Presence of *Propionibacterium acnes* in granulomas associates with a chronic disease course in Dutch sarcoidosis patients

Els Beijer, Kees Seldenrijk, Yoshinobu Eishi, Keisuke Uchida, Jan Damen, Jan C. Grutters, Marcel Veltkamp

This manuscript has recently been accepted for publication in the *ERJ Open Research*. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJOR online.

Copyright ©ERS 2020. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0.
Presence of *Propionibacterium acnes* in granulomas associates with a chronic disease course in Dutch sarcoidosis patients

Els Beijer¹, Kees Seldenrijk², Yoshinobu Eishi³, Keisuke Uchida³, Jan Damen⁴, Jan C. Grutters¹,⁵, Marcel Veltkamp¹,⁵

1. Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands
2. Pathology DNA, Department of Pathology, St. Antonius Hospital, Nieuwegein, The Netherlands
3. Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan
4. Pathology DNA, Department of Pathology, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
5. Department of Pulmonology, University Medical Centre, Utrecht, The Netherlands

Corresponding author information

Corresponding author: Marcel Veltkamp

Postal address of department: ILD research, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
e-mail address: m.veltkamp@antoniusziekenhuis.nl

Funding

This study is part of the TopZorg Lung grant funded by ZonMw (nr 842002001). This funder had no involvement in the study design; in the collection, analysis and interpretation of the data; in the writing of the report; or in the decision to submit the paper for publication.

Conflicts of interest

The authors have nothing to disclose

Take home message

Significantly more sarcoidosis patients with a chronic disease course requiring treatment had presence of *P. acnes* in granulomas. This contributes to the premise that it is relevant to further explore antibacterial therapy in sarcoidosis.
Abstract

Background

Several studies demonstrated that *Propionibacterium acnes* (*P. acnes*) may be involved in sarcoidosis pathogenesis. Presence of *P. acnes* was found in granulomas of the majority of Japanese sarcoidosis patients. However, presence of *P. acnes* in tissue has never been related to sarcoidosis phenotypes and clinical outcome. Therefore, the aims of our study were to demonstrate whether *P. acnes* can be detected in granulomas of Dutch sarcoidosis patients and to investigate whether its presence is related to a clinical phenotype and/or course of disease.

Methods

Sections of formalin fixed paraffin-embedded tissue blocks of 76 sarcoidosis patients were examined by immunostaining with a *P. acnes*-specific monoclonal antibody (PAB antibody) using a VENTANA BenchMark ULTRA. Clinical outcome status (COS) was determined and classified into two phenotype groups: A: resolved, minimal or persistent disease without treatment (COS 1-6) and B: persistent disease with need for treatment (COS 7-9).

Results

P. acnes was detected in samples of 31 patients (41%) and located within granulomas in samples of 13 patients (17%). The frequency of *P. acnes* detected in granulomas at diagnosis was significantly higher in patients with phenotype B compared to patients with phenotype A (29% vs 0%, p = 0.021).

Conclusion

Presence of *P. acnes* in granulomas can be confirmed in Dutch sarcoidosis patients. It is intriguing that presence of *P. acnes* in granulomas is more frequently found in patients with chronic disease
requiring treatment. This adds to the rationale that a subgroup of sarcoidosis patients might benefit from antibiotic therapy.

Introduction

Sarcoidosis is a multisystem inflammatory disorder of unknown etiology that is characterized by the presence of non-caseating granulomas. In over 90% of patients the lungs are involved (1), but the disease can also affect other organs (2). Patients with symptomatic organ involvement or risk of permanent damage can be treated with immunosuppressive drugs (3), which suppress disease activity but do not cure the disease.

The cause of sarcoidosis is still puzzling scientists for more than a century. Several studies demonstrated that specific microorganisms, including mycobacteria and Propionibacterium acnes (P. acnes) could be involved in its disease pathogenesis (4–9). As P. acnes is a commensal, Koch’s postulates cannot be applied, which makes it difficult to elucidate its etiologic role (10). A higher number of P. acnes genomes have been found in tissue from Chinese, Japanese, Italian, English and German sarcoidosis patients compared to tissue of controls, suggesting involvement in disease pathogenesis (11–13). Furthermore, an increased immune response to P. acnes among patients with sarcoidosis was found in different studies using Japanese or German patients (7,8,14). Remarkably, in recent work from our own group, we found a lower percentage of Dutch sarcoidosis patients than controls with an immunological response to P. acnes (15) which is conflicting with the abovementioned previous papers.

In addition to its role as possible antigen, P. acnes can also act as a mitogen which is demonstrated by the fact that P. acnes enhances immunogenicity of certain vaccines (16) and enhances cytotoxic activity toward different tumor cells (17–19). A potential mitogenic role of P. acnes in sarcoidosis has not previously been studied.

Based on both a possible antigenic as well as mitogenic role for P. acnes, we hypothesize that presence of P. acnes in tissue could be related to certain clinical phenotypes in sarcoidosis. We
therefore examined the presence of *P. acnes* in tissue of Dutch patients with sarcoidosis using an existing *P. acnes* specific monoclonal antibody (PAB antibody) (20) and related results of immunostaining to clinical characteristics such as organ involvement and course of disease.

Methods and materials

Study patients

Unstained tissue blocks were requested from two sarcoidosis cohorts previously studied at the St Antonius Hospital (Nieuwegein, The Netherlands) (15,21). The diagnosis of sarcoidosis had been established according to the criteria of the American Thoracic Society/European Respiratory Society (22). Patients were included in the study when enough residual tissue was available and when presence of granulomas could be clearly detected in the hematoxylin and eosin (H&E) stained tissue sections. The study was approved by the Medical research Ethics Committees United (MEC-U) of the St Antonius Hospital (R05-08A) and written consent was obtained from all patients.

Immunostaining

4 μM thick sections were cut from the formalin-fixed paraffin-embedded tissue sections which were immunohistochemically stained with the PAB antibody; a *P. acnes* specific monoclonal antibody that reacts with cell-membrane bound lipoteichoic acid of the bacterium (20). The PAB antibody was kindly provided by Prof. dr. Eishi and colleagues, Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan. We followed the protocol described by Negi *et al.* (20), but instead of the original manual procedures the sections were stained by the use of a VENTANA BenchMark ULTRA (Ventana Medical Systems, Inc., Tucson, AZ, USA) using ultraView Universal Alkaline Phosphatase Red Detection Kit (Ventana Medical Systems, Inc.). We modified the original protocol to optimize the sensitivity and specificity of the staining results for the VENTANA BenchMark ULTRA. Shortly, sections were de-paraffinized and rehydrated followed by antigen retrieval using the hot plate heating system of the machine instead of antigen retrieval by microwave. Because mineral oil (Liquid Coverslip, Ventana Medical Systems, Inc.) covering the tissue
slides was found to inhibit the reaction with PAB antibody, before the primary antibody reaction with the PAB antibody, a washing step (3 times for 5 minutes each) in the EZ Prep buffer (Roche Nederland B.V, Woerden) was added under the Antibody Titration program selected, followed by washing 5 minutes with tap water and 5 minutes with reaction buffer (Roche Nederland B.V, Woerden, The Netherlands). The PAB antibody (crude mouse ascites fluid) was used in a concentration of 1:30.000 (diluted with DAKO REAL antibody diluent, S2022, DAKO, Glostrup, Denmark) and incubated for 16 minutes at room temperature. Instead of using peroxidase substrate diaminobenzidine (DAB) to develop the signal, ultraView Universal Alkaline Phosphatase Red Detection Kit (Ventana Medical Systems, Inc.) was used. Sections were counterstained with Mayer’s hematoxylin. Detection of \textit{P. acnes} in tissue was analyzed by a pulmonary pathologist (KS). The staining was considered positive when small round/dot like structures were seen. If such structures were detected, it was determined whether positive PAB staining was present in or outside the granulomas.

Identification of \textit{P. acnes} related phenotypes

To determine possible \textit{P. acnes} related phenotypes, organ involvement, age at diagnosis and Scadding stage at diagnosis and follow up was collected from medical records of sarcoidosis patients.

The Clinical outcome status (COS), a definition of clinical outcome in sarcoidosis established by The World Association of Sarcoidosis and Other Granulomatous disease (WASOG) \cite{23}, was determined 2 and 5 years after diagnosis. The disease status of patients was retrospectively examined and classified into resolved, minimal or persistent disease. Resolved was classified as patients showing no signs of disease anymore, so normalization of chest x-ray, pulmonary function test, laboratory tests etc. Minimal disease is defined as a disease burden of 25% or less compared to the maximum disease burden experienced by patients measured by for example pulmonary function test, Chest X-ray, biomarkers and skin lesions. For example, the worst pulmonary function test had to be improved by at least 75% to be considered minimal disease.
Furthermore, it was examined whether patients were ever treated, and if so whether they were still using medication or not (defined as no medication > one year). Patients in whom medication was increased the last year were considered worsening. Medication included all immunosuppressive systemic therapies used for sarcoidosis, including corticosteroids, DMARDS and anti-TNFα antibodies, except for non-steroid anti-inflammatory drugs. This results in 9 COS scores:

1: Resolved disease, never treated
2: Resolved diseases, no treatment > one year
3: Minimal disease, never treated
4: Minimal disease, no therapy > one year
5: Persistent disease, never treated
6: Persistent disease, no therapy > one year
7: Persistent disease, current therapy but no worsening in prior year and asymptomatic
8: Persistent disease, current therapy but no worsening in prior year and symptomatic
9: persistent disease, current therapy which worsened in the prior year

Patients who died in the period over which the COS was determined were placed in COS 9.

To analyze whether there was a correlation between presence of *P. acnes* and COS, we classified the COS scores into two phenotype groups: A: resolved, minimal or persistent disease without treatment (COS 1-6) and B: persistent disease with need for treatment (COS 7-9).

Statistical analysis

Data was analyzed using IBM SPSS statistics version 24. An unpaired T-test was used to compare numerical data. Non-parametric tests were used for non-normally distributed data (Mann-Whitney U test). Categorical data were compared using the Chi-squared test. If expected cell frequencies were below 5, Fisher’s exact test was used for categorical data up to two categories. P-values <0.05 were considered significant.
Results

Characteristics of study patients and tissue samples

Formalin-fixed paraffin-embedded tissue blocks were available from 76 patients. Mean age of included patients was 44 years, 84% was Caucasian and 71% had extra pulmonary involvement. 68% and 67% were classified in phenotype group B 2 and 5 years after diagnosis respectively (table 1).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sarcoidosis (n=76)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age *</td>
<td>43.98±12.22</td>
</tr>
<tr>
<td>Male sex</td>
<td>42 (55)</td>
</tr>
<tr>
<td>Ever smoker</td>
<td>43 (59)</td>
</tr>
<tr>
<td>Caucasian</td>
<td>64 (84)</td>
</tr>
<tr>
<td>Medication at time of biopsy</td>
<td>6 (8)</td>
</tr>
<tr>
<td>Third-line therapy *</td>
<td>27 (36)</td>
</tr>
<tr>
<td>COS group A/B (2 years follow up)</td>
<td>23/49 (32/68)</td>
</tr>
<tr>
<td>COS group A/B (5 years follow up)</td>
<td>15/31 (33/67)</td>
</tr>
<tr>
<td>Scadding stage at time biopsy</td>
<td>5/19/28/9/10/5</td>
</tr>
<tr>
<td>(0/I/II/III/IV/unknown)</td>
<td>(7/25/37/12/13/7)</td>
</tr>
<tr>
<td>Extra pulmonary involvement</td>
<td>54 (71)</td>
</tr>
<tr>
<td>Skin</td>
<td>18 (24)</td>
</tr>
<tr>
<td>Eyes</td>
<td>7 (9)</td>
</tr>
<tr>
<td>Liver</td>
<td>8 (11)</td>
</tr>
<tr>
<td>Heart</td>
<td>13 (17)</td>
</tr>
<tr>
<td>Spleen</td>
<td>3 (4)</td>
</tr>
<tr>
<td>Bones</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Nerve system</td>
<td>15 (20)</td>
</tr>
<tr>
<td>Central</td>
<td>6 (8)</td>
</tr>
<tr>
<td>Peripheral</td>
<td>1 (1)</td>
</tr>
<tr>
<td>SFN</td>
<td>10 (13)</td>
</tr>
</tbody>
</table>

Data is shown as absolute numbers with percentage in brackets.

* Age is age at time of biopsy and is shown as mean ± SD.

* Third-line therapy consisted of infliximab use at follow up.

COS: Clinical outcome status, SFN: Small fiber neuropathy, Scadding stages: 0 = Normal chest radiograph; I = Bilateral hilar lymphadenopathy (BHL); II = BHL with pulmonary infiltrates; III = pulmonary infiltrates without BHL; IV = fibrosis.

P. acnes can be detected in tissue samples of Dutch patient with sarcoidosis.
Most tissue sections used for staining originated from the lung, followed by lymph node and skin samples. *P. acnes* was detected in tissue samples from 31 of the 76 sarcoidosis patients (41%) and was located in the granulomas in 13 samples of all patients (17%) (table 2, figure 1 and figure 2). When *P. acnes* was not detected inside granulomas, it was mostly located directly adjacent to granulomas in histiocytes and in a few cases in granuloma-free areas of the tissue. Besides lung, lymph node and skin tissue, we also found presence of *P. acnes* in bone marrow and liver tissue. No significant difference was observed in the frequency of *P. acnes* detected in tissue or granulomas between the different organs used in the study (p = 0.583 and p = 0.490, respectively). *P. acnes* was detected in tissue or granulomas in 3 (43%) and 3 (43%) respectively, of the 7 lung samples obtained by video-assisted thoracic surgery (VATS), and in 7 (28%) and 4 (16%) respectively, of the lung samples obtained by transbronchial lung biopsy (TBLB). No significant difference in presence of *P. acnes* in tissue or granulomas was observed between the different biopsy methods used for the lung samples (p = 0.648 and p = 0.157, respectively) and lymph node samples (p = 0.167 and p = 0.588, respectively).
Presence of \textit{P. acnes} does not correlate with organ involvement

When relating positive \textit{P. acnes} staining results to clinical characteristics, no relation with age, sex, ethnicity, organ involvement or Scadding stage was observed (table 3).

\begin{table}[h]
\centering
\begin{tabular}{lrr}
\textbf{n} & \multicolumn{2}{c}{\textbf{Detection of} \textit{P. acnes} \textbf{in:}} \\
 & \textbf{Tissue} & \textbf{Granulomas} \\
\hline
\textbf{Total number of patients} & 76 & 31 (41) & 13 (17) \\
\textbf{Total number of tissue sections} & 80 & 32 (40) & 14 (18) \\
\textbf{Lung} & 32 & 10 (31) & 7 (22) \\
\textbf{VATS} & 7 & 3 (43) & 3 (43) \\
\textbf{TBLB} & 25 & 7 (28) & 4 (16) \\
\textbf{Lymph node} & 25 & 12 (48) & 2 (8) \\
\textbf{lymphadenectomy} & 14 & 9 (64) & 1 (7) \\
\textbf{mediastinoscopy} & 5 & 1 (20) & 0 \\
\textbf{EBUS-TBNA/needle} & 6 & 2 (33) & 1 (17) \\
\textbf{Skin} & 17 & 7 (41) & 4 (24) \\
\textbf{Other} & 6 & 3 (50) & 1 (17) \\
\textbf{Bone marrow} & 2 & 2 (100) & 0 \\
\textbf{Liver} & 2 & 1 (50) & 1 (50) \\
\textbf{Nasal concha} & 1 & 0 & 0 \\
\textbf{Salivary gland} & 1 & 0 & 0 \\
\hline
\end{tabular}
\caption{Detection of \textit{P. acnes} and origin of tissue used}
\end{table}

Data is shown as number of samples with percentages in brackets

a Of 4 of 76 patients, 2 tissue sections of different organs were stained namely: Lymph node (negative) and lung (\textit{P. acnes} positive in tissue and granulomas), liver (negative) and lymph node (\textit{P. acnes} positive in tissue), skin (\textit{P. acnes} positive in tissue and granulomas) and lung (negative), skin (\textit{P. acnes} positive in tissue and granulomas) and lung (\textit{P. acnes} positive in tissue and granulomas).

VATS: Video-assisted thoracoscopic surgery, TBLB: transbronchial lung biopsy, EBUS-TBNA: endobronchial ultrasound-transbronchial needle aspiration

\section*{Table 3 Presence of \textit{P. acnes} in tissue and granulomas related to organ involvement and Scadding stage}

<p>	PAB staining	\multicolumn{2}{c}{PAB staining present in granulomas}
Negative (n=45)	Positive (n=31)	\textbf{No} (n=63)
Age	44.59±12.51	43.08±11.94
Male sex	23 (51)	19 (61)
White	38 (84)	26 (84)
<table>
<thead>
<tr>
<th>Extra pulmonary involvement</th>
<th>32 (71)</th>
<th>22 (71)</th>
<th>0.989</th>
<th>46 (73)</th>
<th>8 (62)</th>
<th>0.504</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>12 (27)</td>
<td>6 (19)</td>
<td>0.461</td>
<td>15 (24)</td>
<td>3 (23)</td>
<td>1.000</td>
</tr>
<tr>
<td>Eyes</td>
<td>4 (9)</td>
<td>3 (10)</td>
<td>1.000</td>
<td>6 (10)</td>
<td>1 (8)</td>
<td>1.000</td>
</tr>
<tr>
<td>Liver</td>
<td>2 (4)</td>
<td>6 (19)</td>
<td>0.057</td>
<td>6 (10)</td>
<td>2 (15)</td>
<td>0.619</td>
</tr>
<tr>
<td>Heart</td>
<td>8 (18)</td>
<td>5 (16)</td>
<td>0.851</td>
<td>12 (19)</td>
<td>1 (8)</td>
<td>0.446</td>
</tr>
<tr>
<td>Spleen</td>
<td>2 (4)</td>
<td>3 (13)</td>
<td>1.000</td>
<td>2 (3)</td>
<td>1 (8)</td>
<td>0.435</td>
</tr>
<tr>
<td>Bones</td>
<td>3 (7)</td>
<td>3 (10)</td>
<td>0.641</td>
<td>4 (6)</td>
<td>0 (8)</td>
<td>1.000</td>
</tr>
<tr>
<td>Nerve system</td>
<td>12 (27)</td>
<td>6 (19)</td>
<td>0.048</td>
<td>14 (22)</td>
<td>1 (8)</td>
<td>0.444</td>
</tr>
<tr>
<td>Central</td>
<td>4 (9)</td>
<td>3 (10)</td>
<td>0.391</td>
<td>6 (10)</td>
<td>0 (8)</td>
<td>0.582</td>
</tr>
<tr>
<td>Peripheral</td>
<td>1 (2)</td>
<td>0 (3)</td>
<td>1.000</td>
<td>1 (2)</td>
<td>0 (8)</td>
<td>1.000</td>
</tr>
<tr>
<td>SFN</td>
<td>7 (16)</td>
<td>3 (10)</td>
<td>0.514</td>
<td>9 (14)</td>
<td>1 (8)</td>
<td>1.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age is age at time of biopsy and shown as mean ± SD</th>
</tr>
</thead>
</table>

Chest X-rays to determine Scadding stages were missing from 3 sarcoidosis patients at diagnosis, from 13 patients 2 years after diagnosis and from 35 patients 5 years after diagnosis. Scadding stages: 0 = Normal chest radiograph; I = Bilateral hilar lymphadenopathy (BHL); II = BHL with pulmonary infiltrates; III = pulmonary infiltrates without BHL; IV = fibrosis.

SFN: Small fiber neuropathy, PAB: P. acnes-specific monoclonal antibodies that react with cell-membrane-bound lipoteichoic acid

* A P-value regarding age was calculated using an independent samples T-test. Other P-values were calculated by the use of a Fisher’s exact test, except for sex (both p-values), extra pulmonary involvement in the P. acnes score group, skin, heart and nerve system involvement in the P. acnes score group and Scadding stages.
Presence of *P. acnes* correlates with clinical outcome

Presence of *P. acnes* in tissue was compared between the two COS groups defined two and five years after diagnosis. Two years after diagnosis, a trend (p=0.093) towards a higher prevalence of *P. acnes* in tissue was seen in COS group B (47%, 23/49) compared to COS group A (26%, 6/23). When comparing presence of *P. acnes* specifically inside granulomas, also a trend (p=0.050) towards a higher prevalence was seen in COS group B patients (25%, 12/49) compared to COS group A patients (4%, 1/23) (figure 3A). COS defined after 5 years revealed a trend (p=0.072) towards a higher prevalence of *P. acnes* in tissue in COS group B (55%, 17/31) compared to COS group A (27%, 4/15). A significantly higher percentage of patients within COS group B (29%, 9/31) were positively stained for *P. acnes* inside granulomas compared to COS group A patients (0, 0/15) (p= 0.021, figure 3B).

Since COS group B can be a very heterogeneous group of patients, ranging from patients with remission of symptoms due to long-term corticosteroid treatment to severe therapy refractory patients requiring third-line medication, we also determined whether presence of *P. acnes* in tissue and granulomas was specifically related to patients requiring third-line medication at follow up. In a significant higher percentage of patients using infliximab, *P. acnes* was present in granulomas compared to non-third-line therapy requiring patients (33% vs. 8%, p=0.009) (figure 4).

Discussion

In this study we demonstrated that *P. acnes* is present in granulomas of Dutch patients with sarcoidosis, which is in line with previous studies in Japanese and German sarcoidosis patients (20). Furthermore, to the best of our knowledge, our study is the first to show a relation between presence of *P. acnes* and clinical outcome in sarcoidosis. Regardless of whether the role of *P. acnes*
might be antigenic or mitogenic, this data adds to the rational that *P. acnes* might be involved in the disease pathogenesis of sarcoidosis.

Negi *et al.* (20) previously examined the presence of *P. acnes* in tissue samples from sarcoidosis patients, using the same PAB antibody as used in the current study. A remarkable difference was found in percentage of *P. acnes* positive sarcoidosis patients. They found *P. acnes* in granulomas in 57% of the 77 lung samples from Japanese sarcoidosis patients whereas we found *P. acnes* in granulomas in 22% of the 32 lung samples from Dutch sarcoidosis patients. This difference could be partially explained by the lower proportion of VATS samples (35% in their study compared to 22% in our study). Negi *et al.* described that *P. acnes* in granulomas was more frequent detected in VATS samples compared to TBLB samples, probably due to the larger size of VATS samples. Similar to the lung samples, the percentage of Dutch patients with presence of *P. acnes* in granulomas of lymph node samples (8%) was lower compared to Japanese and German patients (88% and 89% respectively). Although the difference between Japanese and Dutch patients may be explained by difference in ethnicity, this is not a plausible explanation for the difference between German and Dutch patients. The difference in the detection frequency of *P. acnes* in granulomas can possible be caused by a lower sensitivity of immunostaining method used in our study. Therefore, future studies will have to compare the detection sensitivity of *P. acnes* in granulomas using the different immunostaining methods. It is however important to state that the localization and pattern of *P. acnes* within and outside granulomas was comparable with the study of Negi *et al.* Specifically, we observed that presence of *P. acnes* outside granulomas was most frequently detected directly adjacent to granulomas but also in granuloma-free parts of the tissue in a few cases. Furthermore, the pattern within granulomas was comparable, with more intense dot like structures in immature granulomas and more sparsely-distributed staining or even no staining in mature granulomas.

A new and clinical relevant finding, in our opinion, is the fact that this is the first study that shows an association between presence of *P. acnes* and clinical outcome in patients with sarcoidosis. We observed that presence of *P. acnes* in tissue and in granulomas is more frequently found in patients
with a chronic disease course requiring chronic treatment. Several studies demonstrated the mitogenic properties of *P. acnes* on different immune cells (16,24,25). Our study was not aimed to prove that *P. acnes* has a specific etiologic role in sarcoidosis. However, in our opinion, the results do suggest that at least a potential mitogenic role of *P. acnes* may contribute to sarcoidosis disease pathogenesis. It is tempting to speculate that presence of *P. acnes* in or around granulomas can enhance an ongoing inflammatory reaction in sarcoidosis, contributing to perpetuation of the inflammatory granulomatous response seen in some patients. If this holds true, it is interesting to see whether decreasing the bacterial load of *P. acnes* using antibiotics can be beneficial in a subgroup of patients with sarcoidosis.

A case report already described a good effect of clarithromycin on fever, joint pain, FDG uptake on PET-CT, CRP and s-IL2R levels in a sarcoidosis patient in whom *P. acnes* was present in granulomas (26). Moreover, a retrospective study described good responses on treatment with minocycline in *P. acnes* positive cutaneous sarcoidosis patients (27). When we examined severe therapy refractory patients for presence of *P. acnes*, we observed that patients requiring infliximab treatment at follow up, had more often presence of *P. acnes* in granulomas at diagnosis compared to patients without treatment or treated with first or second line treatment. If antibacterial treatment in sarcoidosis patients with presence of *P. acnes* in tissue and granulomas is beneficial, the requirement of 3rd line treatments (e.g. infliximab) may be prevented.

Currently, in a randomized controlled clinical trial (J-ACNES), the effect of antibacterial drugs in addition to standard corticosteroid therapy in cardiac sarcoidosis patients is examined (28). However, in this trial presence of *P. acnes* in myocardial tissue was not an inclusion criterion. Therefore, in future studies it would be interesting to have information on the presence or absence of *P. acnes* in these patients while investigating the effect of antibiotic therapy.

A limitation of the study was that the COS after five years could not be determined in all patients. However, since the proportion of patients within COS group A and B was quite similar after two and five years and the results regarding association with *P. acnes* staining as well, we assume that this
analysis on a smaller group of patients has not introduced a bias. A disadvantage of using COS is the fact that disease status and medication use have been retrospectively assessed. Since we only scored whether medication was used or not, we have no information on patients who declined the use of medication while they actually needed it.

Another limitation is that we probably have a more severe patient group than other general hospitals, since the Antonius Hospital is an national referral center for ILD and Sarcoidosis. As a consequence we had very few patients in the resolved and minimal disease COS groups. For this reason we had not enough patients in every group to adequately analyze whether disease status alone, irrespective of use of medication, was associated with presence of *P. acnes* in tissue and granulomas. However, instead of disease status we think that need for treatment could be of more value regarding presence of *P. acnes*. If we want to further explore the use of antibacterial therapy, in our opinion, it is more relevant to focus on patients who actually need treatment.

In future studies, it would be interesting to add a second detection method, such as PCR, to the immunostaining. To accurately compare the results, development and use of a primer specific to LTA of the *P. acnes* bacteria would be valuable.

To conclude, this study confirms the presence of *P. acnes* in tissue and granulomas of respectively 40% and 17% of Dutch patients with sarcoidosis. Interestingly, the presence of *P. acnes* inside granulomas of Dutch sarcoidosis patients was associated with a chronic disease phenotype and requirement of treatment. Regardless of whether the role of *P. acnes* is antigenic or mitogenic, our data contribute to the premise that it is relevant to further explore antibacterial therapy as a treatment option for a subset of sarcoidosis patients.
Contributions

EB contributed to data acquisition and analysis, statistical analysis and drafting and editing of the manuscript. KS participated in the design of the study, scored the staining results and edited the manuscript. YE developed the PAB antibody, advised on study design and edited the manuscript. KU reviewed the methods and advised on the automated staining protocol. JD cared out all the immunohistochemical stainings and developed the automated staining protocol. JG supervised the project and edited the manuscript. MV designed the study, supervised the project and edited the manuscript.
References

Figure 1 Presence of P. acnes in and around an immature granuloma of the lymph node
A. Hematoxylin and eosin (H&E) staining of a needle lymph node biopsy including several mature granulomas. Arrow: a mature granuloma including a multinucleated giant cell (arrow head). Open arrow: an immature granuloma. B. PAB staining corresponding with the area in picture A, including several areas with P. acnes-positive red signals (rectangle C and D) and a mature granuloma negative for P. acnes (rectangle E). C. Higher magnification of positive P. acnes staining (circles) around granulomas. D. Higher magnification of positive P. acnes staining (circle) in an immature granuloma. E. Higher magnification of another area including a multinucleated giant cell positive for P. acnes.
Figure 1 Presence of P. acnes in and around an immature granuloma of the lymph node
A. Hematoxylin and eosin (H&E) staining of a needle lymph node biopsy including several mature
granulomas. Arrow: a mature granuloma including a multinucleated giant cell (arrow head). Open arrow: an
immature granuloma. B. PAB staining corresponding with the area in picture A, including several areas with
P. acnes-positive red signals (rectangle C and D) and a mature granuloma negative for P. acnes (rectangle
E). C. Higher magnification of positive P. acnes staining (circles) around granulomas. D. Higher
magnification of positive P. acnes staining (circle) in an immature granuloma. E. Higher magnification of
another area including a multinucleated giant cell positive for P. acnes.
Figure 1 Presence of P. acnes in and around an immature granuloma of the lymph node
A. Hematoxylin and eosin (H&E) staining of a needle lymph node biopsy including several mature
granulomas. Arrow: a mature granuloma including a multinucleated giant cell (arrow head). Open arrow: an
immature granuloma. B. PAB staining corresponding with the area in picture A, including several areas with
P. acnes-positive red signals (rectangle C and D) and a mature granuloma negative for P. acnes (rectangle
E). C. Higher magnification of positive P. acnes staining (circles) around granulomas. D. Higher
magnification of positive P. acnes staining (circle) in an immature granuloma. E. Higher magnification of
another area including a multinucleated giant cell positive for P. acnes.
Figure 1 Presence of *P. acnes* in and around an immature granuloma of the lymph node

A. Hematoxylin and eosin (H&E) staining of a needle lymph node biopsy including several mature granulomas. Arrow: a mature granuloma including a multinucleated giant cell (arrow head). Open arrow: an immature granuloma. B. PAB staining corresponding with the area in picture A, including several areas with *P. acnes*-positive red signals (rectangle C and D) and a mature granuloma negative for *P. acnes* (rectangle E). C. Higher magnification of positive *P. acnes* staining (circles) around granulomas. D. Higher magnification of positive *P. acnes* staining (circle) in an immature granuloma. E. Higher magnification of another area including a multinucleated giant cell positive for *P. acnes*.
Figure 1 Presence of P. acnes in and around an immature granuloma of the lymph node
A. Hematoxylin and eosin (H&E) staining of a needle lymph node biopsy including several mature granulomas. Arrow: a mature granuloma including a multinucleated giant cell (arrow head). Open arrow: an immature granuloma. B. PAB staining corresponding with the area in picture A, including several areas with P. acnes-positive red signals (rectangle C and D) and a mature granuloma negative for P. acnes (rectangle E). C. Higher magnification of positive P. acnes staining (circles) around granulomas. D. Higher magnification of positive P. acnes staining (circle) in an immature granuloma. E. Higher magnification of another area including a multinucleated giant cell positive for P. acnes
Figure 2 Presence of P. acnes in a mature granuloma in subcutaneous tissue of the lower eyelid
A. Overview of hematoxylin and eosin (H&E) staining of subcutaneous tissue of the lower eyelid. B. Higher magnification of area B from picture A, including mature granulomas (arrows) and multinucleated giant cells (arrow head). C. PAB staining of corresponding area of picture B, including several areas of P. acnes-positive signals (circles and rectangle D), in mature granulomas. D. Higher magnification of area D from picture C, with positive P. acnes staining in a mature granuloma.
Figure 2 Presence of P. acnes in a mature granuloma in subcutaneous tissue of the lower eyelid
A. Overview of hematoxylin and eosin (H&E) staining of subcutaneous tissue of the lower eyelid. B. Higher magnification of area B from picture A, including mature granulomas (arrows) and multinucleated giant cells (arrow head). C. PAB staining of corresponding area of picture B, including several areas of P. acnes-positive signals (circles and rectangle D), in mature granulomas. D. Higher magnification of area D from picture C, with positive P. acnes staining in a mature granuloma.
Figure 2 Presence of *P. acnes* in a mature granuloma in subcutaneous tissue of the lower eyelid
A. Overview of hematoxylin and eosin (H&E) staining of subcutaneous tissue of the lower eyelid. B. Higher magnification of area B from picture A, including mature granulomas (arrows) and multinucleated giant cells (arrow head). C. PAB staining of corresponding area of picture B, including several areas of *P. acnes*-positive signals (circles and rectangle D), in mature granulomas. D. Higher magnification of area D from picture C, with positive *P. acnes* staining in a mature granuloma.
Figure 2 Presence of P. acnes in a mature granuloma in subcutaneous tissue of the lower eyelid
A. Overview of hematoxylin and eosin (H&E) staining of subcutaneous tissue of the lower eyelid. B. Higher magnification of area B from picture A, including mature granulomas (arrows) and multinucleated giant cells (arrow head). C. PAB staining of corresponding area of picture B, including several areas of P. acnes-positive signals (circles and rectangle D), in mature granulomas. D. Higher magnification of area D from picture C, with positive P. acnes staining in a mature granuloma.
Figure 3 Frequency of P. acnes detected in tissue samples from sarcoidosis patients with a different clinical outcome status 2 years (A) and 5 years (B) after diagnosis.

COS group A = Resolved, minimal or persistent disease without treatment (COS 1-6).
COS group B = Persistent disease with need for treatment (COS 7-9).

PAB: P. acnes-specific monoclonal antibodies that react with cell-membrane-bound lipoteichoic acid.
A significantly higher percentage of third-line therapy requiring patients (all using infliximab) showed presence of *P. acnes* in granulomas than patients who did not require third-line therapy (*P* = 0.009).

PAB: *P. acnes*-specific monoclonal antibodies that react with cell-membrane-bound lipoteichoic acid.

Figure 4 Frequency of *P. acnes* detected in biopsy samples from sarcoidosis patients with or without third-line therapy (infliximab) during follow up.