Supplementary figure legend

Figure S1. Individual tidal volume over time. Points indicate median monthly values for ALS (red) vs non-ALS (blue) and fixed pressure (triangle) vs volume-targeted (circle). Black line is individual-level prediction from mixed effects model used for main analysis.
Figure S2. Individual respiratory rate over time. Points indicate median monthly values for ALS (red) vs non-ALS (blue) and fixed pressure (triangle) vs volume-targeted (circle). Black line is individual-level prediction from mixed effects model used for main analysis.
Figure S3. Individual aRSBI rate over time. Points indicate median monthly values for ALS (red) vs non-ALS (blue) and fixed pressure (triangle) vs volume-targeted (circle). Black line is individual-level prediction from mixed effects model used for main analysis.
Figure S4. Individual Cdyn over time. Points indicate median monthly values for ALS (red) vs non-ALS (blue) and fixed pressure (triangle) vs volume-targeted (circle). Black line is individual-level prediction from mixed effects model used for main analysis.
Figure S5. Individual PS over time. Points indicate median monthly values for ALS (red) vs non-ALS (blue) and fixed pressure (triangle) vs volume-targeted (circle). Black line is individual-level prediction from mixed effects model used for main analysis.
Figure S6. Individual percent spontaneously triggered breaths over time. Points indicate median monthly values for ALS (red) vs non-ALS (blue) and fixed pressure (triangle) vs volume-targeted (circle). Black line is individual-level prediction from mixed effects model used for main analysis.
Figure S7. Individual use (percent nights >4hrs use) over time. Points indicate median monthly values for ALS (red) vs non-ALS (blue) and fixed pressure (triangle) vs volume-targeted (circle). Black line is individual-level prediction from mixed effects model used for main analysis.
Figure S8. Changes in aRSBI parameters over time (up to 36 months, or last available data), by diagnosis. Lines and 95% confidence intervals represent trajectory over time, by mode. For those with ALS, ST had similar aRSBI at baseline to VAPS (difference: 9 [-5.23] bpm/L; p=0.20), and a similar trajectory over time (difference: 0 [-2.1] bpm/L per month; p=0.54). For those with non-ALS diagnoses, fixed pressure had a higher baseline aRSBI than volume targeted (difference 14 [2.25] bpm/L; p=0.020), and similar trajectory over time (difference 0 [-1.0] bpm/L per month; p=0.30).
Figure S9. Changes in percent spontaneously-triggered breaths over time (up to 36 months, or last available data), by diagnosis. Lines and 95% confidence intervals represent trajectory over time, by mode. For those with ALS, ST had similar percent spontaneous breaths at baseline to VAPS (difference: 4 [-26,34] p=0.81), and a similar trajectory over time (difference: -0.8 [-2.6,1.0] % per month; p=0.39). For those with non-ALS diagnoses, ST had a similar baseline percent spontaneous breaths to VAPS (difference: 3 [-11,16]; p=0.72), and similar trajectory over time (difference: -0.2 [-0.7,0.2] % per month; p=0.31).
Figure S10. Changes in probability of use (from binomial regression) of at least 4 hrs (up to 36 months, or last available data), by diagnosis. Lines and 95% confidence intervals represent trajectory over time, by mode. For those with ALS, ST had lower use at baseline than VAPS (85 vs 91%; p<0.001), but a faster increase over time (p<0.001). For those with non-ALS diagnoses, ST had a higher baseline use than volume targeted (96 vs 93; p<0.001) and faster increase over time (p=0.03).
Figures S11-S12. The relationship between respiratory rate and triggering appears consistent between VAPS and ST modes. Due to the use of "intelligent back up rate" in some patients with VAPS, the RR is able to drop below the set RR in VAPS but not in ST, which likely accounts for the observation that percent triggering is similar between modes yet respiratory rates are lower in VAPS.