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Abstract
Rationale Despite its increasingly widespread use, little is known about the impact of cannabis smoking
on the response to viral infections like influenza A virus (IAV). Many assume that cannabis smoking will
disrupt antiviral responses in a manner similar to cigarette smoking; however, since cannabinoids exhibit
anti-inflammatory effects, cannabis smoke exposure may impact viral infection in distinct ways.
Methods Male and female BALB/c mice were exposed daily to cannabis smoke and concurrently
intranasally instilled with IAV. Viral burden, inflammatory mediator levels (multiplex ELISA), lung
immune cells populations (flow cytometry) and gene expression patterns (RNA sequencing) were assessed
in the lungs. Plasma IAV-specific antibodies were measured via ELISA.
Results We found that cannabis smoke exposure increased pulmonary viral burden while decreasing total
leukocytes, including macrophages, monocytes and dendritic cell populations in the lungs. Furthermore,
infection-induced upregulation of certain inflammatory mediators (interferon-γ and C-C motif chemokine
ligand 5) was blunted by cannabis smoke exposure, which in females was linked to the transcriptional
downregulation of pathways involved in innate and adaptive immune responses. Finally, plasma levels of
IAV-specific IgM and IgG1 were significantly decreased in cannabis smoke-exposed, infected mice
compared to infected controls, only in female mice.
Conclusions Overall, cannabis smoke exposure disrupted host-defence processes, leading to increased viral
burden and dampened inflammatory signalling. These results suggest that cannabis smoking is detrimental
to the maintenance of pulmonary homeostasis during viral infection and highlight the need for data
regarding the impact on immune competency in humans.

Introduction
Globally, an estimated 250 000 to 500 000 deaths are attributable to influenza infections, representing a
significant health burden worldwide [1]. In healthy individuals, respiratory infections are often associated
with acute presentation of moderate symptoms and immunopathology, ultimately leading to a full recovery
with no long-term sequelae. More specifically, the pulmonary response to influenza A (IAV) infection
requires the intact function of both the innate and adaptive immune systems, involving interferon (IFN)
signalling and lymphocyte activation, in particular [2, 3]. Beyond healthy individuals, influenza infection
is a risk factor for acute exacerbations of COPD and has a profound impact on patient morbidity and
mortality [4]. Although tobacco smoking has long been known to increase susceptibility and severity of
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respiratory viral infection [5, 6], the effect of cannabis smoke on the pulmonary antiviral response remains
poorly understood. There is some evidence that cannabis users report increased incidence of respiratory
symptoms associated with bronchitis and pneumonia [7, 8] as well as increased rates of hospitalisation and
length of stay during respiratory infection compared to nonsmokers [9, 10]. Furthermore, clinical studies of
HIV+ men have shown that cannabis smoke exposure worsened respiratory infections [11–13] and one
multivariate Mendelian randomisation study found that cannabis use disorder was associated with
increased risk of chronic lower respiratory infections and asthma-related infections in the general
population [10]. Therefore, in the wake of widespread legalisation, it is crucial that we understand to what
extent cannabis smoking might impact the pulmonary host-defence mechanisms.

Despite the growing popularity of cannabis use worldwide, there are no data directly investigating the
relationship between cannabis smoke exposure and lung immune response to viral infection. To date, studies
using animal models have largely focused on the specific effects of cannabinoids, such as cannabidiol
(CBD) and tetrahydrocannabinol (THC), on the inflammatory response via systemic administration
(reviewed in [14]). Few human studies have explored the impact of cannabis smoking on lung infections,
and those that exist were conducted in 1980–1990s, when the strains of cannabis and their cannabinoid
contents differed dramatically from strains currently available for sale in Canada and the United States [15].
Given that smoke itself is an inflammatory insult, many assume that cannabis smoking will have similar
immunomodulatory effects as tobacco smoking, where cigarette smoke exposure during influenza infection
has long been known to increase pulmonary inflammation while worsening immunopathology and
outcomes associated with viral infection in both pre-clinical models [16–19] and clinical studies [6, 20].
However, THC and CBD contained in cannabis smoke exhibit immunomodulatory effects and have been
shown to dampen host-defence responses to viral infection when administered systemically (reviewed
in [21]). For example, murine influenza infection studies found that oral THC administration suppressed
cellular responses to IAV while leading to exacerbated immunopathology [22, 23]. Although smoke
inhalation remains the most common route of cannabis use in most countries (i.e. >80% of Canadian
cannabis users) [24, 25], there is little information on whether cannabis smoke affects the severity of
respiratory tract viral infections. Therefore, new studies using modern and relevant cannabis compositions
are required in order to better understand the effects of cannabis smoking on pulmonary antiviral responses.

In this pre-clinical study, we sought to explore the effects of acute cannabis exposure on the pulmonary
immune response to influenza A infection. Using a whole-body exposure system, female mice were
exposed to cannabis smoke over a 10-day period, where at day 5 mice were intranasally instilled with
vehicle (PBS) or IAV (50 PFU (plaque-forming units)). We found that weight loss trajectory was
significantly affected in infected mice exposed to cannabis smoke. Viral burden in the lungs approximately
doubled in cannabis-exposed, IAV-infected mice compared to room air infected controls, which was
associated with decreased total immune cells, macrophages, monocytes and dendritic cells (DCs) in the
lungs. Furthermore, levels of certain immune mediators and expression of genes involved in key immune
response pathways were downregulated in the lungs by cannabis smoke exposure during infection.
Experiments were repeated in male mice, where similar, though less pronounced effects were observed:
worsened weight loss and reductions in certain inflammatory cells and cytokines in the lung, but no
significant effect on viral titre. In summary, cannabis smoke exposure suppressed aspects of the pulmonary
immune response to IAV infection, leading to worsened viral load in the lungs.

Methods
Mouse cannabis smoke exposure and influenza infection
6- to 8-week-old female and male BALB/c mice were purchased from Charles River Laboratories
(Montreal, QC, Canada) and all experimental procedures were approved by the animal research ethics
board of McMaster University (#19-08-23). Mice were whole-body exposed using a SIU-24 (Promech,
Vintrie, Sweden) to room air or to the smoke from six cannabis cigarettes (indica-dominant strain, 10–14%
THC and 0–2% CBD) twice daily for 1 h as shown in figure 1. This strain was chosen as its cannabinoid
content is an accurate representation of recreational cannabis products used in the consumer marketplace
[26, 27]. On day 5, mice were intranasally inoculated with 35 µL containing 50 PFU mouse-adapted
influenza A virus (A/FM/1/47-MA) or PBS vehicle. Details on animal protocol/euthanasia can be found in
the supplementary material.

Viral burden
Viral burden was assessed using Madin–Darby canine kidney cell plaque assay as described previously [16]
as well as via viral transcript quantification; details of the experimental methods can be found in the
supplementary material.
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RNA sequencing
Samples were sequenced using two lanes of a Novaseq S1 flow cell with 100 bp paired end reads to a
minimum depth of 30 million reads per sample at The Centre for Applied Genomics at the Hospital for
Sick Children (Toronto, ON, Canada). Heat maps show z-scores (calculated using the average expression
for each gene) and functional enrichment analysis was performed using GOrilla online platform. Details on
transcript quantification and analysis methods can be found in the supplementary material.

Flow cytometric analysis
Lung tissue was digested and fluorescently labelled using antibodies and flow cytometric gating strategy as
described previously [28]. Detailed methods can be found in the supplementary material.

Immune mediator quantification
The remaining half of the left lobe was homogenised then supernatants were aliquoted and prepared for
immune mediator quantification via mouse cytokine array/chemokine array 44-plex (Eve Technologies,
Calgary, AB, Canada). Point-to-point semi-logarithmic analysis was applied to all immune
mediator quantities.

Anti-IAV immunoglobulin ELISA
IAV-specific antibodies were measured in the plasma as described previously [16] and details can be found
in the supplementary material.

Statistical analysis
GraphPad Prism 9 (v.9.5.1) was used for statistical analyses. The data are presented as mean±SEM. Two-way
ANOVAs with Šidák’s multiple comparisons test were used to compare the means of four experimental
groups. When specified, unpaired two-tailed t-tests were performed to compare the means of two groups.
Differences were considered statistically significant when p⩽0.05.

Results
Cannabis smoke exposure alters weight loss and increases viral titre in female mice
As outlined in figure 1, mice were concurrently exposed to cannabis smoke and infected with
mouse-adapted influenza A virus over a 10-day period. None of the infected mice displayed severe
symptoms, beyond weight loss, nor reached a humane end-point over the course of the infection. In female
mice, weight loss relative to starting weight was exacerbated in cannabis-exposed, infected mice at days 5–
6 and there was a trend towards significantly worsened total weight loss over the entire post-infection
period (p=0.0595) measured as the area under the curve (figure 2a and b). Via viral plaque assay, cannabis
smoke exposure in IAV-infected mice led to a modest but significant increase in viral burden relative to
infected controls (figure 2c). Similarly, IAV gene expression in the lung as assessed via bulk RNA
sequencing (seq) was increased in cannabis smoke-exposed female mice compared to controls (figure 2d),
suggesting viral clearance was impaired by cannabis smoke exposure.

D0

D1 D2 D3 D4

D5

D6 D7 D8 D9 D10

D11

Experiment

start

Sample

collection

Intranasal

35 µL 50 PFU IAV/

35 µL PBS

CS/RA CS/RABreak

♀ ♂ BALB/c

FIGURE 1 Animal exposure, infection and sample collection timeline. Female and male 6- to 8-week-old BALB/c
mice were whole-body exposed to the smoke of six cannabis cigarettes (CS) or room air control (RA) twice per
day for five consecutive days. Following smoke exposure on day 5 (D5), mice were intranasally inoculated with
50 PFU mouse-adapted (A/FM/1/47-MA) influenza A virus (IAV) or PBS control. Mice were given a 2-day break
from cannabis smoke exposure following inoculation. Exposure protocols resumed on day 8 and continued until
day 10 and animals were sacrificed on day 11. PFU: plaque-forming units.

https://doi.org/10.1183/23120541.00219-2023 3

ERJ OPEN RESEARCH ORIGINAL RESEARCH ARTICLE | N. MILAD ET AL.

http://openres.ersjournals.com/lookup/doi/10.1183/23120541.00219-2023.figures-only#fig-data-supplementary-materials
http://openres.ersjournals.com/lookup/doi/10.1183/23120541.00219-2023.figures-only#fig-data-supplementary-materials
http://openres.ersjournals.com/lookup/doi/10.1183/23120541.00219-2023.figures-only#fig-data-supplementary-materials


Parallel experiments were performed in a cohort of male mice, where weight loss relative to starting weight
was similarly exacerbated in male cannabis-exposed, IAV-infected mice relative to room air, infected
controls at days 4–5, although total weight loss measured as area under the curve was not significantly
affected (figure 2a and b). Furthermore, in male mice, no change in viral burden or viral gene expression
was observed cannabis-exposed, IAV-infected mice (figure 2c and d).

Cannabis smoke exposure suppresses lung immune responses to IAV
To examine how lung immune responses to IAV are influenced by cannabis smoke exposure, we assessed
innate immune cell populations in the lung tissue via flow cytometry. In both male and female mice,
cannabis smoke alone did not alter any of these immune cell populations, except a decrease in the
proportion of DCs in female mice (figure 3a and b). Among infected female groups, total immune cells
(CD45+), macrophages, monocytes and DCs were significantly decreased by cannabis smoke exposure
(figure 3a). Interestingly, when expressed as a fraction of total CD45+ immune cells, no significant
differences were observed between room air- and cannabis smoke-exposed mice infected with IAV (figure
3b). In male mice, immune cell populations were largely unaffected by IAV infection, where CD45+,
neutrophil, macrophage, monocyte and dendritic cell counts did not increase in infected groups and were
lower than female mice (figure 3a and b). Furthermore, cannabis smoke exposure in IAV-infected mice
had no significant effect on absolute immune cell population counts, while the proportion of monocytes
was decreased in cannabis smoke-exposed, IAV-infected males compared to room air, infected controls
(figure 3a and b).
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FIGURE 2 Cannabis smoke (CS) exposure alters weight loss and viral clearance following influenza A infection. a) Mice were weighed at the time of
inoculation and continued to be weighed daily until sample collection. Significance asterisks indicate a significant difference between room air
control (RA)-influenza A virus (IAV) and CS-IAV groups. b) Area under the curve assessed by setting 100% weight at day 0 post-infection (dotted line
in a) as the baseline. Viral burden was quantified in lung tissue homogenate via c) Madin–Darby canine kidney plaque assay and d) viral gene
expression was quantified in lung tissue via bulk RNA sequencing. Data represent mean+SEM; n=5 per group. *: p⩽0.05, **: p⩽0.01, ***: p⩽0.001,
****: p⩽0.0001, two-way ANOVA with Šidák’s multiple comparisons test between all experimental groups; #: differences between males and females
of same experimental group.
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Since cannabis smoke reduced IAV-associated immune cell recruitment, we assessed its impact on
pulmonary immune mediator levels via multiplex cytokine array. Firstly, no significant changes in cytokine
levels were detected between uninfected room air and cannabis smoke-exposed mice of both sexes
(supplementary tables S1 and S2). In the lungs of IAV-infected female mice, levels of IFN-γ (trend,
p=0.0641), C-C motif chemokine ligand (CCL)5, interleukin (IL)-4 and IL-13 were decreased in cannabis
smoke-exposed animals compared to room air mice, with no effect observed on IFN-β1, C-X-C motif
chemokine ligand (CXCL)10, tumour necrosis factor (TNF)-α or IL-1β levels in the lungs (figure 4a),
indicating that some, but not all, components of the antiviral response were suppressed and innate immune
cytokines were largely unaffected. Principal component analysis (PCA) of all cytokines detected revealed
that global immune mediator cluster separation was primarily driven by influenza infection (89% variance,
p<0.001) rather than cannabis smoke exposure (2% variance, p=0.14), with no obvious separation between
room air- and cannabis smoke-exposed groups infected with IAV (figure 4b). In male mice, several
cytokines were reduced in cannabis smoke-exposed, IAV-infected animals compared to infected controls,
including IFN-γ, TNF-α, CCL5, IL-1β, IL-4 (trend, p=0.0603) and IFN-γ-induced protein-10/CXCL10
(figure 4a). Overall, few sex-related differences were observed except increased TNF-α and IL-1β in
infected room air-exposed males compared to females and immune-mediator PCA showed results similar
to females with variance predominantly driven by IAV infection (63.4%) and to a lesser extent by cannabis
smoke exposure (9.7%) (figure 4a and b).

Statistical analyses revealed that there was a significant interaction between cannabis smoke exposure and
IAV infection on monocyte and DC counts, CD45+ and neutrophil proportions, as well as IFN-γ, CCL5,
IL-4 and IL-13 levels, probably due to the fact that cannabis smoke had little impact in uninfected mice,
but had a profound effect in IAV-inoculated mice.

IFN-stimulated gene expression is modestly affected by cannabis smoke exposure
In order to explore whether cannabis smoking dampened classical antiviral pathways, we assessed the
expression of IFN-stimulated genes (ISGs) via lung RNAseq. In females, 74 of the total 364 ISGs were
significantly affected by exposure or infection, 41 of which were differentially expressed in infected
cannabis smoke-exposed mice compared to infected room air-exposed controls. As can be observed in the
figure 5a heatmap, expression of these genes was increased by infection and further upregulated by
cannabis smoke exposure, such as Cd163, Cyp1b1, Serpine1, Cxcl10 and Trim21, among others. However,
a subset of genes that were upregulated by infection was downregulated by cannabis smoke exposure,
including Cd74, Arntl, Npas2, Ccna1 and Cx3cl1 (figure 5a). Overall, PCA analysis of all ISGs revealed
that changes in expression were driven by infection (59.8% variance, p<0.05) and by cannabis smoke
exposure (8.9% variance, p<0.05), though less substantially (figure 5b). In contrast to the cytokine PCA
plot, a separation between room air- and cannabis smoke-exposed groups infected with IAV was observed
(figure 5b). For ISG expression analysis in male mice, 63 genes were significantly affected by exposure or
treatment, 28 of which were differentially expressed in cannabis smoke-exposed mice compared to room
air controls. In males, the majority of ISGs upregulated by infection were downregulated by cannabis
smoke exposure compared to room air-exposed mice (Arntl, Cd74, Aim2, Cd69, etc.) with only a few ISGs
being further upregulated by cannabis smoke exposure (Cry1 and Gpx2) (figure 5a).

Cannabis smoking dampens pulmonary immune signalling and circulating IAV-specific antibody levels
in females
Since ISG expression during IAV infection was only modestly affected by cannabis smoke exposure, we
performed an untargeted characterisation of all differentially expressed genes. In females, we found that, of
the 6175 genes upregulated by IAV infection in room air-exposed mice, 214 genes were downregulated by
cannabis smoke exposure, with the top 100 genes by p-value fitting this suppression pattern shown in
figure 6a. Gene ontology analysis of these 214 suppressed genes revealed that several inflammatory and
immune pathways were dampened by cannabis smoke exposure in IAV-infected females, such as
phagocytosis, innate immune response, humoral immune response, defence response to bacterium, and
B-cell receptor signalling, among others (figure 6b). Conversely, we found that, of the 6175
IAV-upregulated genes, 425 were further potentiated by cannabis smoke exposure, exhibiting an
exacerbation pattern (figure 7a). Interestingly, gene ontology analysis revealed that these genes were linked
to few pathways; only intermediate filament organisation, intermediate filament-based process, and
cytoskeleton organisation reached statistical significance (figure 7b). In male mice, we found that of the
5859 genes significantly upregulated by infection in room air-exposed mice, the 387 genes that were
downregulated and the 66 genes that were further upregulated by cannabis smoke exposure were not
significantly associated with any gene ontology pathways (only top 100 by p-value shown; supplementary
figure S1).
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In light of the observed decreases in both antigen-presenting cell populations and gene expression of
several adaptive immune pathways, we wanted to assess whether cannabis smoke exposure significantly
impaired their humoral response to IAV infection. Firstly, we measured IAV-specific antibodies in the
circulation via ELISA. In female mice, we found that cannabis smoke exposure reduced circulating levels
of anti-IAV IgM and IgG1 compared to infected controls, while IAV-specific IgG2a was unaffected
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(figure 8a). In alignment with immune signalling data, cannabis smoke exposure had no significant impact
on circulating levels of IgM, IgG1 or IgG2a in male infected mice and antibody levels in males were
significantly lower than females, on the whole (figure 8a). We also assessed the surface expression of
major histocompatibility complex class II (MHCII), an antigen-presenting peptide complex crucial to the
activation of the adaptive immune response, in macrophages and dendritic cells via flow cytometry. In
females, MHCII expression was reduced in macrophages and DCs from cannabis smoke-exposed,
IAV-infected mice compared to room air controls, observed as a decrease in mean fluorescence intensity
and as a leftward shift in the fluorescence histogram (figure 8b). Statistical analyses revealed that there was
a significant interaction between cannabis smoke exposure and IAV infection on macrophage and DC
MHCII expression in females. In male mice, no significant change in MHCII surface expression was
observed in macrophages or DCs and overall expression in macrophages was significantly lower compared
to all female groups (figure 8b). Taken together, these data strongly suggest that antigen presentation and
humoral immune responses are suppressed by cannabis smoke exposure during IAV infection, even at such
an early stage of the antiviral response.
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Discussion
Despite the growing popularity of cannabis use and its recent legalisation in many countries around the
world, there is little research looking into the direct effects of cannabis smoke inhalation on the response to
respiratory infections. Not only are data limited, but updated models of cannabis smoke exposure are
needed to investigate how lung health is affected by exposure to modern cannabis strains, which vary
significantly from historical strains [15]. To begin to address this unmet need, we used a validated model
of cannabis smoke exposure [28] and IAV infection to demonstrate that cannabis smoke exposure impairs
viral clearance and suppresses key aspects of the immune response. We found that cannabis smoke
exposure increased viral burden while decreasing pulmonary immune cell populations, reducing cytokine
levels, downregulating the expression of immune response genes in the lungs as well as decreasing
circulating IAV-specific antibodies, particularly in female mice. In all, our data suggest that cannabis
smoke may negatively impact immune competence and also highlight the need for further investigation
into the mechanisms through which cannabis smoke exposure affects antiviral responses.
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A major finding from our study is that cannabis smoke exposure during IAV infection increases weight
loss post-infection and worsens viral burden in the lungs of female mice. The increase in viral burden and
viral gene abundance indicate that the antiviral immune response is compromised by cannabis smoke
exposure, which aligns with the observed suppression of immune cell infiltration and signalling in the
lungs. Firstly, we saw a reduction in total immune cells, specifically affecting macrophages and DCs, the
primary antigen-presenting cells in the lungs. In addition, we found that macrophage and DC expression of
the key antigen presenting complex MHCII was significantly decreased in IAV-infected mice exposed to
cannabis smoke compared to their room air controls, suggesting that adaptive immune activation may be
impaired. In the context of viral infection, previous research has shown that DCs and macrophages are key
to the activation of the immune response, where depletion of this population can lead to compromised
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immune signalling, reduced adaptive immune system activation, worsened weight loss and impaired viral
clearance [29–31]. In accordance with the reduction in immune cell infiltration, we demonstrated that
cannabis smoke exposure during IAV-infection was also associated with significant reductions in certain,
but not all, cytokines (i.e. IFN-γ and CCL5). It is therefore plausible that cannabis smoke exposure during
IAV infection interferes with beneficial immune cell recruitment and activation, thus impairing the
homeostatic response to viral infection.

Interestingly, we found that, although male mice exhibited similar changes in weight loss and significant
reductions in lung cytokine levels, the effects of both cannabis smoking and IAV infection on immune cell
infiltration, inflammatory signalling, viral load and antibody production were less pronounced than what
was observed in females. The differences in the response to IAV between sexes is not surprising, as
previous studies have shown that female mice exhibit heightened pulmonary inflammatory responses to
IAV while males exhibit reduced symptomology and recover more quickly from infection despite reduced
immune activation [32–34]. In addition, a methodological factor that may have contributed to the observed
sex differences is that IAV was administered in both experiments at the same PFU per mouse while their
body weights were quite different at the time of inoculation: ∼18 g for females versus 22 g for males.
Although sex hormones may also play a role, it is possible that much of the observed sex difference
resulted from the fact that females received a higher relative dose of IAV than males, which makes direct
comparisons between male and female data problematic.

Given that smoke itself is an inflammatory insult, it is often assumed that cannabis smoke leads to similar
immunomodulatory effects as tobacco smoke, where tobacco smoke exposure has been shown to increase
pulmonary inflammation and worsen immunopathology associated with IAV [16–18]. Some of our results
align with the effects of tobacco smoking: worsened weight loss as well as similarities in gene expression
changes, where tobacco smoke exposure further upregulated Cxcl10 and Ifit2 expression in neutrophils [19]
similar to that which we observed in the pulmonary ISG expression data. Nevertheless, it is important to
note the myriad ways in which cannabis smoke exposure distinctively impacts the antiviral response in our
study. Unlike cannabis smoke exposure, cigarette smoke exposure in IAV-infected mice leads to decreased
survival and heightened inflammatory responses: increased lung immune cells (total cells, neutrophils and
monocytes) and elevated cytokine secretion (IL-6, macrophage inflammatory protein-2 and TNF-α),
without affecting viral burden [16–19, 35, 36]). Instead, our cannabis smoke exposure results fit in many
ways with the effects of systemic THC administration during IAV infection, although with some important
differences. Oral THC administration did not affect symptomology and morbidity, but did decrease
influenza-induced immune cell infiltration, bronchoalveolar lavage fluid IFN-γ levels, inflammation scores
in the airways, and antigen-presenting cells in the lungs, such as DCs, monocytes and macrophages
[22, 23, 37]. However, in contrast to the impact of cannabis smoke exposure, systemic THC administration
reduced pulmonary neutrophilia, which led authors to suggest that disruption of neutrophil chemotaxis
caused by THC underlies the impaired viral clearance [23]. These results emphasise that cannabis smoke
exposure impacts antiviral responses in a complex manner, not simply driven by its nature as a combustion
product, but also influenced by its cannabinoid content and their anti-inflammatory properties. Future
studies using cannabinoid receptor knockout animals, strains of cannabis with high CBD content, or
combustion-free cannabis delivery systems (i.e. vaping) would help to dissect the contribution of specific
cannabinoids and to understand the role of combustion products in the observed effects of cannabis
smoking.

Another interesting finding in our study is the dampening of type 2 T-helper cell (Th2)-associated immune
pathways. In our uninfected mice exposed to cannabis smoke, we saw no significant changes in pulmonary
eosinophilia or in Th2-associated cytokines. However, in the context of viral infection, cannabis smoke
exposure led to trend towards reduced lung eosinophil counts and significant reductions in IL-4 and IL-13
levels. However, since eosinophil counts (<0.5% of immune cells) and Th2 cytokines levels (1–
2 pg·mL−1) were already relatively low, it seems unlikely that these changes significantly contributed to
the reduction in viral clearance. In contrast, many case reports have found that some heavy cannabis
smokers or cannabis vape users develop acute eosinophilic pneumonia, associated with dyspnoea and
ground-glass opacities in some cases [38, 39]. Although our data may suggest an important species
difference in eosinophilic response to cannabis smoke exposure, it is also possible that the duration and
dose of cannabis smoke exposure in our model is not high enough to induce Th2 immune responses. For
example, one of the most dramatic cases of cannabis smoke-associated acute eosinophilic pneumonia was
observed in a young man who reported smoking 20 joints the evening prior to being admitted to the
hospital [39]. Nevertheless, it would be interesting to explore how cannabis smoking might affect
Th2-driven pathologies, such as asthma, and explore long-term, high-dose cannabis smoking to better
understand whether there are significant species differences in eosinophilic responses.
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A limitation of our study is our focus on detailing the immunopathological consequences of cannabis
smoke exposure during IAV infection instead of focusing on mechanistic questions using alternative
approaches (e.g. cannabinoid receptor knockouts or pharmacological interventions [37, 40]). Nevertheless,
through both targeted and untargeted transcriptomic analyses, we found that certain ISGs and pulmonary
immune pathways, comprised of genes typically upregulated by IAV infection, were significantly
downregulated by cannabis smoke exposure. In particular, many pathways implicated in the adaptive
immune response (humoral immune response, B-cell receptor signalling pathway, etc.) were suppressed by
cannabis smoke exposure. Supporting this hypothesis, we found that circulating levels of IAV-specific IgM
and IgG1 were reduced in female mice exposed to cannabis smoke. Since IgG1 is crucial to mounting a
response to soluble and membrane proteins of viral and bacterial origin [41–43] and IgG1 deficiencies are
associated with recurrent infection [44], the reduction of circulating IgG1 by cannabis smoke exposure is
particularly concerning. Therefore, it would be interesting to directly examine the impact of cannabis
smoke exposure on adaptive immune competency by looking at the lymphocyte subtype populations and
their activation in the lungs, by assessing antibody neutralisation activity, or by using mouse strains lacking
lymphocytes (i.e. Rag-knockout animals). Furthermore, if there is evidence that cannabis smoke exposure
dampens the humoral response, this could have important consequences on long-term immune protection
from re-infection and the efficacy of vaccines. Another important caveat is that our study focused on a
single time point post-infection, which limits the application of our findings to the more acute responses to
IAV. To better understand the impact of cannabis smoking on the different stages of antiviral immune
responses, addition of later time points (days 14–21 post-infection) in future studies will allow us to
elucidate the effects on infection resolution as well as on antibody production and immunoglobulin class
switching, as the peak in IgG1 and IgG2 antibody production occurs later than 6 days post-infection.
Furthermore, exploring earlier windows of time in the response to infection (2–24 h) may be more useful
to study viral replication and the IFN-driven, innate immune responses to virus.

In summary, our study represents an important first step towards a better understanding of the impact of
cannabis smoking on respiratory infections. Ultimately, we found that many aspects of the pulmonary
immune response to IAV were suppressed by cannabis smoke exposure, often in ways that were distinct
from the known effects of either tobacco smoke exposure or oral cannabinoid administration. Nevertheless,
there are still many questions that remain unanswered surrounding the mechanisms through which cannabis
smoke exposure affects antiviral responses as well as the clinical relevance of our results. We believe
strongly that cannabis smoking must be studied separately and extensively, especially in light of its
growing popularity and the paucity of relevant data on its immunomodulatory effects.
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