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Abstract 

Currently, and based on the development of relevant biologic therapies, T2-high is 

the most well-defined endotype of asthma. Although much progress has been 

made in elucidating T2-high inflammation pathways, no specific clinically applicable 

biomarkers for T2-low asthma have been identified. The therapeutic approach of 

T2-low asthma is a problem urgently needing solution, firstly because these 

patients have poor response to steroids, and secondly because they are not 

candidates for the newer targeted biologic agents. There is, thus, an unmet need 

for the identification of biomarkers that can help the diagnosis and endotyping of 

T2-low asthma. 

Ongoing investigation is focusing on neutrophilic airway inflammation mediators as 

therapeutic targets, including IL-8, IL-17, IL-1, IL-6, IL-23, TNF-a; molecules that 

target to restore corticosteroid sensitivity, mainly mitogen-activated protein kinase 

inhibitors, tyrosine kinase inhibitors and phosphatidylinositol 3-kinase inhibitors; 

PDE3 inhibitors that act as bronchodilators and PDE4 inhibitors that have an anti-

inflammatory effect; and airway smooth muscle mass attenuation therapies, mainly 

for patients with paucigranulocytic inflammation. 

This manuscript aims to review the evidence for non-eosinophilic inflammation 

being a target for therapy in asthma, discuss current and potential future 

therapeutic approaches, such as novel molecules and biologic agents, and assess 

clinical trials of licensed drugs in the treatment of T2-low asthma. 
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Background 

Asthma is a chronic inflammatory disorder of the airways, characterized by 

reversible expiratory flow limitation and bronchial hyperresponsiveness to a variety 

of triggers, which is an increased sensitivity of the airways resulting in 

bronchoconstriction. It presents with symptoms such as wheezing, shortness of 

breath, cough and chest tightness that vary over time and in severity [1]. This is a 

rough description though, as asthma is not a homogenous disease in terms of 

disease natural history, severity and response to treatment. It has   variable clinical 

presentations (phenotypes) and distinct underlying  pathophysiological pathways 

(endotypes) responsible for this heterogeneity [2]. Based on the presence of T-

helper cell type 2 (Th2) driven inflammatory responses (IL-4, IL-5 and IL-13 

mediated), two major asthma endotypes, Th2 and non-Th2 had been described. 

The recent discovery of innate lymphoid cells type-2 (ILC2) and the fact that they 

can release Th-2 cytokines (predominantly IL-5 and IL-13), contributing to the T2-

high signature, led to the better categorization of asthma into Type-2 high (T2-high) 

or Type-2 and Type-2 low (T2-low) or non-Type-2 (non-T2). Currently, based on 

the existence of T2 biomarkers and the development of relevant biologic therapies, 

T2-high asthma is the most well-defined endotype [3]. T2-low asthma presents with 

either neutrophilic or paucigranulocytic inflammation, tends to be more resistant to 

inhaled corticosteroids, and it involves various asthma phenotypes, related to 

obesity, smoking, late onset (usually after 40 years of age) or occupational 

exposures [2]. There is, thus, an unmet need for the identification of biomarkers 

that can help the diagnosis and the endotyping of T2-low asthma. The therapeutic 

approach of T2-low asthma is a problem urgently needing solution for two main 

reasons: first, these patients have poor response to steroids, the cornerstone of 

asthma treatment [4], and second, they are not candidates for the newer targeted 

treatment with biologic agents such as anti-IgE or anti-IL-5 [5]. This review aims to 

discuss older as well as more recent therapeutic approaches, such as novel small 

molecules and biologic agents, in the treatment of T2-low asthma. 

 

Definition of T2-low asthma 
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At present, a solid definition of T2-low asthma has not been established. Although 

some emphasis has been placed on noninvasive biomarkers for the detection of 

T2-high asthma (i.e. T2 cytokines, such as  IL-4, IL-5, and IL-13, exhaled nitric 

oxide (FeNO), serum periostin, total IgE, blood and sputum eosinophils), the exact 

cut-off points for these markers are debatable [6]. Furthermore, these T2 markers 

may have low concordance when measured in the same patient [7, 8] and may be 

subject to significant variability over time and in response to asthma treatments [9]. 

The most important characteristic of these biomarkers is that they are 

characterized by high specificity, but low sensitivity, rendering them more useful in 

the identification of T2-high patients. In clinical practice, the most useful tool to 

identify T2-low asthma phenotype is the absence of any evidence of increased 

values in the above-mentioned biomarkers of T2-high asthma. Additionally, it 

seems that there is an association of T2-low asthma with obesity, smoking, 

pollutants, viral or bacterial infections and advanced age. In terms of 

pathophysiology, T2-low asthma is usually characterized by neutrophilic (NA) or 

the paucigranulocytic (PGA-absence of sputum eosinophilia or neutrophilia) 

phenotype of inflammation [10] and Th1 and/or Th17 cells seem to be the key 

effector cells in this setting. 

Several studies have related asthma severity to airway inflammation. Sy Duong-

Quy et al. has related eosinophilic inflammation to asthma management, asthma 

control and to predicting ICS response, through fractional exhaled nitric oxide 

(FeNO) measurement [11]. Kuo et al. have shown that type 2 inflammation, as 

reflected by FeNO, serum immunoglobulin E (IgE), and blood eosinophils plays a 

central role in small airways dysfunction in adults with moderate to severe 

persistent asthma [12]. Luis et al. demonstrated the connection between clinical 

activity, bronchial hyperresponsiveness, and lung function to eosinophilic, and to a 

lesser degree, neutrophilic inflammation [13]. In a recent study Scioscia et al. 

showed a positive correlation between 17β-estradiol concentrations and neutrophil 

levels in in the sputum of female patients with postmenopausal severe asthma, and 

their results confirmed the central role of neutrophils in the pathogenesis of some 

forms of severe late-onset asthma [14]. It is possible that increased airway 

remodelling is an important future risk factor for asthma, inducing further decline in 

pulmonary function, increased BHR, and exacerbation rate [15]. 
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Neutrophilic phenotype 

The percentage of neutrophils in the sputum of healthy controls ranges from 0-64% 

[16, 17], the aetiology of which may be shear stress in the mucosa during the 

induction process, the influence of specific resident microbiota or prior exposures 

to environmental agents. Airway neutrophilia may be associated with pollution [18], 

smoking [19], workplace agents [20], acute infections [21], chronic airway infections 

(e.g. in bronchiectasis) [22] or with an altered airway microbiome [23]. NA is 

common in smokers with asthma [19], in obese asthmatics [24] and occupational 

asthma [25, 26]. The NA phenotype is characterized by a neutrophilic proportion of 

≥64%in induced sputum [27, 28], although different cut off values have been used 

in different studies ranging from 40-76% [29].  It is uncertain which cut off value 

correlates with activated neutrophils promoting the pathogenic process [30], 

nevertheless,sputum neutrophil counts have been associated with disease severity 

[31]. It is prudent to mention that sputum total cell count, >15 x 106/g with a 

neutrophil percentage greater than 64% is a strong indication of lower airway tract 

infection [32]. 

The NA phenotype accounts for 5-22 % of the asthmatic patients [33] often 

related to more severe disease with worse pulmonary function and poor asthma 

control [13]. Patients with NA are less responsive to ICS [34]; however, it is unclear 

if this corticosteroid insensitivity is related to the presence of neutrophils or if it is 

induced by the mechanisms underlying neutrophil recruitment [35]. 

Although blood eosinophils correlate with sputum eosinophilia, this is not 

applicable in NA in which blood neutrophilia cannot predict airway neutrophilia [30]. 

There are several candidate biomarkers to define NA, however, apart from the 

differential sputum cell counts; they are not applicable in clinical daily practice. 

Several cytokines are associated with neutrophilic airway inflammation. IL-6 is a 

pleiotropic cytokine produced by various cell types in response to a wide range of 

inflammatory stimuli. It is considered an indicator of metabolic dysfunction as well 

as asthma severity and has been identified as a potential candidate biomarker in a 

study with obese asthmatic patients [36]. Increased levels of IL-8, which is known 

to activate neutrophils, have been observed in patients with NA [37] and were 

linked to sputum neutrophil counts [38]. Other important biomarkers of neutrophil 
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induction are myeloperoxidase and neutrophil elastase which can be discovered in 

induced sputum samples [39]. TNF-α [40], IL-23 [41] and IL-17 [42] are also related 

to neutrophilic  inflammation  in  asthma. Maes et al. have suggested that certain 

micro-RNAs in sputum might be able to accurately identify neutrophilic airway 

inflammation, but most clinicians are unable to obtain satisfactory sputum samples 

from these patients [43]. Transcriptomic analysis of airway samples in severe 

neutrophilic asthma found a strong upregulation of mucins, IL-17-inducible 

chemokines (CXCL1, CXCL2, CXCL3, and CSF-3) and the neutrophil 

chemoattractants CXCL8 (IL-8), CCL3 and Galectin-3 (LGALS3) [44]. Signatures of 

antibacterial responses including CD14, JUN and TLR2, implicate airway bacteria 

in driving the neutrophilia [45]. NA is associated with airway colonisation by 

bacteria including Haemophilus influenza [46] and Moraxella catarrhalis [47], which 

might induce Th17 responses [48]. Neutrophilic asthma is also associated with 

upregulation of oxidative stress responses and matrix metalloproteases [49], 

including MMP-9, a type IV collagenase involved with CXCL8-induced neutrophilia 

[50]. MMPs are increased in airway samples from asthmatic smokers and in severe 

neutrophilic asthma and are implicated in tissue remodelling [51]. 

  

Paucigranulocytic phenotype 

Asthmatic   patients   with both   neutrophil levels <64% and  eosinophil  levels 

<2%  are classified as having PGA [29]. The prevalence of this phenotype in 

asthmatic patients ranges from 17%-48% in different studies [30, 37]. Although little 

is known about the PGA phenotype, in the majority of patients with PGA the 

absence of inflammatory cells is usually related to appropriate anti-inflammatory 

treatment that achieves adequate asthma control [30]. Even though PGA is related 

to better lung function, a substantial proportion of patients with PGA (21.7%) is 

characterized as having severe refractory asthma, and 14.8% of patients with PGA 

has an Asthma Control Test score of less than 19, suggesting that only this 

subpopulation of PGA is not well controlled despite the absence of inflammatory 

cells in their sputum [38]. Surprisingly, in a cohort, patients with PGA with severe 

refractory asthma presented with higher levels of FeNO and sputum IL-13 and IL-8 

compared with those with mild/moderate asthma [37, 41]. Animal models 
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demonstrate that processes stimulating airway hyperresponsiveness and airway 

smooth muscle thickening occur independently from inflammation and are a 

consequence of a loss of negative homeostatic processes, advancing eventually to 

the pathogenesis of asthma in PGA phenotype [52]. 

The main clinical and pathophysiological characteristics that can help 

distinguish T2-low from T2-high asthma are shown in Table 1, while possible 

pathogenetic pathways; current drug targets and those in the development pipeline 

are shown in Figure 1. 
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Table 1. Characteristics of T2-low vs. T2-high asthma 

Differential Diagnostic 

Characteristics of T2-

asthma 

T2-low asthma T2-high asthma 

Onset Late Early 

Symptoms Mostly significant May be significant 

Obesity Often present May be present 

Smoking Often present May be present 

Response to inhaled 

corticosteroids 

Often poor Usually good 

Severity of asthma Often difficult to treat Mild to severe 

Asthma Control Often poor Variable 

Sputum eosinophils Absent Normal or high levels 

Sputum neutrophils Frequently present May be present 

Exhaled nitric oxide Usually normal Elevated or normal 

Airways Often present May be present 

  

Current therapeutic options 



 

Presently, there are no specific therapeutic interventions for patients with PGA. A 

very crucial and low cost, but often overlooked intervention that may dramatically 

improve asthma control also in patients with NA, is smoking cessation and 

avoidance of exposure to environmental/occupational pollutant agents. In 

neutrophilic asthmatic smokers, smoking cessation and avoidance of second-hand 

smoke resulted in the reduction of neutrophilic inflammation and improved asthma 

control and lung function [53]. 

Other treatment approaches currently available for T2-low asthma, address 

non-inflammatory pathways possibly involved in its pathogenesis. Tiotropium has 

been recently included as a new add-on treatment for GINA Steps 4 and 5 in 

patients aged ≥18 years with a history of exacerbations. Its clinical efficacy has 

been demonstrated in patients with fixed airway obstruction, an asthma phenotype 

usually associated with neutrophilic airway inflammation [54] and in patients with 

low sputum eosinophils (and possibly T2-low asthma) [55]. 

Macrolides are often administered in refractory NA, although these 

antibiotics promote an enhanced risk of adverse events and promote bacterial 

resistance [56]. Macrolides exhibit their beneficial effects in NA with three 

mechanisms: 1) they exert antibacterial [57] and antiviral actions [58]; 2) they 

demonstrate immunomodulatory effects and anti-inflammatory activity through 

inhibition of transcription factors such as NFκB, reduction of activation and 

migration of neutrophils [59], revitalization of corticosteroid sensitivity by inhibiting 

the Phosphatidylinositol 3-kinase (PI3K) pathway and restoring histone 

deacetylase 2 (HDAC2) [60] and by attenuating TNF-α and IL-17 immune 

responses [59]; and 3) they display prokinetic properties, thus diminishing the 

pernicious consequences of reflux and aspiration events [61]. Although not 

explicitly highlighted, macrolides reduce the sequence of reflux effects that include: 

micro and macro aspiration of gastric contents; bronchoconstriction mediated by 

vagal reflexes [62] and neurogenic inflammation in the lung [63]. Erythromycin has 

been shown to promote gastric and small bowel motility [64], increase lower 

oesophagal sphincter pressure [65] and affect gallbladder function [66]. 

Azithromycin also exhibits action as a motilin receptor agonist [67]  and enhances 

gastric motility in healthy subjects [68]. In patients with impaired gastrointestinal 
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motility, azithromycin has shown comparable positive effects on gastric and 

duodenal motility to erythromycin [67]. In one study which included smoking 

asthmatics, the use of azithromycin did not induce amelioration of asthma control 

or lung function [69]. In other reports, azithromycin significantly improved asthma 

exacerbations and quality of life in both eosinophilic and non-eosinophilic asthma 

[70, 71]. Moreover, the use of clarithromycin in patients with NA resulted in the 

reduction of neutrophilic inflammation followed by improvement in asthma control 

[72]. In a large randomized, double-blind study in moderate-to-severe asthma in 

Australia (AMAZES), azithromycin reduced exacerbations and improved Asthma 

Quality of Life Questionnaire (AQLQ) scores [71]. Moreover, current ERS/ATS 

severe asthma guidelines recommend the use of azithromycin in severe asthma 

that does not respond to treatment [73]. 

Bronchial thermoplasty (BT) could be a possible therapeutic approach, but 

its long term effectiveness or adverse events have not been fully assessed in PGA 

[74]. BT administers targeted thermal energy to the airway wall ablating airway 

smooth muscle (ASM) cells with a subsequent decrease in the ASM mass [75] 

while it has been verified that thermoplasty also regulates mucosal inflammatory 

responses and collagen deposition [76]. This intervention has been observed to 

reduce asthma exacerbations and to improve lung function and health-related 

quality of life. Moreover, macrolides may be an effective option in PGA since the 

potentialeffects of azithromycin have been observed irrespective of the underlying 

airway inflammation [70]. 

The use of statins in clinical trials demonstrated alterations in several 

inflammatory markers but failed to show improvement in asthma control or lung 

function [77]. 

Given the high prevalence of obesity in patients with T2-low asthma, weight 

reduction along with exercise and dietary modification should be included in the 

therapeutic plan of those patients. Several clinical studies have shown that weight 

loss in obese patients not only improves asthma symptoms but also contributes to 

a reduction in doses of rescue medication. It also reduces the risk for severe 

asthma exacerbations and improves asthma-related quality of life, perhaps through 

improvements in lung function [78–80]. 

https://paperpile.com/c/tLfPRD/3LrP
https://paperpile.com/c/tLfPRD/6R5S
https://paperpile.com/c/tLfPRD/gQ4j+R1Wz
https://paperpile.com/c/tLfPRD/51sf
https://paperpile.com/c/tLfPRD/R1Wz
https://paperpile.com/c/tLfPRD/NOd4
https://paperpile.com/c/tLfPRD/SHBD
https://paperpile.com/c/tLfPRD/57Zv
https://paperpile.com/c/tLfPRD/r6bl
https://paperpile.com/c/tLfPRD/gQ4j
https://paperpile.com/c/tLfPRD/Oyb0
https://paperpile.com/c/tLfPRD/8vq8+2LkT+MTfw


 

  

Future therapeutic targets 

Although no specific treatments have been made available so far, according to the 

pathophysiology of T2-low asthma, some potential targets for therapeutic 

interventions are summarized below [81]. An overview of the major biologic 

approaches currently in development for type 2 low asthma management is shown 

in Table 2. 

1) Cysteine X cysteine chemokine receptor 2 (CXCR2)/IL-8 

IL-8 is a potent chemoattractant that regulates activation and migration of 

neutrophils to the site of inflammation through the high-affinity CXCR2 receptor. 

Increased levels of IL-8 in sputum often precede asthma exacerbations in severe 

asthmatics and coincide with the development of late-phase airflow obstruction in 

patients with atopy [82]. IL-8 is also elevated in the serum of those patients, but its 

role as a biomarker demonstrating disease activity remains disputable. CXCR2 is a 

common chemokine receptor, which is expressed on the surface of neutrophils. 

The tripeptide PGP, which is generated from extracellular matrix proteins through 

the action of matrix metalloproteinases, is also a neutrophil chemoattractant 

(matrikine) that activates CXCR2 [83]. These chemokines also attract circulating 

monocytes, which differentiate within the lung to macrophages that are thought to 

guide neutrophilic inflammation [84]. This implicates that blocking CXCR2 could be 

a tempting therapeutic approach to the treatment of neutrophilic inflammation since 

small molecule inhibitors to these G-protein receptors have now been developed. 

In a phase 2 study of patients with moderate to severe asthma with high 

neutrophils count at baseline (>40%), CXCR2 antagonist SCH527123/Navarixin 

demonstrated a significant reduction in sputum neutrophils by 36.3% compared to 

a 6.7% increase in the placebo group (p=0.03), but no significant improvement of 

asthma control was established and no change to FEV1 was proved [85, 86]. In a 

subsequent randomized clinical trial, using a CXCR2 antagonist (AZD5069) as add 

on therapy for patients with severe asthma 45 mg BID (n=161) for up 12 months 

resulted in a sustained ~25%, reversible on discontinuation of treatment and 

reduction in blood neutrophils. In severe asthmatics, 5, 15 or 45 mg BID for 6 
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months did not reduce the rate of exacerbations nor improvedFEV1 or total asthma 

symptom score. A statistically significant reduction of sputum neutrophils by 69% 

was found in bronchiectasis patients after 80 mg BID for 4 weeks. There was no 

consistent increase in the rate of infections [86]. Another phase 1 clinical trial 

treatment of AZD8309, a CXCR2 antagonist, demonstrated a mean 77% reduction 

in total sputum cells (p < 0.001) and 79% reduction in sputum neutrophils (p < 0.05) 

compared with placebo after LPS challenge. There was also a reduction in 

neutrophil elastase activity (p < 0.05) and CXCL1 (p < 0.05) and trends for a 

reduction in sputum macrophages (47%), leukotriene B4 (39%) and CXCL8 

(52%).The clinical trial was discontinued for asthma [87]. Overall, although CXCR2 

antagonists seemed to be promising molecules as an add-on therapy for severe 

uncontrolled NA, they were not able to improve clinical outcomes and exacerbation 

rates [85–87]. 

2) Interleukin 17 

IL-17A and IL-17F  are produced by  Th17 cells and trigger the production of  IL-8  

and CXCL1 from epithelial cells. Moreover, they are neutrophil chemoattractants 

[88], while Th1 cells are connected to neutrophilic inflammation, by producing INF-γ 

and TNF-α. Neutrophilic inflammation generated by this pathway leads to airway 

injury and remodelling, hyperplasia and hypersecretion of the mucous gland and 

corticosteroid insensitivity [77]. It has been recorded that severe NA is related to 

higher levels of Th17 cytokines primarily CXCL1, CXCL10, CCl-2, IL-6 and IL-8 in 

comparison to other inflammatory endotypes [89]. In patients with asthma, elevated 

levels of IL-17A and IL-17F are found in BAL and airway tissue biopsies and 

positively correlate with the level of disease severity and neutrophil inflammation 

[90]. Furthermore, IL-17A acts on airway smooth muscle cells and mediates airway 

hyperresponsiveness. IL-17A and IL17F bind to receptor complexes with IL-17RA 

serving as the common subunit. Nevertheless, a recent study with mice models 

suggested that IL-17F, rather than IL-17A, underlies airway inflammation in steroid-

insensitive asthma [91]. 

Secukinumab, an IL-17A blocker, administration in healthy volunteers who 

evolved acute neutrophilic airway inflammation following an ozone challenge did 

not demonstrate a significant change in the total number of sputum neutrophils 
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from baseline. In a subsequent phase 2 study of AIN457 (secukinumab) in patients 

with uncontrolled asthma, there was no difference in ACQ score leading to its 

termination [92]. Brodalumab is a human monoclonal antibody that is blocking the 

activity of IL-17A, IL-17B, and IL-25 through binding to IL-17RA. In a randomized 

controlled trial recruiting patients with uncontrolled, moderate to severe asthma on 

inhaled corticosteroids, brodalumab failed to show a change in ACQ score, asthma 

symptoms or lung function in the overall study population. However, it did show a 

trend towards improvement in ACQ score in a small subgroup of patients with high 

bronchodilator reversibility [93]. However, this drug led to significant mental health 

issues in clinical trials, thus resulting in discontinuation of further development for 

asthma. Another formulation of secukinumab (CJM112), an anti-IL17A antibody, is 

now in phase 2 randomized clinical trial for patients with inadequately controlled 

moderate to severe asthma with low IgE and low circulating eosinophil levels, but 

no results have been announced yet [94]. 

3) Phosphodiesterases (PDE) 

Most PDE isoenzymes are expressed in lung tissue, including PDE1, PDE2, PDE3, 

PDE4, PDE5, PDE7, PDE8, and PDE9; however, PDE3 and PDE4 have been the 

primary targets for drug therapy. The PDE4 isoenzyme is found in most 

inflammatory and immune cells, including T-cells, eosinophils, neutrophils, B-cells, 

monocytes, macrophages, and dendritic cells. In several preclinical studies, PDE4 

inhibitors have been shown to suppress bronchial hyper-responsiveness, 

eosinophil infiltration, and production of histamine, leukotrienes, and cytokines, 

however with significant side effects when administered orally. PDE3 inhibitors act 

as bronchodilators, while PDE4 inhibitors have an anti-inflammatory effect [95]. 

PRL-554, an inhaled phosphodiesterase 3/4 inhibitor is now in a phase 1 trial for 

severe asthma. It is an analogue of trequinsin and, like trequinsin, is a highly 

selective inhibitor of the phosphodiesterase enzyme, PDE3. Indeed, it is >3000-

times more potent against PDE3 than against PDE4. Ensifentrine (RPL554), a 

nebulized PDE3/4 inhibitor, demonstrated a significant dose-dependent 

bronchodilator response in asthma patients [77, 96, 97]. CHF6001, an inhaled 

PDE4 inhibitor, was evaluated in a phase 2 trial; the drug was safe and well-
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tolerated at daily doses up to 4800µg for 14 days in healthy volunteers. No results 

have been announced yet about drug efficacy [98]. 

4) Tumour necrosis factor-alpha (TNF-a) 

TNF-a is secreted by lymphocytes, mast cells, and macrophages and promotes 

bronchial hyperresponsiveness and sputum neutrophilia thus was considered as 

an attractive target for severe asthma [99]. Etanercept (anti TNF-a) showed short 

term and modest clinical efficacy for severe and mild asthma respectively [100]. 

Mild reduction in the number of exacerbations and improvement in wheezing was 

observed in patients with moderate uncontrolled asthma, who were under 

monotherapywith inhaled corticosteroids (ICS), after administration of infliximab or 

adalimumab [101]. Golimumab lowered risk of asthma exacerbations, 

nevertheless, its trial on severe persistent asthma ended at phase II due to 

incidences of malignancies and infections such as pneumonia [99]. Given the 

possible beneficial role of TNF-a in severe NA, future studies may need to evaluate 

the long-term risk-benefit profile of these agents in such patients. 

5) Interleukin 1 (IL-1) 

IL-1β and IL-1 receptor antagonist (IL-1 RA) genes have both been associated with 

asthma risk [102]. In humans, IL-1β is increased in bronchoalveolar lavage (BAL) 

fluid and sputum of asthmatics compared to normal volunteers [103], with airway 

macrophages from asthmatics also having increased expression of IL-1β [104]. IL-

1β is also increased in BAL fluid from persons with symptomatic asthma vs. those 

with asymptomatic asthma [105], and there is an increased expression of this 

cytokine in the airways’ epithelium of asthmatics [105]. IL-1β also appears to be 

involved in the recruitment of airway neutrophils by LPS in rat models [106] and is 

upregulated in the airway after LPS inhalation challenge in humans [107]. 

Canakinumab, a fully human immunoglobulin IgG1k monoclonal antibody against 

IL-1β was originally developed as a potential treatment for asthma but is no longer 

listed for that indication [108]. A study of anakinra, an IL-1βantagonist, in NA 

demonstrated a significant reduction of airway neutrophilia compared to placebo; 

subjects tolerated the treatment well, without an increased frequency of infections 

that were attributable to anakinra [109]. 
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7) Interleukin 6 (IL-6) 

IL-6 in sputum is associated with a lower FEV1 in patients with mixed eosinophilic-

neutrophilic bronchitis [110]. In mice, allergen exposure increased lung IL-6, and 

IL-6 was produced by dendritic cells and alveolar macrophages. Loss of function of 

IL-6 signaling abrogated elevations of eosinophil and neutrophil recruiting 

cytokines/ chemokines and allergen-induced airway inflammation in mice. The 

association of pleiotropic cellular airway inflammation with IL-6 using human and 

animal data suggests that exacerbations of asthma, particularly those with a 

combined eosinophilic and neutrophilic bronchitis, may respond to therapies 

targeting the IL-6 pathway [111]. Sirukumab, an IL-6 antagonist for patients having 

uncontrolled severe asthma despite the use of high dose ICS in combination with 

LABA is now in a phase 2a trial [112]. 

8) Interleukins 22 and 23 (IL-22, IL-23) 

Currently, one phase 2 ongoing clinical trial for anti-IL-23 monoclonal antibody 

(risankizumab) attempts to investigate the efficacy and safety profile of this agent in 

T2-low severe asthmatic patients (NCT02443298). There are no ongoing studies 

on IL-22 targeted therapy in asthma. 

9) Protein Kinases 

Several p38 mitogen-activated protein kinases (MAPK) inhibitors have shown to 

restore corticosteroid sensitivity in peripheral blood mononuclear cells from patients 

with severe asthma [113]. A phase 2 study of PF03715455 was conducted and 

was terminated due to business reasons, without any safety or efficacy concerns 

[114]. A post hoc analysis of a 6-month clinical trial with losmapimod (GW856553) 

in COPD, but not in asthma, reported a reduction in exacerbations in a subgroup of 

patients with a blood eosinophil count ≤2%, which may suggest a preferentially 

beneficial effect of p38 MAPK inhibitors in non-eosinophilic inflammation [115]. 

AZD7624, an inhaled p38α and p38β inhibitor, in COPD, significantly reduced 

additional inflammatory biomarkers from sputum (IL-6, IL-8, and MIP-1β) and blood 

(neutrophil percentage, IL-6, MIP-1β, and CRP), but demonstrated no benefit 

concerning the reduction of exacerbations [116]. 
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Inhibition of the stem cell factor /c-kit receptor pathway leads to a significant 

decrease of the mast cell population, histamine levels, interleukin-4 production and 

airway hyper-responsiveness. Growth factors such as platelet-derived growth 

factor (PDGF) contribute to bronchial remodelling, a characteristic of severe 

asthma [117]. Masitinib and imatinib are tyrosine kinase inhibitors, targeting stem 

cell factor receptor/c-kit and PDGF receptor. A phase 2a study of masitinib in 

severe, uncontrolled, corticosteroid-dependent asthmatics was conducted, showing 

no significant difference to the corticosteroid weaning process. Contrary to that, a 

significant improvement in asthma control was observed [118]. 

Phosphatidylinositol 3-kinase (PI3K) and Janus-activated kinases (JAK) 

modulate lymphocyte activation. JAK and PI3K inhibitors reduced the cytokine level 

through direct effects on T-cell activation in both asthma and healthy BAL cells. 

Nemiralisib (GSK2269557), a once-daily inhaled PI3Kδ inhibitor underwent a 

Phase 2 clinical trial for patients with severe, uncontrolled asthma. It exhibited a 

significant reduction in sputum IL-5, IL-13, IL-6, and IL-8 level; however with no 

discernible difference in trough FEV1 and ACT score [119]. PI3K δ and γ isoforms 

are involved in inflammatory cell recruitment and activation and dual PI3Kδ/γ 

inhibitors, such as TG100-115 and IPI145 reduces airway inflammation induced by 

allergen or cigarette smoke in murine models [120, 121] and restored corticosteroid 

sensitivity in the smoke model [121]. A phase 2 study of RV1729, an inhaled 

PI3Kγ/δ inhibitor, demonstrated attenuation of airway inflammation, promotion of 

bronchodilation and reversal of β2 adrenoreceptor tachyphylaxis [122]. Both IPI-

145 (duvelisib) and RV-1729 are PI3Kδ/PI3Kγ combination inhibitors that are being 

developed for clinical use [120, 121]. Furthermore, the combination of 

dexamethasone with either a JAK or PI3Kδ inhibitor showed an additive anti-

inflammatory effect [123]. Recently, an inhaled inhibitor of Janus kinase 1 (JAK1) 

and intravenous administration of human mesenchymal stem cells attenuated 

neutrophilic inflammation in an experimental murine of allergic asthma [124]. 

Overall, the inhibition of PI3K blunts mucus production, prevents mast cell 

degranulation, deters immune cell recruitment and facilitates bronchodilation, all of 

which are potentially beneficial in asthma [125], but these need to be proven in 

future clinical trials. 
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Conclusions 

Treating T2-low asthma is a therapeutic challenge, mainly because its mechanisms 

are not fully understood. Although much progress has been made in elucidating 

T2-high inflammation pathways, no specific biomarkers for T2-low asthma have 

been identified. Neutrophilic airway inflammation mediators targets, including IL-8, 

IL-17, IL-1, IL-6, IL-23, TNF-aor airway smooth muscle mass attenuation therapies 

(for paucigranulocytic inflammation) are under investigation. Failed previous 

attempts with some of the agents targeting these mechanisms may have been due 

to the poor characterization of severe T2-low asthma. Further studies are 

necessary to accurately characterize T2-low pathogenetic processes to assess 

novel evidence-based treatments. 
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Table 2. Overview of the major biologic approaches currently in development for 

type 2 low asthma management   

Target 

patient 

population 

Studied 

biomark

er 

Biologic 

(drug 

name) 

Drug type Sponsor Main effects Ref. 

 

Add-on 

therapy in 

severe 

uncontrolled 

neutrophilic 

asthma 

IL-8 SCH527123

/Navarixin 

CXCR2 

antagonist 

AstraZene

ca 

Reduction in sputum 

neutrophils 

and in blood 

neutrophils 

No improvement in 

clinical 

outcomes and 

exacerbation rates 

[85–87] 

Add-on 

therapy in 

uncontrolled  

moderate to s

evere asthma 

 IL-17  Brodalumab Humananti-IL-

17receptorAm

onoclonalanti

body 

LEO 

Pharma 

A/S 

 

Did not improve ACQ 

score, lung function 

or asthma symptoms 

[93] 

Add-on 

therapy in 

severe 

uncontrolled 

neutrophilic 

asthma 

PDE4 PRL-554 

CHF6001 

(inhaled) 

Dual 

phosphodiest

erase 

PDE3 and 

PDE4 

inhibitors 

Verona 

Pharma 

ChiesiFar

maceutici 

S.p.A 

Bronchodilatatory and 

anti-inflammatory 

effect 

[96] 

[97] 

 

Severe and 

mild asthma 

Severe, 

refractory, or 

steroid-

resistant 

asthma 

TNF-α Etanercept 

Golimumab 

Human 

monoclonal 

antibody 

against  TNF-

a 

Pfizer 

Janssen 

Biologics 

B.V. 

 

Treatment was 

associated with 

substantial adverse 

reactionssuch as 

infections and 

malignancies 

[100] 

[99] 

Add-on 

therapy in 

IL-1 Anakinra 

 

Human IL-1 

receptor 

SwedishOr

phanBiovit

Reduced 

neutrophilic airway 
[109] 
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severe 

uncontrolled 

neutrophilic 

asthma 

antagonist (IL-

1 Ra)  

 

rum AB 

 

inflammation 

and sputum levels of 

IL-1b, IL-6 and IL-8 

 

Severe 

neutrophilic 

asthma 

p38  

MAPK 

Tyrosine

kinase 

Losmapimo

d 

AZD7624 

Masitinib, 

imatinib 

Protein kinase 

inhibitors 

Mitogen- 

activated 

protein 

kinase 

(MAPK) 

inhibitors 

Tyrosine 

kinase 

inhibitors  

Glaxo 

SmithKline 

AstraZene

ca 

AB-

Science, 

Novartis 

Reduced 

exacerbations 

Reduced 

inflammatory 

biomarkers from 

blood (IL-6, neutrophil 

percentage, and 

CRP) and sputum (IL-

6, and IL-8)  

Improvedasthmacontr

ol 

[115] 

[116] 

[118] 

Severe 

uncontrolled 

asthma 

Severe 

neutrophilic 

asthma 

Phospho

inositide 

3 (PI3)-

kinase 

Nemiralisib 

IPI-145  

RV-

1729(duveli

sib) 

Phosphoinosit

ide 3 (PI3)-

kinaseinhibitor

s 

Glaxo 

SmithKline 

 

No discernible 

difference in trough 

FEV1 and ACT score 

Attenuation of airway 

inflammation, 

promotion of 

bronchodilation and 

reversal of β2 

adrenoreceptor 

tachyphylaxis 

[119] 

[120],[1

21] 

[122] 
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Figure 1: T2-low asthma pathways and potential therapeutic targets 


