	16	210	*	1.00	[0.46; 2.19]	9.4%
Frémont 2008	18	271	13	679	H	3.47	[1.72, 6.98]	9.9%
Khemasuwan 2015	19	54	17	157		3.25	[1.83; 5.78]	10.6%
Zanobetti 2013	0	61	6	55 -		0.01	[0.00; 7.57]	0.6%
Kanar 2019	7	19	21	114	100	2.00	[0.99; 4.04]	9.9%
Vanni 2011	19	202	6	182		2.85	[1.16; 6.99]	8.8%
Vanni 2015	11	166	14	227	*	1.07	[0.50; 2.31]	9.6%
Pruszczyk2020	8	176	10	314		1.43	[0.57; 3.55]	8.7%
Random effects model	6	1488		2531	0	1.61	[1.09; 2.39]	100.0%
Prediction interval		566.					[0.31; 8.28]	
Heterogeneity: $I^2 = 46\%$, τ	* = 0.5068	p = 0	.04					
					0.001 0.1 1 10 1000			

Figure 5A. Sensitivity analyses on the association between RV/LV ratio and death in studies that excluded hemodynamically unstable patients.

a	Iterated F	RV/LV	normal F	RV/LV				
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI	Weight
Paczyńska 2015	5	30	5	32		- 1.07	[0.34; 3.32]	8.6%
Ciurzyński 2018	7	145	8	255		- 1.54	[0.57: 4.16]	11.2%
Stein 2010	19	237	22	263		0.96	[0.53; 1.73]	30.7%
Pruszczyk2014	9	118	16	210		1.00	[0.46; 2.19]	17.7%
Pruszczyk2020	8	176	10	314		- 1.43	[0.57: 3.55]	13.2%
vanni 2015	11	166	14	227		1.07	[0.50, 2.31]	18.6%
Random effects mode	1	872		1301	\$	1.11	[0.91; 1.35]	100.0%
Prediction interval Heterogeneity: $I^2 = 0\%$, τ^2	= 0.0056	n = 0.9	26		 _		[0.82; 1.49]	
interespondent, r = 0.0, t	0.0000,	p	~		0.5 1 2			

Figure 5B. Sensitivity analysis on the association between RV/LV ratio and death according to different cut-offs.

Study	Evenus	Total	Events	Total	Risk Ratio	RR	95%-CI	Weight
					1		1.14.00.146	-0.00 (R .0
cutoff = =1								
Paczyńska 2015	5	30	5	32	-	1.07	[0.34; 3.32]	7.5%
Ciurzyński 2018	7	145	8	255	*	1.54	[0.57; 4.16]	8.2%
Dahhdan 2016	2	9	7	43		1.37	[0.34; 5.52]	6.2%
Pruszczyk2014	9	118	16	210	*	1.00	[0.46; 2.19]	9.4%
Khemasuwan 2015	19	54	17	157	100	3.25	[1.83: 5.78]	10.6%
Zanobetti 2013	0	61	6	55 -		0.01	[0.00; 7.57]	0.6%
Kanar 2019	7	19	21	114	-	2.00	[0.99; 4.04]	9.9%
Vanni 2011	19	202	6	182		2.85	[1.16; 6.99]	8.8%
vanni 2015	11	166	14	227		1.07	[0.50; 2.31]	9.6%
Random effects model		804		1275	-	1.57	[0.93; 2.65]	70.8%
Prediction interval				1210		1.001	[0.21; 11.73]	
Heterogeneity: $l^2 = 35\%$, τ^2	= 0.6731	, p = 0	14	. 5			formed and	
cutoff = >1								
Stein 2010	19	237	22	263	<u></u>	0.96	[0.53; 1.73]	10.5%
Pruszczyk2020	8	176	10	314			[0.57; 3.55]	8.7%
Random effects model	4	413		577	-T-		[0.10; 11.37]	19.3%
Prediction Interval						1000	forest current	
Heterogeneity: $l^2 = 0\%$, $\tau^2 =$	0.0163,	p = 0.4	17	-				
cutoff = =0.6								
Frémont 2008	18	271	13	679		3.47	[1.72; 6.98]	9.99
Random effects model		271		679	0	3.47		9.9%
Prediction interval								
leterogeneity: not applicable	e							
Random effects model		1488		2531	0	1.61	[1.09; 2.39]	100.0%
Prediction interval							[0.31; 8.28]	
Heterogeneity: $I^2 = 46\%$, τ^2	= 0 5068	n = 0	04					

Figure 6 Meta-analysis on the association between TAPSE and death. For one study, the derivation and validation cohorts were analyzed separately [66].

alterated TAPSEnormal TAPSE									
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI	Weight	
Lobo 2014	21	348	14	434	H	1.87	[0.97; 3.62]	11.4%	
Lobo 2014	59	607	43	719	10	1.63	[1.11; 2.37]	13.3%	
Khemasuwan 2015	22	66	14	109	121	2.60	[1.43; 4.71]	11.9%	
Zanobetti 2013	6	57	0	53		- 56.73	[0.11; 29016.25]	0.6%	
Pruszczyk 2014	9	37	9	229		6.19	[2.63; 14.57]	10.0%	
Ciurzyński 2018	4	49	11	351	-	2.60	[0.86; 7.86]	8.2%	
Yuriditski 2019	6	38	11	128		1.84	[0.73; 4.64]	9.5%	
Paczynska 2015	5	13	5	63		4.85	[1.64; 14.36]	8.4%	
Dahhdan 2016	4	15	5	37	++-	1.97	[0.61; 6.36]	7.8%	
Tatlisu 2017	21	195	6	157		2.82	[1.17; 6.81]	9.8%	
Pruszczyk 2020	12	302	6	88	폭	0.58	[0.23; 1.51]	9.3%	
Random effects more Prediction interval Heterogeneity: 1 ² = 49%		1727 , p = 0	.03	2368		2.29	[1.45; 3.59] [0.49; 10.65]	100.0%	
					0.001 0.1 1 10 1000				

Figure 7B. Sensitivity analysis on the association between TAPSE and death in studies only including hemodynamically stable patients.

alt Study	erated TAPS Events To			Risk Ratio	RR	95%-CI	Weight
Lobo 2014 Lobo 2014 Pruszczyk 2014 Ciurzyński 2018 Paczynska 2015 Pruszczyk 2020	59 6 9 4 5	46 23 07 43 37 9 49 11 13 5 02 6	636 719 229 351 63 88		2.27 1.63 6.19 2.60 4.85 0.58	[0.86; 7.86]	18.4% 21.2% 16.6% 14.0% 14.2% 15.6%
Random effects model Prediction interval Heterogeneity: $I^2 = 71\%$, τ^2			2086	0.1 0.5 1 2 10	2.29	[0.97; 5.44] [0.25; 20.73]	100.0%

Figure 7A. Sensitivity analysis on the association between TAPSE and death according to different cut-offs.

	ted TAPSEno vents Total E		Risk Ratio	RR	95%-CI Weight
cutoff1 = 20 Lobo 2014 Lobo 2014 Random effects model Prediction interval Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$	21 348 59 607 955 	14 434 43 719 1153		1.87 [0.9 1.63 [1.1 1.68 [0.7	1; 2.37] 13.3%
cutoff1 = 16 Khemasuwan 2015 Zanobetti 2013 Pruszczyk 2014 Yuriditski 2019 Dahhdan 2016 Pruszczyk 2020 Random effects model Prediction interval Heterogeneity: $I^2 = 66\%$, $\tau^2 =$	22 66 6 57 9 37 6 38 4 15 12 302 515 	14 109 0 53 9 229 11 128 5 37 6 88 644			3; 14.57] 10.0% (3; 4.64] 9.5% (1; 6.36] 7.8% (3; 1.51] 9.3%
cutoff1 = 15 Ciurzyński 2018 Paczynska 2015 Tatisu 2017 Random effects model Prediction interval Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$	4 49 5 13 21 195 257 .0234, p = 0.68	11 351 5 63 6 157 571	······································	2.60 [0.8 4.85 [1.6 2.82 [1.1 3.23 [1.4 [0.18	4; 14.36] 8.4% 17; 6.81] 9.8% 5; 7.18] 26.4%
Random effects model Prediction interval Heterogeneity: $I^2 = 49\%$, $\tau^2 =$ Test for subgroup differences			0.001 0.1 1 10 1000	2.29 [1.4 [0.49	

Figure 7C. Sensitivity analysis on the association between TAPSE and PE-related death in hemodynamically stable patients

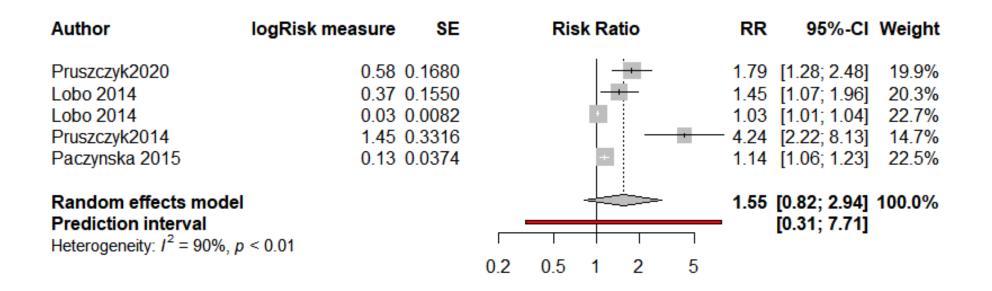


Figure 8. Meta-analysis on the association between hypokinesis and adverse outcome in the short-term

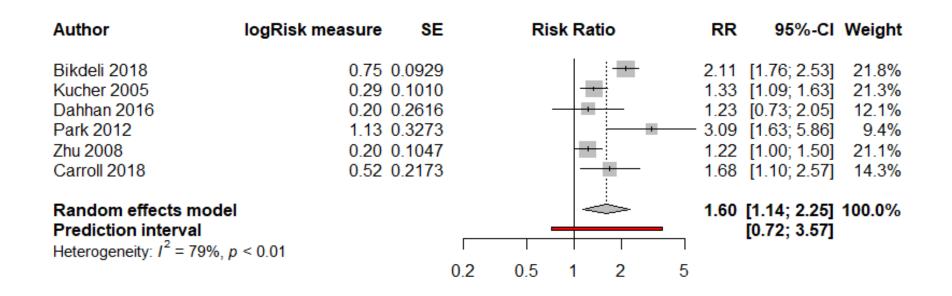
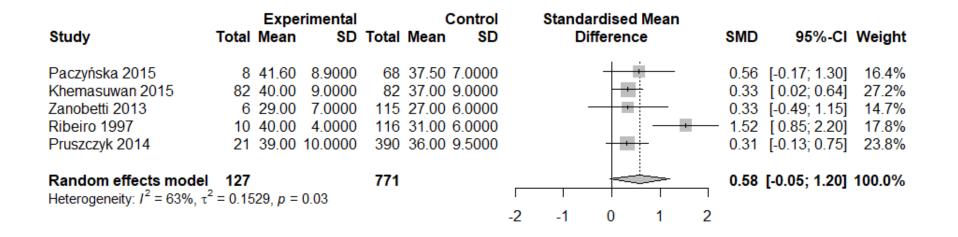



Figure 9. Meta-analysis on the Mean difference of RV diameter in survivors and non survivors

