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Abstract
Rationale Pulmonary surfactant is vital for lung homeostasis as it reduces surface tension to prevent
alveolar collapse and provides essential immune-regulatory and antipathogenic functions. Previous studies
demonstrated dysregulation of some individual surfactant components in COPD. We investigated
relationships between COPD disease measures and dysregulation of surfactant components to gain new
insights into potential disease mechanisms.
Methods Bronchoalveolar lavage proteome and lipidome were characterised in ex-smoking mild/moderate
COPD subjects (n=26) and healthy ex-smoking (n=20) and never-smoking (n=16) controls using mass
spectrometry. Serum surfactant protein analysis was performed.
Results Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, surfactant protein (SP)-B,
SP-A and SP-D concentrations were lower in COPD versus controls (log2 fold change (log2FC) −2.0,
−2.2, −1.5, −0.5, −0.7 and −0.5 (adjusted p<0.02), respectively) and correlated with lung function. Total
phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, SP-A, SP-B, SP-D, napsin A and CD44
inversely correlated with computed tomography small airways disease measures (expiratory to inspiratory
mean lung density) (r=−0.56, r=−0.58, r=−0.45, r=−0.36, r=−0.44, r=−0.37, r=−0.40 and r=−0.39
(adjusted p<0.05)). Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, SP-A, SP-B,
SP-D and NAPSA inversely correlated with emphysema (% low-attenuation areas): r=−0.55, r=−0.61,
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r=−0.48, r=−0.51, r=−0.41, r=−0.31 and r=−0.34, respectively (adjusted p<0.05). Neutrophil elastase,
known to degrade SP-A and SP-D, was elevated in COPD versus controls (log2FC 0.40, adjusted
p=0.0390), and inversely correlated with SP-A and SP-D. Serum SP-D was increased in COPD versus
healthy ex-smoking volunteers, and predicted COPD status (area under the curve 0.85).
Conclusions Using a multiomics approach, we demonstrate, for the first time, global surfactant
dysregulation in COPD that was associated with emphysema, giving new insights into potential
mechanisms underlying the cause or consequence of disease.

Introduction
COPD is a leading cause of morbidity and mortality worldwide. There is still much to be understood about
the mechanistic processes underlying its pathology and it drives such an important unmet clinical need
[1–4]. Pulmonary surfactant homeostasis is critical to healthy lung function as it coats the air–liquid
interface which reduces surface tension and prevents alveolar collapse at end-expiration [5, 6]. Tightly
controlled synthesis, secretion and subsequent recycling of surfactant are key to facilitate these essential
functions. Emphysematous changes in COPD and loss of alveolar type II (AT2) cells, which produce
surfactant, may lead to disrupted surfactant synthesis and homeostasis, and require study.

Pulmonary surfactant is comprised of ∼90% lipids and 10% proteins. Phosphatidylcholine (PC) accounts
for >80% of surfactant lipids, with phosphatidylglycerol (PG) for ∼15%, and the remainder is
phosphatidylethanolamine, phosphatidylinositol (PI), sphingomyelin and other lipids [7–10]. Surfactant
proteins (SP)-B and SP-C are small hydrophobic proteins with essential biophysical roles in surfactant
packaging, recycling and maintaining surfactant structure [5, 11]. SP-B is essential for reducing surface
tension and its production is regulated by napsin A [11, 12]. SP-C regulation is not fully understood, but
SP-B, cathepsin H (CTSH) and Nedd4 have been suggested to facilitate its production [13–15]. In contrast,
SP-A, composed of SP-A1 and SP-A2, and SP-D are large, soluble, innate immune defence molecules
with essential immunomodulatory and homeostatic lung functions [16–20]. These prevent infection and
help clear bacterial, viral and fungal pathogens, whilst preventing aberrant inflammation and damage to the
delicate epithelial–endothelial barrier [19–22].

Surfactant dysregulation may play a role in the pathological processes underlying COPD through changes
in alveolar tension and development of emphysema [23]. In addition, SP-D, specifically, has long been
known to be deficient in COPD, which may predispose to both exacerbations and inflammatory
processes [24]. However, there are contradicting reports around pulmonary levels of SP-A in COPD, and
levels of SP-B and SP-C remain to be fully elucidated [25–27]. A recent study reported surfactant lipids to
be in lower abundance in a small cohort of COPD subjects as compared with nonsmoking controls [28];
however, the impact of disease on surfactant in the absence of current smoking remains to be elucidated.
We used an unbiased comprehensive multiomics approach to characterise proteome and lipidome
differences in bronchoalveolar lavage fluid (BAL) in well-characterised COPD subjects and healthy
ex-smoking controls to better understand surfactant dysregulation in COPD and glean insights about
potential mechanisms underlying the cause or consequence of disease.

Methods
Subjects
The MICA II study recruited subjects with mild or moderate COPD [29], alongside healthy ex-smoking
volunteers (HV-ES); all had ⩾10 pack year history, but had stopped smoking ⩾6 months prior to
enrolment [30–33]. Healthy volunteer never-smokers (HV-NS) were also recruited. All MICA II study
subjects with recovered BAL supernatants suitable for proteomic and lipidomic analysis were included in
this study (demographics given in table 1). Total subject numbers per group, therefore, differ slightly from
previous publications on the MICA II study. Further details about this cohort have previously been
reported [30–33]. Matched serum was also used for complementary proteomic analysis. This included both
participants within the main cohort and some additional participants who were removed from the study
prior to bronchoscopy due to numerous reasons, including subject request, not being suitable for
bronchoscopy or not fitting the inclusion criteria as set out in the methodology (demographics given in
table S1). Subjects were recruited from a combination of sources, including established research databases
held within the University Hospital Southampton, contact by clinicians involved or aware of the study
within the hospital and local healthcare facilities, and through subjects responding to study adverts/posters.
All subjects gave written informed consent. The study was approved by National Research Ethics Service
South Central – Hampshire A and Oxford C Committees (LREC no: 15/SC/0528).

As previously described, all subjects underwent volumetric computed tomography (CT) chest scans in full
inspiration and maximum expiration using a Siemens Sensation 64 scanner [32]. Low-attenuation areas
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(LAAs) below −950 Hounsfield units (%LAA) was calculated as a measure of emphysema and
prebronchodilator, single-breath diffusion was performed, as per guidelines, with percent predicted transfer
coefficient of the lung for carbon monoxide (TLCO) calculated. A surrogate marker for small airways
disease was measured using the ratio of expiratory to inspiratory mean lung density (E/I MLD) scans.

Sample collection
Sampling was undertaken using fibreoptic bronchoscopy and BAL was recovered and processed as
previously described [30, 31]. Macrophages were sorted by flow cytometry using forward scatter width
and forward scatter area, and subsequently CD45, CD163 and human leukocyte antigen-DR expression.
Serum was isolated from blood as previously described [34].

Experimental design of analysis
The three groups and other statistically modelled covariates (e.g. age and gender) were balanced through
statistical D-optimal block design via the optBlock() function in the AlgDesign library in R. Each tandem
mass tag (TMT) 11-plex contained all three groups and balance was achieved across the 10 plexes.

Proteomics and lipidomics
BAL supernatants were processed using an S-Trap-based method (protifi.com). Proteins were digested with
trypsin/lysC (Promega). Resulting peptides were desalted and subjected to TMT (Thermo Fisher Scientific)
labelling for 11-plex TMT analysis, according to the manufacturer’s instructions. Liquid chromatography–
tandem mass spectrometry (LC-MS/MS) analysis was carried out on a Q Exactive HF-X (Thermo Fisher
Scientific) mass spectrometer interfaced with a Dionex 3000 RSLCnano (acquisition parameters outlined in
supplementary methods). Data analysis was undertaken with Proteome Discoverer 2.3 (Thermo Fisher
Scientific) and Mascot (version 2.6.0) using the latest Uniprot human protein database (search parameters
outlined in supplementary methods). Total protein levels were consistent across BAL samples and no
outliers were observed before normalisation. Protein quantitation was analysed using Perseus software
version 1.6.15.0 and protein abundances were normalised to total protein levels [35, 36].

Serum was depleted with HighSelect Top14 Abundant Protein Depletion Resin and digested using the
EasyPep 96 MS Prep Kit (Thermo Fisher Scientific), according to manufacturers’ instructions. Serum
analysis was undertaken by data-independent acquisition (DIA) on an Exploris 480 mass spectrometer
interfaced with a Dionex 3000 RSLCnano (Thermo Fisher Scientific) and DIA analysis was performed
with Spectronaut v15 (Biognosys) (sample processing, acquisition and analysis parameters outlined in
supplementary methods).

Lipid extraction from BAL supernatants were performed using a modified Maytash method [37]. LC-MS/
MS analysis was performed on a Vanquish UHPLC–Orbitrap ID-X Tribrid MS (Thermo Scientific).

TABLE 1 Demographics of healthy volunteer ex-smoker (HV-ES) controls compared with COPD

Control COPD p-value (HV-ES versus COPD)

HV-NS HV-ES p-value (HV-NS versus HV-ES)

Subjects# 16 20 26
Males/females 9/7 11/9 0.9402 20/6 0.1159
Age, years 63.5 (9.5) 67.5 (6.75) 0.0871 70.0 (9.75) >0.9999
Smoking exposure, pack-years 0.1 (1.6) 25.0 (18.6) <0.0001 40.5 (37.8) 0.3009
BMI, kg·m−2 27.6 (4.6) 27.7 (3.6) >0.9999 28.5 (5.4) >0.9999
FEV1, % of predicted 104.5 (13.5) 100.5 (11.75) >0.9999 74.0 (14.75) <0.0001
FEV1/FVC ratio 79.5 (5.0) 77.5 (4.5) 0.8400 58.5 (15.0) <0.0001
TLCO, % of predicted 95.5 (15.5) 89.5 (9.25) 0.9127 73.0 (23.0) 0.0196
HRCT %LAA 5.32 (4.165) 5.86 (4.98) 0.8877 11.96 (8.68) 0.0062
HRCT E/I MLD 0.800 (0.048) 0.800 (0.060) >0.9999 0.870 (0.080) 0.0034
ICS use, n (%) 0 (0) 0 (0) 14 (53.65) <0.0001
Bronchodilator use, n (%) 0 (0) 1 (5.00) 0.3681 20 (76.92) <0.0001

Data are presented as median (interquartile range) unless otherwise indicated. Statistical testing performed using Chi-squared test for categorical
variables (sex: male or female) and Kruskal–Wallis with Dunn’s post hoc test for continuous variables (all other variables). This table is similar to
other research previously reported in the MICA II population [30–33]. HV-NS: healthy volunteer ex-smoker; BMI: body mass index; FEV1: forced
expiratory volume in 1 s; FVC: forced vital capacity; TLCO: transfer factor of the lung for carbon monoxide; HRCT: high-resolution computed
tomography; %LAA: % low-attenuation areas; E/I MLD: expiratory to inspiratory mean lung density; ICS: inhaled corticosteroids. #: N=62.
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Lipidomic data was analysed using MS-DIAL version 4 [38]. Detailed parameters of lipidomic
experiments performed by LC-MS/MS and data analysis are outlined in supplementary methods.

SP-D ELISA was performed to confirm mass spectrometry results using a rabbit polyclonal
anti-recombinant fragment of human SP-D capture antibody and biotinylated mouse anti-human SP-D
(Hyb246-04) detection antibody, with streptavidin–horseradish peroxidase [39]. Quantification was through
comparison with a recombinant full length human SP-D standard [40].

Bioinformatic and statistical analysis
We fitted a linear model separately for each lipid and lipid class, and a linear mixed model for each
protein, to understand differences between COPD and control cohorts, while accounting for effects of age,
sex and experimental design. For participants with two BAL samples, the average of the two samples per
subject was taken prior to constructing and fitting the models. The model for any lipid was specified as:

y jk ¼ mj þ b1 � agek þ b2 � sexk þ e jk

where yjkwas the log2-transformed abundance or composition of the lipid, the jth group (COPD, HV-ES or
HV-NS) and the kth subject (of a certain age and sex). e jk � N(0, s2

e ) denoted subject-to-subject
variability. The model for a lipid class had the same formula, except that yjkwas the log2-transformed
summed abundance of the lipids belonging to that class.

For BAL proteomics, TMT batches were added as a random effect. Two samples of the same subject were
placed in the same TMT batch except for one subject, which was excluded from model fitting. The model
for any protein was specified as:

y jkl ¼ mj þ b1 � agek þ b2 � sexk þ Tl þ e jkl

where all terms were defined the same as above, but with Tl � N(0, s2
T ) and e jkl � N(0, s2

e ) respectively
denoting TMT batch and subject-to-subject variability.

The model coefficients were estimated using the lmer() function in the lme4 R package [41] (R version
3.6.0) [13, 14]. Pairwise comparisons of estimated marginal means were conducted using the emmeans R
package. The abundance of a protein/lipid, lipid composition or summed abundance of a lipid class was
considered significantly different between two groups if its adjusted p-value (p-value adjusted via
Benjamini–Hochberg false discovery rate (FDR) method) was <0.05. Box plots were made after effects of
age, sex and random effects, if present, were subtracted from the model fits. The Spearman’s rank
correlation test was conducted to determine the association between two variables (p-value adjusted via
FDR method). For participants with two BAL samples, the average of the two samples was taken prior to
the correlation analysis.

A separate analysis was undertaken to evaluate the predictive value of serum SPs for use as a potential
COPD biomarker. This was done through development of a logistic regression model that classifies COPD
status based on serum SP-D. The model was trained using data from 29 donor-matched serum samples in
which serum SP-D was detected.

Transcriptomics
For subjects where sufficient alveolar macrophages were able to be purified, total RNA was extracted from
BAL fluid purified macrophages using the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen), as
previously described [33]. Gene expression profiles of isolated macrophages from 47 subjects (15 HV-NS,
18 HV-ES and 14 COPD; demographics given in table S3) were assessed using total RNA sequencing on
an Illumina NovaSeq 6000 platform as outlined in the supplementary methods and as previously
described [33]. To explore surfactant transcriptomic differences in macrophages, differential gene
expression analysis was performed with DESeq2 (version 1.26.0) and weighted gene correlation network
analysis [42] was also implemented (full details in supplementary methods).

Results
Subject demographics
BAL analysis was undertaken in 26 COPD subjects, 20 HV-ES and 16 HV-NS, and clinical characteristics
are summarised in table 1. There were no significant differences between HV-NS and HV-ES in age, sex,
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body mass index (BMI) or lung function (forced expiratory volume in 1 s (FEV1) and FEV1/forced vital
capacity (FVC), but expected differences were seen in pack-year history. There were no significant
differences between HV-ES and COPD volunteers in age, sex or BMI. However, there were expected
significant differences in lung function, CT and physiological measures of emphysema and small airway
disease. There were no significant differences in proportion of eosinophils, macrophages or neutrophils
between HV-NS and HV-ES or HV-ES and COPD BAL. There was a significantly lower median
proportion of lymphocytes in BAL in COPD versus HV-ES (1.02% versus 0.03%, p=0.034) (table 2).

Surfactant lipid dysregulation in COPD
There were no significant differences in BAL lipid composition between males and females (figure S1A).
No differences were seen in total PC, PG and PI lipids or surfactant-specific PC and PG species between
HV-ES and HV-NS (figure 1a). However, a lower total concentration of PC, PG and PI were observed in
COPD compared to HV-ES, log2FC of −2.0, −2.2 and −1.5 (all adjusted p<0.0001), respectively (figure 1b).
Concentrations of PC, PG and PI were further decreased when compared with HV-NS (figure 1b).

To understand specific BAL surfactant phospholipid differences in COPD, we performed a detailed
examination of distinct PC and PG molecular species abundances as a percentage of each phospholipid
type. Lower concentrations of desaturated PC 32:0, corresponding to dipalmitoylphosphatidylcholine, were
observed in COPD versus HV-ES (log2FC −2.5, adjusted p<0.0001). As a percentage of total PC, PC
32:0 was significantly lower in COPD versus HV-ES BAL (log2FC −0.47, adjusted p=0.001) (figure 1c).
As a percentage of total PC abundance, PC 30:0 was not significantly lower in COPD BAL (log2FC
−0.16, adjusted p=0.4080), while PC 34:1 was a higher percentage of total PC in COPD subjects
compared to HV-ES (log2FC 0.28, adjusted p=0.0244) (figure 1c). PG 34:1 and 36:2, as a percentage of
total PG, were not significantly different between COPD and HV-ES subject BAL, with log2FC −0.06
(adjusted p=0.6433) and−0.03 (adjusted p=0.8709), respectively (figure 1d). The percentage of PG 36:1
out of total PG was significantly lower in COPD versus HV-ES BAL, with log2FC −0.29 (adjusted
p=0.0322) (figure 1d).

BAL ceramides CER 42:1, CER 40:1, CER 34:1, CER 42:2, CER 38:1 and CER 36:1 were significantly
higher in COPD compared to HV-NS, with log2FC of 0.6, 0.9, 1.2, 0.8, 1.2 and 1.1, respectively (all
adjusted p<0.05). Other sphingolipids were not significantly different. No differences in sphingolipids were
seen between COPD and HV-ES.

Correlation of lipid surfactant with lung disease measures
We next explored if BAL surfactant dysregulation associated with markers of lung function, CT and
physiological measures of emphysema (high %LAA and low TLCO % predicted, respectively) and a
surrogate CT marker of small airway disease (E/I MLD). Low BAL surfactant levels were seen in subjects
with worse lung function. Total PC, PG and PI BAL levels correlated with both FEV1 (r=0.52, r=0.56 and
r=0.47 respectively; all adjusted p<0.01) and FEV1/FVC (r=0.68, r=0.73 and r=0.60 respectively; all
adjusted p<0.01) (figure 2). Low BAL surfactant concentrations were seen in subjects with the most
emphysema. Total BAL PC, PG and PI correlated with TLCO % predicted (r=0.41, r=0.42 and
r=0.39, respectively; all adjusted p<0.01), and inversely correlated with %LAA (r= −0.55, r= −0.61
and r=−0.48, respectively; all adjusted p<0.01). E/I MLD negatively correlated with total PC (r=−0.56),
total PG (r=−0.58) and total PI (r=−0.45) (all adjusted p<0.01).

TABLE 2 Bronchoalveolar lavage cell counts

Control COPD p-value (HV-ES controls versus COPD)

HV-NS HV-ES p-Value (HV-NS versus HV-ES)

Macrophages, % 32.93 (22.10) 36.42 (14.84) 0.4538 32.48 (19.63) 0.3003
Neutrophils, % 2.25 (3.45) 1.20 (2.51) >0.9999 0.88 (3.89) >0.9999
Eosinophils, % 0.48 (0.44) 0.60 (1.15) >0.9999 0.22 (0.25) 0.3492
Lymphocytes, % 0.08 (1.20) 1.02 (2.03) 0.0975 0.03 (0.85) 0.0340
Epithelial cells, % 63.95 (16.33) 57.4 (10.25) 0.3202 62.18 (15.31) 0.2307
Squamous cells, % 0.16 (0.51) 0.33 (0.60) >0.9999 0.23 (0.69) >0.9999

Data are presented as median (interquartile range) unless otherwise indicated. Statistical testing performed using Kruskal–Wallis test with Dunn’s
post hoc test. HV-NS: healthy volunteer never-smokers; HV-ES: healthy volunteer ever-smokers.
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FIGURE 1 Bronchoalveolar lavage lipidomic analysis showed reduced levels of phosphatidylcholine (PC) phospholipids, specifically PC 32:0,
dipalmitoyl phosphatidylcholine (DPPC), as well as phosphatidylglycerol (PG) in COPD. a) Volcano plots of lipid abundance in healthy volunteer
never-smokers (HV-NS) versus healthy volunteer ex-smokers (HV-ES) (left), HV-ES versus COPD subjects (middle) and HV-NS versus COPD subjects
(right). The x-axis displays log2(fold change) and the y-axis displays −log10(adjusted p-value). The dashed horizontal line represents an adjusted
p-value threshold of 0.05. DPPC is labelled. Lipid classes, including PC, PG, phosphatidylinositols (PI), phosphatidylethanolamines (PE) and
triglycerides (TG) are coloured. b) Covariate-adjusted box plots showing the summed abundance of PC, PG and PI compared across COPD and
HV-ES/HV-NS cohorts. c) Covariate-adjusted box plot showing the composition of the top three most abundant PC lipids. d) Covariate-adjusted box
plots showing the composition of the top three most abundant PG lipids. For details regarding covariate adjustment see the supplementary
methods. *: adjusted p<0.05; **: adjusted p<0.01; NS: not significant.
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SP dysregulation in COPD
There were no significant differences in male versus female BAL proteomes (figure S1B). No significant
proteome differences, including in pulmonary SP levels, were observed between HV-ES and HV-NS
(figure 3a). In contrast, SP-B, SP-A and SP-D BAL levels were significantly lower in COPD versus
HV-ES (log2FC −0.5, −0.7 and −0.5; all adjusted p<0.02), respectively (figure 3b). Napsin A and
pro-cathepsin H, proteins important in SP-B synthesis [11, 12], were lower in COPD versus HV-ES BAL,
with log2FC of −0.6 (adjusted p=0.0017) and −0.4 (adjusted p=0.0466), respectively. BAL SP-B
correlated with napsin A abundance (r=0.72, p<2.2×10−16) and cathepsin H levels (r=0.5, p=4.8×10−5)
(figure S2A and S2B). CD44 antigen, which has been reported to play a role in surfactant homeostasis
[43, 44], was lower in COPD versus HV-ES BAL with a log2FC of −0.6 (adjusted p=0.0025) (figure 3b).

MMP9
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FIGURE 2 Correlation analysis showed correlation between bronchoalveolar lavage fluid phosphatidylcholine
(PC), phosphatidylglycerol (PG), phosphatidylinositols (PI), surfactant protein A (SFTPA), surfactant protein B
(SFTPB), surfactant protein D (SFTPD) and napsin A (NAPSA), and forced expiratory value in 1 s (FEV1) to forced
vital capacity (FVC) ratio in COPD. The colour of each voxel of the heatmap represents the calculated
Spearman’s correlation coefficient between a COPD lung function parameter and the abundance of a
surfactant protein, the abundance of a surfactant-associated protein or the summed abundance of a lipid
category. The y-axis displays protein symbols or lipid abbreviations and the x-axis displays lung function
parameters. CTSH: cathepsin H; ELANE: neutrophil elastase; MMP: matrix metalloproteinase; %LAA: %
low-attenuation areas; TLCO: transfer coefficient of the lung for carbon monoxide; E/I MLD: expiratory to
inspiratory mean lung density. *: adjusted p<0.05; **: adjusted p<0.01.
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FIGURE 3 Bronchoalveolar lavage fluid (BALF) proteomic analysis showed lower surfactant proteins and proteins involved in surfactant synthesis
and secretion in COPD. a) Volcano plots of protein abundance in healthy volunteer non-smoking subjects (HV-NS) versus healthy volunteer
ex-smoking subjects (HV-ES) (left), HV-ES versus COPD subjects (middle) and HV-NS versus COPD subjects (right). The x-axis displays log2(fold
change) and the y-axis displays −log10(adjusted p-value). The dashed horizontal line represents an adjusted p-value threshold of 0.05. Proteins
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These include surfactant and surfactant-associated proteins surfactant protein A (SFTPA), surfactant protein B (SFTPB), surfactant protein D
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anti-human SP-D detection antibody with streptavidin–horseradish peroxidase. Quantification was through comparison with a recombinant
full-length human SP-D standard. *: adjusted p<0.05; **: adjusted p<0.01.
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Neutrophil elastase, an enzyme known to degrade SP-A and SP-D [45–47], was elevated in COPD versus
HV-ES BAL (log2FC 0.40, adjusted p=0.0390) (figure 3b). Furthermore, concentrations of neutrophil
elastase inversely correlated with concentrations of SP-A (r=−0.36, p=0.0046) and SP-D (r=−0.33,
p=0.0083) (figure S2C and D). No other proteases were significantly different in concentration between
COPD and HV-ES BAL.

To validate our findings, we subsequently confirmed our mass spectrometry data of lower BAL SP-D in
COPD using ELISA. As expected, SP-D concentrations were significantly lower in COPD versus HV-ES,
median concentration of 1878.90 versus 4684.92 ng·mL−1 (p<0.01) (figure 3c). There was no difference in
SP-D concentration in BAL between HV-NS and HV-ES.

Correlation of SPs with lung disease measures
SP-A, SP-B, SP-D and CD44 BAL levels correlated with FEV1 (r=0.50, r=0.46, r=0.29 and r=0.41; all
adjusted p<0.05). SP-A, SP-B, SP-D and napsin A BAL levels also correlated with FEV1/FVC (r=0.77,
r=0.68, r=0.51 and r=0.52, respectively; all adjusted p<0.01) (figure 2). BAL SP-A and SP-B correlated
with TLCO % predicted (r=0.45 and r=0.37, respectively; both adjusted, p<0.01). Furthermore, BAL levels
of SP-A, SP-B, SP-D and napsin A inversely correlated with %LAA (r=−0.51, r=−0.41, r=−0.31 and
r=−0.34, respectively; all adjusted p<0.05). Finally, low SP abundance in BAL was associated with a CT
measure of small airways disease; E/I MLD negatively correlated with SP-A (r=−0.36), SP-B (r=−0.44),
SP-D (r=−0.37), napsin A (r=−0.40) and CD44 (r=−0.39) (all p<0.01).

SP differences in serum: potential of SP-D as a biomarker
To understand if dysregulation of surfactant could be detected in blood, we undertook proteomic analysis
of serum samples. Serum analysis were performed in 35 COPD subjects, 22 HV-ES and 19 HV-NS from
the MICA II cohort (demographics for included participants given in table S1 and serum protein
identifications in table S2). Serum SP-D was significantly higher in COPD versus HV-ES (mean SP-D
abundance intensities of ∼5000 and ∼3000, respectively; p=0.0095). Significantly more serum SP-D was
present in COPD versus HV-NS (mean abundance intensities of ∼5000 and ∼2450, respectively;
p=0.0030) (figure 4a). SP-D levels in circulation negatively correlated with BAL SP-D abundance in
donor-matched samples (r=−0.37, p=0.05) (figure 4b). Serum SP-B was detected in six COPD subjects
and two HV-ES but not in HV-NS (figure 4c). Serum cathepsin H was detected in 30 donors but did not
show differential abundance in COPD versus controls. Serum cathepsin H levels did not correlate with
BAL cathepsin H abundance (r=−0.15, p=0.49) (figure 4d).

Notably, serum SP-D levels were able to predict COPD status by the logistic regression model with an area
under the curve of 0.85 (figure 4e).

Alveolar macrophage gene expression
A recent study in Cd44−/− mice demonstrated that deficiency of CD44 on alveolar macrophages disrupted
surfactant lipid homeostasis [44]. We analysed the transcriptome of purified BAL macrophages
(demographics for included participants given in table S3) and found no significant activation of
transcriptomic pathways involved in macrophage lipid turnover or potentially involved in surfactant
metabolism using either differentially expressed gene analysis or WGCNA (figure S3) [48].

Discussion
This study delineates the BAL proteome and lipidome of a well-characterised cohort of mild-to-moderate
COPD subjects and ex-smoking and never-smoking controls. Using multiomics, we gained a
comprehensive understanding of surfactant dysregulation in COPD, independent of current smoking
effects, to glean insights about potential explanatory mechanisms [49].

We report lower concentrations of surfactant lipids, SPs and proteins involved in surfactant synthesis in
BAL from COPD subjects versus controls, which correlated with airflow obstruction. Furthermore, we
demonstrate an association with emphysema, highlighting that decreased surfactant concentrations could be
driving mechanisms underlying this pathology or be a consequence of emphysematous changes, or both.
Network modelling previously suggested lung surface tension to be important in emphysema
pathophysiology through its influence on lung recoil [23]. Our study adds to these findings by
demonstrating that surfactant, the key lung surface tension regulator, is decreased in COPD versus HV-ES.
This expands on prior small studies reporting lower surfactant lipids in BAL from COPD versus healthy
nonsmokers’ and smokers’ induced sputum [10, 28, 50].
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SP-A, SP-B and SP-D single-nucleotide polymorphisms have been shown to associate with COPD,
highlighting a potential causative role in COPD pathogenesis [51–54]. We, for the first time, report lower
SP-B concentrations in BAL from ex-smoking COPD subjects versus matched healthy controls, adding to
a prior small study of decreased BAL SP-B in a mixture of COPD current and ex-smokers versus healthy
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controls [55]. SP-B has key roles in surfactant packaging, recycling and maintaining surfactant structure
function, and SP-B deficiency is lethal [12]. Lower SP-B concentrations could therefore have important
physiological consequences.

We demonstrate lower BAL SP-A concentrations in COPD, building on two prior contradictory studies in
lung tissue from subjects with moderate COPD which report higher or lower SP-A expression versus
healthy controls [25, 27]. We also confirm lower BAL SP-D concentrations in COPD [24]. SP-A and
SP-D have key roles in lung homeostasis through neutralising, opsonising, agglutinating and clearing
pathogens, particles and apoptotic cells, whilst preventing aberrant inflammatory pathways and damage to
the delicate lung epithelium [19]. Increased utility of these roles in COPD could potentially deplete levels
of these proteins [11, 19, 51, 56]. SP-D knock-out mice develop an emphysematous phenotype with
impaired surfactant regulation, influx of inflammatory cells and increased apoptotic cells,
metalloproteinases and cytokines, highlighting that low SP-D levels could contribute to emphysema
pathogenesis. SP-A and SP-D knock-out models demonstrate increased susceptibility to an array of
respiratory viruses and bacteria with associated host-mediated inflammation following infection or allergen
challenge [19], highlighting the potential importance of our finding of deficient SP-A and SP-D in COPD
on risk of infectious exacerbations and inflammation. Delivery of a recombinant SP-D fragment largely
resolves the emphysematous phenotype in the SP-D knock-out mice, as well as the susceptibility to
respiratory pathogens, raising the potential of this as a novel therapeutic [19, 57, 58].

Surfactant has been proposed to be dysregulated in respiratory diseases through various mechanisms [19].
Damage to AT2 cells through noxious stimuli and AT2 cell loss through emphysematous changes and
alteration to lung parenchymal architecture could lead to decreased surfactant production [23]. Our data
support this by showing an association between decreased surfactant and emphysema. Due to the nature of
bronchoscopy sampling within our study, it was not possible to directly sample the distal airways to look at
AT2 gene expression or to correlate transcriptomics of surfactant genes with our findings. Future studies
with paired samples taken from resected lung tissue will be important and could add further clarity to the
relative contribution of gene expression versus other mechanisms involved in our finding of surfactant
regulation in COPD.

Inflammation-related damage to the delicate epithelial–endothelial barrier could also lead to surfactant loss
through leakage into the blood [24, 59–61]. This aligns with our findings of higher serum SP-D in COPD,
as well as the negative correlation between serum and BAL SP-D levels. Serum SP-B was observed in
some donors, predominantly COPD subjects and two HV-ES with hiatus hernia, and was absent in
HV-NS. Despite its more hydrophilic nature, SP-A was not detected in serum, potentially due to its larger
size. Increased serum SP-B and SP-D in COPD, complemented by corresponding BAL findings of reduced
SP and lipids, suggest SPs could have utility as lung-specific peripheral biomarkers for COPD. We
investigated this through our logistic regression analysis on serum SP-D levels, which had good predictive
value for COPD status and demonstrated the potential of SP-D in particular as a COPD biomarker.

We found neutrophil elastase to be increased in COPD versus control BAL, and inversely correlated with
SP-A and SP-D concentrations. Neutrophil elastase, alongside other host- and pathogen-associated enzymes,
degrades SP-A and SP-D, and imbalances could contribute to decreased SP-A and SP-D levels in the
COPD lung [19, 46, 47, 62–64]. Potential altered lipid metabolism and surfactant catabolism by alveolar
macrophages in COPD could also lead to altered surfactant turnover and dysregulation [11, 19, 51, 56].
In contrast to a recent study of the COPD alveolar macrophage transcriptome [48], we did not see signs
of altered lipid metabolism in alveolar macrophage expression signatures. However, that previous study
included more severe and predominantly smoking COPD patients, which may explain differences with
our observations. We demonstrated higher levels of ceramides in COPD versus HV-NS. Ceramides have
been reported to influence surfactant production and activity, and could therefore lead to surfactant
dysregulation [65]. However, we did not see differences in other sphingolipids, as have previously been
reported [66, 67].

We recognise that associations may not indicate causation and that it is impossible to fully rule out other
potentially confounding clinical parameters or pathological mechanisms. We normalised our BAL analyses
for protein content and performed statistical testing to address potential confounding effects. However,
there are additional factors, which may be difficult to completely address. Inhaled therapeutics have been
reported to influence surfactant regulation [68], and SP-A, SP-B and SP-D expression have been reported
to be increased by corticosteroids [69]. In this study, we saw lower levels of these proteins in COPD
subjects, a large proportion of whom were on inhaled therapies. Furthermore, although samples were
frozen and stored at −80°C, and were analysed immediately after thawing, we cannot rule out the potential
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for endogenous enzymes to have degraded components and influenced our results. Due to intensive study
sampling, our well characterised cohort was mild and relatively small, making it impossible to rule out
false-negative findings in macrophage lipid metabolism. SP-C was below the limit of detection in both
BAL and serum. However, SP-C has previously been reported to be the human lung SP of lowest
abundance by weight [70, 71]. Due to cohort heterogeneity and the distinct nature of the various omics
datasets, we used an adjusted p-value for the BAL multiomic analysis and trends in surfactant-associated
protein. However, lipid downregulation was significantly different between COPD and HV-ES and
HV-NS. Notably, the proteome coverage reported here may vary from previous reports due to differences
in methodology, analysis stringency, cohort composition, volume instilled into the lungs and sample
volume [72, 73]. In our study, we performed TMT mass spectrometry analysis on peptides originating
from 25 µL BAL and detected >900 proteins per donor sample. In contrast, TU et al. [72] performed BAL
proteome profiling across 20 donors, using 10 mL BAL each and quantified 423 proteins, less than half
the proteome coverage we achieved from a 400 times larger sample input. Cohort size is reflective of
donor heterogeneity and while studies with small populations may identify more differentially abundant
proteins, they have limited statistical power and disease representation. Furthermore, here we report
proteomic findings from TMT and label-free mass spectrometry analysis of matched BAL and serum,
respectively, that provided a global, unbiased view of proteome dynamics in COPD that may be
overlooked by targeted, antibody-based applications, despite potentially higher protein identification rates.
Our comprehensive multiomic study used a deeply phenotyped and well-characterised mild–moderate
COPD cohort to demonstrate global dysregulation of surfactant in the COPD lung, which was associated
with emphysematous changes and airway obstruction. Longitudinal studies in early disease and different
COPD endotypes will add further clarity to the causes of surfactant dysregulation, the impact on disease
progression and importantly the potential for novel surfactant-replacement and surfactant-targeting
therapeutics for the future.
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