

THE BEST IN OPEN ACCESS BASIC, TRANSLATIONAL & CLINICAL RESPIRATORY RESEARCH

Early View

Research letter

The impact of the first COVID-19 surge on Severe Asthma Patients in the UK. Which is worse: The virus or the lockdown?

Steven J. Smith, John Busby, Liam G. Heaney, Paul E. Pfeffer, David J. Jackson, Freda Yang, Stephen J. Fowler, Andrew Menzies-Gow, Elfatih Idris, Thomas Brown, Robin Gore, Shoaib Faruqi, Paddy Dennison, James W. Dodd, Simon Doe, Adel H. Mansur, Radhika Priyadarshi, Joshua Holmes, Andrew Hearn, Hamsa Al-Aqqad, Lola Loewenthal, Angela Cooper, Lauren Fox, Mayurun Selvan, Michael G. Crooks, Alison Thompson, Daniel Higbee, Michelle Fawdon, Vishal Nathwani, LeanneJo Holmes, Rekha Chaudhuri

Please cite this article as: Smith SJ, Busby J, Heaney LG, *et al.* The impact of the first COVID-19 surge on Severe Asthma Patients in the UK. Which is worse: The virus or the lockdown?. *ERJ Open Res* 2020; in press (https://doi.org/10.1183/23120541.00768-2020).

This manuscript has recently been accepted for publication in the *ERJ Open Research*. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJOR online.

Copyright ©ERS 2020. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0.

Title: The impact of the first COVID-19 surge on Severe Asthma Patients in the UK. Which is worse: The virus or the lockdown?

Authors: Steven J Smith¹ *MRCP*, John Busby² *PhD*, Liam G Heaney²*MD MRCP*, Paul E Pfeffer³ *FRCP PhD*, David J Jackson⁴ *FRCP PhD*, Freda Yang¹ *MRCP*, Stephen J Fowler⁵ *FRCP MD*, Andrew Menzies-Gow⁶ *FRCP PhD*, Elfatih Idris⁷ *FRCP*, Thomas Brown⁸ *MD*, Robin Gore⁹ *PhD*, Shoaib Faruqi¹⁰ *MD*, Paddy Dennison ¹¹ *PhD*, James W Dodd¹² *PhD*, Simon Doe¹³ *MRCP*, Adel H Mansur ¹⁴ *FRCP PhD*, Radhika Priyadarshi³ *MRCP*, Joshua Holmes² *MPharm*, Andrew Hearn⁴ *MRCP*, Hamsa Al-Aqqad⁵ *MSc*, Lola Loewenthal⁶ *MBBS*, Angela Cooper⁷ *BN*, Lauren Fox⁸ *MRCP*, Mayurun Selvan⁹ *MRCP*, Michael G Crooks¹⁰ *MD*, Alison Thompson¹¹ *BSc*, Daniel Higbee¹² *MRCP*, Michelle Fawdon¹³ *BSc*, Vishal Nathwani¹⁴ *MRCP*, LeanneJo Holmes⁵ *BN*, Rekha Chaudhuri¹ *MD*, on behalf of the <u>UK Severe Asthma</u> *Registry*.

Affiliations:

¹ Gartnavel General Hospital and University of Glasgow, Glasgow, UK. ²Queens University, Belfast, UK. ³St Bartholomew's Hospital, Bart's Health NHS Trust, London & Queen Mary University of London, UK. ⁴Guys and St Thomas's Hospitals, London, UK Guy's and St Thomas' NHS Trust, London & King's College London, UK. ⁵School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre and NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK. ⁶Royal Brompton Hospital, London, UK. ⁷Royal Stoke University Hospital, Stoke, UK. ⁸Queen Alexandra Hospital, Portsmouth, UK. ⁹Addenbrooke's Hospital, Cambridge, UK. ¹⁰Hull University Teaching Hospital, Hull, UK. ¹¹ University Hospital Southampton, Southampton, UK. ¹²Academic respiratory unit, University of Bristol & North Bristol Lung Centre, Southmead Hospital, Bristol, UK. ¹³
Royal Victoria Infirmary, Newcastle, UK. ¹⁴ Heartlands Hospital, University Hospitals Birmingham, UK.

Corresponding Author: Professor Rekha Chaudhuri, Gartnavel General Hospital and University of Glasgow, Glasgow, UK, 1053 Great Western Road, Glasgow G120YN.

Rekha.chaudhuri@ggc.scot.nhs.uk

To the editor:

Respiratory viral infections are a significant cause of morbidity in asthma (1). Patients with severe asthma were assumed to be at greater risk from novel coronavirus-2 (COVID-19) infection. In the global response to the COVID-19 pandemic, multiple countries enacted social containment policies.

In the UK a countrywide lockdown occurred in March 2020, with stringent self-isolation ('shielding') advice for high-risk patients, including people with severe asthma.

Subsequently; ISARIC reported 14% of UK patients hospitalised with COVID-19 had an underlying diagnosis of asthma, but they did not associate asthma with higher mortality(2). The OpenSAFELY study of COVID-19-related deaths identified severe asthma as a factor associated with mortality [HR 1.13 [1.01-1.26] (3). However, 'severe asthma' was defined as anyone with asthma and a course of oral corticosteroids (OCS) in their records in the past year (3). Their analysis of inhaled corticosteroid (ICS) use showed increased mortality risk from COVID-19 in asthma patients on high dose versus no ICS, attributed to unrecorded health differences between the two groups (4). The Italian Severe Asthma Registry reported infrequent incidence of COVID-19 infection, based on participating centres reporting cases of confirmed/highly suspected COVID-19 with severe asthma and, as 21/26 cases were on anti-IL5/IL-5R biologics, they speculated that asthma biologics may modulate the risk of COVID-19 (5). To our knowledge, there is no information on the burden of social isolation (shielding) in people with severe asthma. There is a need for information on the impact of COVID-19 on a well-characterised severe asthma population in the community, effects of shielding and any association between asthma medication and COVID-19.

The UK Severe Asthma Registry (UKSAR) performed an audit in June 2020 across 14 centres, of patient adherence with shielding advice, potential COVID-19 infection and outcomes and asthma control since 1st March 2020. UKSAR centres with >100 registry patients used randomly generated lists to reduce potential bias. Where available, electronic hospital records were checked to confirm hospital admissions and COVID-19 swab/serology results. Permission was obtained by centres as per local audit requirements and all patients had previously consented to use of their anonymised Registry data.

Confirmed COVID-19 was defined as those with a positive PCR/serology test. Suspected COVID-19 was defined as typical symptoms, managed clinically as COVID-19, without a negative test. Ambulatory and hospitalised patients were labelled as 'mild' and 'severe' COVID-19, respectively. Audit data were combined with clinical data from the UKSAR. We used data from the most recent visit, and imputed missing values with data collected at previous visits. Univariate analyses were conducted using independent t-tests, Mann-Whitney U tests or chi-square tests as appropriate. Multivariate analyses were undertaken using logistic regression adjusting for age, gender, ethnicity, BMI, site, cardiac disease, diabetes and hypertension. 1365 patients were included (Table 1). Shielding advice was sent to 1268 (93.0%) patients and followed by 1131 (89.2%). Males and members of a non-shielding household were less likely to follow shielding advice (OR 0.40 [0.26,0.62], p<0.001 and OR 0.27 [0.16,0.45], p<0.001) respectively. 44 (57%) patients with suspected and 8 (42%) patients with confirmed COVID-19 were infected before receiving shielding advice 14 (77%) confirmed COVID-19 cases occurred in non-shielding households. Of those that shielded, 582 (47.0%) reported worsening of mental health. Although those with a history of depression/anxiety were particularly susceptible (OR 2.12[1.35,3.33], p=0.001), 447 (76.8%) had no such pre-morbidity documented. Other characteristics associated with worsening mental health were female gender (OR 1.59 [1.19, 2.13], p=0.001) and an elevated asthma control score (ACQ-6) \geq 1.5 (OR 1.80[1.23, 2.63], p=0.004). Younger patients (aged <40) were more affected than those >60 (OR 1.56 [1.08,2.33], p=0.020).

Of 1365 patients, 97 (7.1%) had a confirmed/suspected COVID-19 infection, 19 (1.39%) had PCR/serology confirmed infection. 13 (0.95%) were hospitalised with COVID-19; the median hospital stay was 11 days (5,22). A higher proportion of hospitalised versus ambulatory patients were non-Caucasian (25% vs 17.9%, p=0.053). Two patients died; both were Caucasian men aged over 65.

918 (67.5%) of patients were on a biologic; 735 (80%) of these on anti-IL-5/5R agents. No association was seen between biologics and risk of COVID-19 (OR 0.73 [0.46,1.14], p=0.165), but they were associated with better asthma control (OR 0.56 [0.41,0.77], p<0.001) and fewer exacerbations (OR 0.6 [0.44, 0.83], p=0.002). There was no difference in the proportion of patients on biologic therapy in the mild and hospitalised COVID-19 groups (67.9% vs 61.5%, p=0.652). No association was seen between the type of biologic therapy and COVID-19 infection. Maintenance OCS (mOCS) was not associated with COVID-19 (OR 1.18 [0.78,1.80], p=0.427); 35 (47.9%) ambulatory patients and 3 (23.0%) hospitalised patients were on mOCS (p=0.151).

High dose ICS (2000 mcg beclometasone[BDP]/ equivalent) was no different from lower dose ICS (<1000mcg BDP equivalent) in its association with developing COVID-19 infection (OR 0.64 [0.32,1.31] p=0.234). However, hospitalised patients were on lower doses of ICS than ambulatory patients [median(IQR) BDP-equivalent mcg 1000 (800,1600) vs 2000 (1600,2000), p=0.002]) and a greater proportion had a history of poor adherence (53.8% vs 24.7%, p=0.033).

In summary; the majority of patients reported receiving and following shielding advice, 47% of shielding patients reported worsening of mental health, higher than the Office of National Statistics analysis of shielding patients in England (35%), with similar higher incidence in female and younger patients (6).

We found that monoclonal antibodies for asthma were not associated with increased risk of mild or severe COVID-19 infection. This agrees with other emerging findings of low incidence of COVID-19 in the severe asthma population and biologics not affecting clinical outcome (7). Poor asthma control increases the risk of severe viral exacerbations, so disease stability from biologics may be protective in itself (8).

Although numbers were small, there was an association seen with high dose ICS and reduced hospitalisation from COVID-19. The RECOVERY trial demonstrated that dexamethasone reduced mortality and progression to ICU in hospitalised patients(9). In vitro studies have suggested ICS can reduce viral replication whilst pre-treatment with ICS has been shown to reduce the risk of ARDS in hospitalised patients (10, 11). Further studies are required, but our findings support continued use of ICS at an appropriate dose for asthma control.

The strength of this study is the multicentre inclusion of well-characterised severe asthma patients. In addition to studying the impact of COVID-19 and effect of asthma medications, we enquired about the burden of shielding; a consideration when planning for the second wave. Limitations are the small number of patients hospitalised with COVID-19 preventing detailed analyses for risk factors. We also note that this study cannot separate out the risk of COVID-19 in an unshielded severe asthma population and that adherence to shielding was self-reported. Unfortunately, COVID-19 testing was not widely available in the early months of the pandemic, hence, despite including only patients reporting symptoms distinct from their usual asthma, the natural symptom overlap between poor asthma control and mild COVID-19 limits robust conclusions in the 'suspected COVID-19' group.

In conclusion, hospitalisation and death occurred in small numbers of this UK severe asthma population. Adherence to shielding guidance may have contributed to this, but led to worsening of mental health in our patents. Within our limited numbers of cases, biologic agents for asthma were not associated with increased risk of COVID-19 infection or hospitalisation.

Table 1: Characteristics of Severe Asthma Patients According to COVID-19 Status, Disease Severity and Confirmed COVID-19										
Characteristic		COVID-19 Status			COVID-19 Disease Severity			Confirmed COVID-19		
N (%) unless otherwise stated		No COVID-19	Suspected or confirmed COVID-19	P value	Non hospitalised	Hospitalised	P value	Confirmed COVID-19	P value**	
	Ν	(N = 1268)	(N=97)		(N=84)	(N=13)		N=19		
Age (years) [mean (SD)]	1365	52.8 (15.5)	51.2 (13.8)	0.313	50.5 (13.8)	55.6 (13.7)	0.215	49.8 (13.7)	0.404	
Male gender	1365	453 (35.7%)	43 (44.3%)	0.089	39 (46.4%)	4 (30.8%)	0.290	5 (26.3%)	0.395	
BMI (kg-m2)	1166	31.0 (7.2)	31.3 (6.1)	0.704	31.3 (6.3)	31.3 (4.9)	0.967	30.6 (6.3)	0.849	
Smoking status	1322	-	-	0.584	-	-	0.739	-	0.522	
Never smoked	1322	838 (68.4%)	69 (71.9%)	-	59 (71.1%)	10 (76.9%)	-	15 (78.9%)	-	
Ex-smoker	1322	337 (27.5%)	22 (22.9%)	-	20 (24.1%)	2 (15.4%)	-	3 (15.8%)	-	
Current smoker	1322	51 (4.2%)	5 (5.2%)	-	4 (4.8%)	1 (7.7%)	-	1 (5.3%)	-	
Non-Caucasian ethnicity	1345	150 (12.0%)	18 (18.8%)	0.054	15 (17.9%)	3 (25.0%)	0.553	3 (16.7%)	0.547	
Resident in London area	1365	306 (24.1%)	44 (45.4%)	<0.001	39 46.4%)	5 (38.5%)	0.591	11 (57.9%)	<0.001	
Resident outside London area [Rest of UK]	1365	962 (75.9%)	53 (54.5%)	-	45 (53.6%)	8 (61.8%)	-	8 (42.1%)	-	
Atopic disease	1236	662 (57.8%)	58 (64.4%)	0.216	48 (62.3%)	10 (76.9%)	0.310	11 (57.9%)	0.991	
Depression or anxiety	1365	126 (9.9%)	9 (9.3%)	0.834	9 (10.7%)	0 (0.0%)	0.215	0 (0.0%)	0.148	
Clinic FEV ₁ (% predicted) $^{\$}$	1113	68.1 (52.9,82.6)	67.9 (59.9,83.4)	0.343	67.9 (59.9,82.8)	73.7 (60.1,84.8)	0.555	80.8 (60.7,86.2)	0.141	
Clinic FVC (% predicted) $^{\$}$	1081	83.6 (71.8,95.4)	82.8 (71.3,92.6)	0.779	83.1 (71.3,91.7)	81.2 (68.9,92.6)	0.814	87.3 (76.7,93.9)	0.558	
Asthma Medication and Control										
ICS dose (BDP equivalent-ug) $^{\$}$	1174	2000 (1600,2000)	2000 (1600,2000)	0.433	2000 (1600,2000)	1000 (800,1600)	0.002	1600 (1000,2000)	0.106	
Maintenance OCS	1363	481 (38.0%)	34 (35.4%)	0.620	30 (35.7%)	4 (33.3%)	0.872	9 (47.4%)	0.402	
Maintenance macrolides	1200	153 (13.8%)	9 (10.2%)	0.351	7 (9.9%)	2 (16.7%)	0.428	3 (16.7%)	0.723	
Theophylline	1237	294 (25.7%)	12 (13.2%)	0.008	10 (12.8%)	2 (15.4%)	0.800	3 (15.8%)	0.328	
Evidence of poor adherence	1190	248 (22.5%)	25 (29.1%)	0.160	18 (24.7%)	7 (53.8%)	0.033	6 (31.6%)	0.346	
On asthma biologic	1361	853 (67.5%)	65 (67.0%)	0.924	57 (67.9%)	8 (61.5%)	0.652	13 (68.4%)	0.931	
Biologic type	917	-	-	0.349	-	-	0.986	-	0.841	
Anti-IL5 *	917	680(79.7%)	55 (85.9%)	-	49 (86.0%)	6 (85.7%)	-	11 (84.6%)	-	
Anti-IgE	917	157 (18.4%)	9 (14.1%)	-	8 (14.0%)	1 (14.3%)	-	2 (15.4%)	-	
Anti-IL4/13	917	16(1.9%)	0 (0%)	-	0 (0.0%)	0 (0.0)	-	0 (0.0%)	-	
Co-morbidities										
Cardiac disease	1299	64 (5.3%)	6 (6.3%)	0.678	5 (6.1%)	1 (7.7%)	0.826	1 (5.3%)	0.992	
Diabetes	1365	78 (6.2%)	5 (5.2%)	0.692	5 (6.0%)	0 (0.0%)	0.366	1 (5.3%)	0.873	
Hypertension	1365	121 (9.5%)	9 (9.3%)	0.932	7 (8.3%)	2 (15.4%)	0.415	2 (10.5%)	0.885	

Malignancy	1365	13 (1.0%)	1 (1.0%)	0.996	1 (1.2%)	0 (0.0%)	0.693	0 (0.0%)	0.657
Associated COPD	1365	38 (3.0%)	5 (5.2%)	0.241	4 (4.8%)	1 (7.7%)	0.657	1 (5.3%)	0.567
Shielding & asthma control during lockdown									
Advised to shield	1363	1,182 (93.2%)	86 (90.5%)	0.320	76 (90.5%)	10 (90.9%)	0.963	16 (88.9%)	0.470
Followed shielding advice	1268	1,058 (89.5%)	73 (84.9%)	0.182	64 (84.2%)	9 (90.0%)	0.631	13 (81.3%)	0.286
Shielding affected mental health	1237	544 (47.1%)	38 (46.9%)	0.980	33 (46.5%)	5 (50.0%)	0.835	8 (53.3%)	0.629
Contracted COVID-19 before shielding advice	76	0 (0.0%)	44 (57.9%)	-	40 (60.6%)	4 (40.0%)	0.219	8 (53.3%)	-
Non-Shielding household	1338	715 (57.3%)	50 (54.9%)	0.656	41 (51.2%)	9 (81.8%)	0.056	14 (77.8%)	0.081
Specialist asthma attendance	1359	432 (34.2%)	31 (32.6%)	0.759	27 (32.1%)	4 (36.4%)	0.779	4 (22.2%)	0.288
Asthma control worse during lockdown	1358	463 (36.7%)	50 (52.6%)	0.002	41 (48.8%)	9 (81.8%)	0.039	11 (61.1%)	0.033
Acute OCS course during lockdown	1363	433 (34.2%)	48 (50.0%)	0.002	40 (47.6%)	8 (66.7%)	0.217	13 (68.4%)	0.002
Hospital admission with COVID-19									
Admitted to hospital for COVID-19	97	0 (0.0%)	13 (1.4%)	-	0 (0.0%)	13 (100%)	<0.001	11 (57.9%)	-
Oxygen therapy	12	0 (0.0%)	7 (7.2%)	-	0 (0.0%)	7 (58.3%)	-	7 (36.8%)	-
ITU admission for COVID-19	12	0 (0.0%)	2 (2.1%)	-	0 (0.0%)	2 (15.4%)	-	1 (5.2%)	-
Chest X-Ray suggestive of COVID-19	8	0 (0.0%)	7 (87.5%)	-	0 (0.0%)	7 (87.5%)	-	7 (87.5%)	-
Days in hospital ^{\$}	9	-	11 (5,22)	-	-	11 (5,22)	-	11 (5,22)	-

Significant p values displayed in **bold** * anti-IL5 biologic agents include – mepolizumab, benralizumab and reslizumab - no data to present ** p value for confirmed COVID-19 vs No COVID-19 \$ Data presented as median (IQR) and refers to data collected at registry entry.

Collaborators:

Jayne Logan, Princy Kallukalam, Olivia Darley, Dr Laura Wiffen, Dr Katherine Bunclark, Ciara Cashell, Jodie Hutchens, Alison Scale

Acknowledgements

Stephen Fowler is supported by the NIHR Manchester Biomedical Research Centre

References:

1. Edwards MR, Strong K, Cameron A, Walton RP, Jackson DJ, Johnston SL. Viral infections in allergy and immunology: How allergic inflammation influences viral infections and illness. J Allergy Clin Immunol. 2017;140(4):909-20.

2. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al. Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985.

3. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584:430-6.

4. Schultze A, Walker AJ, MacKenna B, Morton CE, Bhaskaran K, Brown JP, et al. Inhaled corticosteroid use and risk COVID-19 related death among 966,461 patients with COPD or asthma: an OpenSAFELY analysis. medRxiv. 2020:2020.06.19.20135491.

5. Heffler E, Detoraki C, Contoli M, Papi A, Paoletti G, Malipiero G, et al. COVID-19 in Severe Asthma Network in Italy (SANI) patients: clinical features, impact of comorbidities and treatments. Allergy. 2020.

6. Office for National Statistics. Statistical Bulletin: Coronavirus and Shielding in Clinically Extremely Vulnerable People in England: 28 May to 3 June 2020. Accessed 10 Aug 2020. Available from:

https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseas es/bulletins/coronavirusandshieldingofclinicallyextremelyvulnerablepeopleinengland/28mayto3june 2020.

7. Domínguez-Ortega J, López-Carrasco V, Barranco P, Ifim M, Luna JA, Romero D, et al. Early experiences of SARS-CoV-2 infection in severe asthmatics receiving biologic therapy. The Journal of Allergy and Clinical Immunology: In Practice. 2020;8(8):2784-6.

8. Jackson DJ, Trujillo-Torralbo M-B, del-Rosario J, Bartlett NW, Edwards MR, Mallia P, et al. The influence of asthma control on the severity of virus-induced asthma exacerbations. Journal of Allergy and Clinical Immunology. 2015;136(2):497-500.e3.

9. Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report. New England Journal of Medicine. 2020.

10. Nicolau DV, Bafadhel M. Inhaled corticosteroids in virus pandemics: a treatment for COVID-19? The Lancet Respiratory Medicine. 2020;8(9):846-7.

11. Matsuyama S, Kawase M, Nao N, Shirato K, Ujike M, Kamitani W, et al. The inhaled corticosteroid ciclesonide blocks coronavirus RNA replication by targeting viral NSP15. bioRxiv. 2020:2020.03.11.987016.