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Abstract  

Background 

Breath analyses in a burgeoning field, with interest in volatile organic compounds (VOCs) as a non-

invasive diagnostic tool or an outcome measure, but no randomized clinical trials (RCT) have yet 

evaluated this technology in a clinical trial longitudinally. In a pilot RCT, our exploratory objectives were 

feasibility of measuring VOCs via multiple techniques, assessing relationships between VOCs and 

Haemophilus colonization, and whether CXCR2 antagonism with danirixin altered lung microbiome 

composition in individuals with chronic obstructive pulmonary disease (COPD). 

Method 

43 participants had VOCs and sputum biomarkers evaluated. VOCs and induced sputum were collected 

after 6 hours of fasting at screening, Days 1, 7 and 14. VOCs were analyzed via gas chromatography mass 

spectrometry (GCMS), field asymmetric ion mobility spectrometry and eNose. The primary outcome for 

these analyses was the relationship between VOCs and Haemophilus abundance determined by 16S 

rRNA sequencing. 

Results 

A joint effects model demonstrated a modest relationship between 4 exhaled VOCs and Haemophilus 

relative abundance (R2 = 0.55) measured only by GCMS, but not as measured GC FAIMs or eNose. There 

was considerable variability in absolute quantities of individual VOCs longitudinally.  

  



Conclusions 

VOC measurement in clinical trials to identify subsets of COPD is feasible but assessment of new VOC 

technologies must include concurrent GCMS validation. Further work to standardize collection of VOCs 

and measuring a background or “housekeeper” VOC is required to understand and normalize individual 

VOC quantities. 

 

  



Introduction  

Breath analyses via measurement of volatile organic compounds (VOCs) is a burgeoning and emerging 

field, with interest in the use of VOCs as a non-invasive tool for patients diagnosis and stratification or 

even  as an outcome measure in clinical trials, with one such example being fractional exhaled nitric 

oxide (FeNO) having been successfully adopted into clinical and research practice (1). Breath analyses 

have been shown to distinguish smokers from non-smokers (2), and COPD from non-COPD subjects (3), 

as well as relating to COPD severity (4) in cross-sectional sampling. 

 

The lung microbiome may be an important disease modulator in chronic obstructive pulmonary disease 

(COPD), where Haemophilus influenzae colonization appears to increase neutrophilic inflammation 

including formation of neutrophil extracellular traps (NETs) (5). Although ordinarily a host defense 

mechanism (6), excessive NETs may cause host damage in airways disease (7), and may provide the 

mechanistic link between airway infection/colonization, airway inflammation and disease progression. 

Non-invasive diagnosis of airway infection and inflammation could enhance targeting of antibiotic or 

anti-inflammatory therapies such as CXCR2 antagonists, which have been shown to reduce NETs 

production in vitro  (8, 9). 

 

Breathomics provide one such opportunity for non-invasive diagnosis. Breath samples can be analyzed 

on a variety of platforms. Gas chromatography mass spectrometry (GC MS) is considered the gold 

standard and can distinguish individual VOCs. Field asymmetric ion mobility spectrometry (FAIMS), for 

example, via Lonestar (Owlstone Medical, Cambridge, UK), relies on VOCs from a breath sample 

traveling through a charged chamber, and the pattern of migration according to ionic charge allows 

distinguishing between individual compounds. Electronic nose (eNose) devices are electronic systems 

containing chemoresistor sensors that generate an electric signal upon encountering a gaseous mixture. 



For example, the Cyranose (Sensigient, CA, USA) device has been used widely in the field, containing 32 

composite polymer carbon black sensors that each generate a signal. By definition, eNose devices 

cannot distinguish individual VOCs but may be useful for pattern recognition. Whilst other platforms for 

breathomics also exist, FAIMS and eNose methods are currently being explored widely in the clinical 

research setting. In the case of eNoses, these are portable and therefore can ultimately form point of 

care tests. FAIMS technology also has the potential to be miniaturized for point of care use if a pattern 

of VOCs of interest is established. 

 

If breathomics are to be used for patient selection in clinical studies, they first need evaluation for 

feasibility in randomized controlled trials (RCTs). The advent of sample collection via sorbent tubes with 

the ReCIVA device has only recently enabled centralized VOC analyses (10) via storage and shipping of 

breath samples at room temperature, but sparse longitudinal data to inform trial design has limited 

adoption, and to date no RCTs have evaluated VOCs longitudinally. Furthermore, no study has looked at 

Haemophilus breath signals specifically. Several studies have found VOCs or eNose signals associated 

with COPD exacerbations (11, 12) with three eNose studies specifically elucidating breath signals 

associated with bacterial/viral infection caused exacerbations (13-15). However, no study has focused 

on Haemophilus or microbiome colonization, and the eNose studies on viral/bacterial infections lacked 

the ability to determine specific VOCs. 

 

We conducted pilot randomized control trial primarily to study the effects of a CXCR2 antagonist, 

danirixin, the primary results for which have been published (16).  In this pilot RCT, our exploratory 

objectives were feasibility of measuring VOCs via multiple techniques, assessing relationships between 

VOCs and Haemophilus colonization, and whether CXCR2 antagonism with danirixin altered lung 

microbiome composition in individuals with COPD. 



 

Methods 

In a double-blind RCT (NCT03250689) (16), participants were randomized (3:1) to receive danirixin 35mg 

bid or placebo for 14 days (study details available in the online supplement).  

 

Participants were included if they were aged between 50 and 75 years, with a clinical diagnosis of COPD 

with mild to moderate airflow obstruction (post-bronchodilator forced expiratory volume in one second 

(FEV1)/ Forced Vital Capacity (FVC) ratio <0.7 and FEV1% predicted (pred) ≥40% at screening), had 

elevated sputum neutrophil extracellular traps based on screening assay for histone elastase complexes 

of >0.5 units/ml sputum, and were current or former smokers with a minimum of 10 pack year history. 

Patients with lung diseases other than COPD or recent pneumonia were excluded, and patients on 

medication known to impact NETs formation were also excluded from the study, for example, use of 

phosphodiesterase-4 inhibitors (17): roflumilast, crisaborole and apremilast, broad spectrum 

phosphodiesterase inhibitors (e.g. theophylline), raloxifene and molecular weight heparin. Additionally, 

systemic immunosuppressive medication, including current oral corticosteroids  at a dose >5 mg, 

concurrently or within 28 days preceding the screening visit, acute or chronic use of antibiotics, 

including macrolides for the prevention or treatment of COPD exacerbations were prohibited. Examples 

of chronic use include daily or two-three times per week for at least 3 months. Prohibited medications 

related to danirixin specifically were oral or injectable CYP3A4 or BCRP substrates with narrow 

therapeutic index.  

Patients meeting inclusion criteria were randomized and underwent key assessments, including 

spirometry, VOC sampling via a ReCIVA device (Owlstone Medical, Cambridge, UK), induced sputum (via 

up to 4% nebulized saline) and venepuncture at screening, day 1, day 7 and day 14. Patients who failed 

screening still provided sputum and VOCs samples at the screening visit, though they were not 



randomized to dosing groups for further visits and did not provide any other sample type.  Sputum and 

breath samples from screen failures were included in analyses. VOC samples were taken after 6 hours of 

fasting on all visits; at the baseline visit subjects additionally provided an extra VOC sample 4 hours after 

dosing. Participants who were current smokers were asked to refrain from smoking for at least 4 hours 

prior to each visit. Sputum measurements included microbiome (profiled via 16S rRNA gene 

sequencing), NETs (immunoassays for histone-elastase and DNA-elastase complexes, confocal 

microscopy for sputum NET area), and sputum neutrophils using methods described previously (5). 

Sputum samples were additionally assessed for quality via percentage of squamous cell and viable 

leukocyte counts, and a primary completer population defined on the basis of having “good” or 

“acceptable” quality sputum at baseline and day 14; the primary completer population was used for 

NETs analyses although all sputum samples were used for the microbiome analyses. 4 pairs of VOC 

samples were taken at each measurement timepoint, and were subject to measurement via 3 

techniques at a centralized laboratory; gas chromatography mass spectrometry (GC MS), field 

asymmetric ion mobility spectrometry (FAIMS) via Lonestar (Owlstone Medical, Cambridge, UK) and an 

electronic nose (eNose) device, Cyranose (Sensigient, CA, USA). The fourth VOC sample pair was 

analyzed by GC MS when possible (i.e., when the back-up was not needed due to failure of primary 

sample on any of the 3 techniques) to provide a replicate measurement to increase accuracy of VOC 

levels. 

 

 

For the VOC samples, a quality control (QC) sample was run between every 4 patient samples, and 

background monitoring was carried out with a blank tube run after every 4 patient samples and after 

every QC sample. Blank tubes were clean tubes used to monitor potential carry-over from one sample to 

the next or incomplete desorption; neither was found to be an issue. VOC levels were corrected for 



analytical variation/instrument drift by normalization to the average drift in intensity of a mixture of 

external standards, i.e. the QC samples. This method was found to be superior to normalization 

methods using the breath samples themselves, such as scaling to total signal intensity, in reducing 

analytical variation.  The QC samples were made by spiking on a fixed volume of a QC solution onto a 

clean sorbent tube and briefly purging with high-purity nitrogen. The QC solution was composed of a 

selection of chemicals meant to reflect classes of VOCs commonly found in breath all at fixed 

concentrations. Ambient background controls were not collected or used for background subtraction. 

 

TD-GC-MS chromatogram was converted into a features list and automatic mapping was applied to 

identify a unique set of characteristics with subsequent visual inspection to check peak shape and 

retention time, and specificity of ions. All molecular features of interest (MFs) were run against NIST 

standard database; matches between library and compound was >70%, MF was given a tentative ID.  

 

The primary endpoint for the study was change from baseline in sputum NETs as measured via histone 

elastase immunoassays, and although sample size was based on feasibility, we powered the study for a 

70% probability of detecting a true reduction of 30% reduction in NETs. Changes in lung microbiome and 

VOCs were exploratory endpoints. 

 

To test relationships between Haemophilus and VOCs, PCA, single effects models, and joint effects 

models were done, respectively, with the sklearn, statsmodels, and cvglmnet packages in Python v3.6 in 

June 2019. All analyses focused on samples taken at the screening visit and were cross-sectional across 

the entire patient population regardless of being screening pass/fail. The effect of screening pass/fail on 

subsequent findings was assessed by confounder analysis and was not found to have any significant 



effect. Outlier capping was performed independently on each molecular feature using Tukey Fences 

prior to the single and joint effect analyses. In cases where patient provided two screening breath 

samples that were successfully analyzed by GC MS, single effect regression models used a Huber 

sandwich variance estimator to allow for the inclusion of multiple samples per patient. Permutation 

testing was used to adjust MF p values for multiple testing (18). Joint effects regression models were 

built on all MFs with unadjusted p value < 0.2 from the single effects analysis using least absolute 

shrinkage and selection operator (LASSO) regression. The shrinkage (lambda) parameter was estimated 

using leave-group-out cross-validation, each group being all samples from a single patient. Relative 

abundance of the Haemophilus genus was used as a continuous outcome variable.  16S rRNA gene PCR 

products were analyzed using the QIIME pipeline (version 1.9.1) (19) and taxonomies were assigned 

using a closed reference alignment to the Greengenes 16S rRNA database (version 13_8). If 

identification was not possible at the genus level, the operational taxonomic unites (OTUs) were 

classified at a higher taxonomic level. OTUs with a maximum representation in a sample of 0.5% were 

excluded. 

 

 

All participants provided written, informed consent. The East of Scotland Research Ethics Service 1 

(Reference: 17/SS/0111) provided ethical approval for the study, which was carried out in accordance 

with the Declaration of Helsinki. 

  



 

Results 

Baseline Characteristics 

43 participants were screened, 19 randomized (14 danirixin: 5 placebo), out of a planned 32 (Figure 1); 

the study was terminated early due to cessation of the danirixin development program. Both treatment 

groups were similar in terms of age and baseline FEV1 (Table 1), although there was a greater proportion 

of current smokers in the placebo group (43%) in comparison to the danirixin group (20%). 

VOC measures  

For participants who failed screening, the VOC samples and sputum samples for the microbiome were 

included in the analyses for exploring the relationship between Haemophilus abundance and VOCs at 

the screening visit. There were 41 participants who provided VOC samples at the screening visit; only 1 

participant was unable to provide sputum at screening.  

Subsequent to screening, a primary completer population for the study was identified on the basis of 

acceptable sputum quality at both baseline and day 14. This resulted in 3 patients in the placebo arm 

and 8 in the danirixin arm being part of the primary completer population for the purposes of measuring 

sputum NETs. 

176 VOC samples were collected from 41 patients but 68 samples were excluded at QC stage (57 

rejected due to detector saturation (thermal desorption), 7 rejected due to tube leak (thermal 

desorption), 1 rejected as poor-quality in lab (machine maintenance), 1 rejected due to low volume at 

collection) and 6 samples did not have matching microbiome analysis at screening. From the screening 

visit, this resulted in 31 samples from 22 patients. MFs or VOCs showed considerable variability in 

absolute levels longitudinally.  



 

Microbiome 

There were no statistically significant differences between treatment groups in microbiome alpha 

diversity, total bacterial load or relative Haemophilus abundance (Figure 2). Lung microbiome 

composition appeared broadly similar to that seen in other COPD cohorts (Figure 2), but abundance of 

Haemophilus was lower than that observed in COPD cohorts enriched for frequently exacerbating 

participants (20, 21). 

 

Relationship between individual VOCs and Haemophilus, sputum neutrophils & NETsCross-sectional 

correlations between VOC levels and other factors were assessed using samples from the screening visit. 

GC-MS identified 105 MFs; a single effects-model for individual MFs identified 4 VOCs with significant 

correlations (R~0.15) with Haemophilus abundance. A joint-effects model with 8 VOCs gave a modest 

correlation with Haemophilus (R2 of 0.55) (Figure 3). FAIMS identified 55 MFs, a single-effects model for 

Haemophilus identified one significant MF with poor correlation, and a joint-effects model could not be 

properly evaluated. 

 

There was no overlap between VOCs that had the highest correlations with haemophilus abundance, 

sputum neutrophils or NETs (Figure 4); no significant correlation between individual VOCs and sputum 

neutrophils and NETs as measured via GCMS or GCFAIMS was observed but the small number of paired 

samples available for these analyses limited definitive conclusions. VOCs or molecular features (MF) that 

correlated most strongly with Haemophilus were different to those that correlated most strongly 

sputum NETs or neutrophils, suggesting distinct biological pathways and/or origins for these VOCs. 



 

For Cyranose, 8.5% of samples could not be analyzed as sensor data were abnormally low. Sensors 

displayed time trends unrelated to subject, treatment, or visit; after July 2018 there was a noticeable 

decrease in mean and variance for all sensors suggesting sensor drift. No relationship was observed 

between sensor signals and Haemophilus abundance across the population at baseline sputum 

neutrophils or NETs. 

 

Discussion 

Measuring exhaled VOCs is feasible in RCTs, however backup samples should be taken along with 

stringent instrument monitoring due to the potential for QC failure. Individual VOCs may relate to 

Haemophilus colonization, and a join-effects model found a modest correlation between VOCs and 

Haemophilus relative abundance but this relationship was only apparent via GC-MS analyses. 

 

Three of the VOCs were tentatively identified as methylated hydrocarbons of similar chemical 

functionality to those previously associated with inflammatory conditions in human subjects, although 

different to hexane, nonanal and 1-propranolol recently identified as being related to eosinophilic 

asthma, and undecane, indicative of a pauci-granulocytic sputum phenotype (22). Identified VOCs from 

our clinical, in vivo samples were distinct from those reported in literature to be released in vitro by 

H.influenzae (23) however it is possible that some of the unidentified hydrocarbons may prove a match; 

also the in vitro versus in vivo VOC profile may differ since in vivo profiles will be modulated by other 

microbiota components in addition to other factors such as diet or airway inflammation. There is a 

paucity in data for disease-specific VOCs across literature however, with Christiansen et al noting that no 



candidate breath biomarkers in COPD were detectable in all the studies in their literature review, and 

only three biomarkers being reported in more than one study (24) . Thus, our present data adds to the 

growing library of compounds that may be important in COPD and airways disease. 

 

One reason for the differing VOC profiles across literature may be the variability in absolute levels of 

compounds, which we observed in our own study, and has been noted even for established biomarkers. 

Fractional exhaled nitrous oxide (FeNO) is an example of an exhaled compound that has successfully 

been implemented into clinical practice, and can used both clinically and in trials to identify patients 

with eosinophilic asthma. Despite becoming an established biomarker, FeNO still demonstrates 

considerable intra-day, intra-patient variability in terms of absolute levels (25) . Therefore the 

longitudinal variability points to the need for standardized sampling protocols, since it appears that a 

period of fasting alone may not be enough. There is also an urgent need for identifying background 

VOCs for use as “housekeepers” to normalize levels of compounds against. Taking ambient background 

samples may also help to eliminate some sources of variation. Our work with the Cyranose eNose device 

also points to the need for considering calibration and drift, especially if considering use at the bedside 

for diagnosis. 

 

Although sampling was acceptable to patients and site staff in our study, with overall high compliance 

with sampling, there was a notable rate of QC failure at the analysis stage. Since our study, further work 

has suggested that it may be acceptable to freeze breath samples, which may allow for backup samples 

to be taken and can mitigate failure at the analyses stage, although further validation work is required in 

this regard. Coupled with the high QC failure rate for the VOC samples and early trial termination, the 



limitation in paired sputum and VOC samples limited our ability to measure longitudinal relationships 

between Haemophilus abundance, sputum neutrophils or NETs and VOCs. 

 

Study results were inconclusive in determining whether CXCR2 antagonism altered lung microbiome 

composition in COPD due to the early termination of the study, however the two week treatment period 

was likely too short to expect changes in microbiome composition. Furthermore, we sampled induced 

sputum for microbiome and subtle changes in the lower airway may be obscured by the high biomass 

from oral microbiome. The lower than anticipated sample size, high VOC sample failure rate and the 

lower than expected Haemophilus relative abundance limited the ability to detect a relationship 

between VOCs and Haemophilus at screening. Whilst we included individuals with elevated sputum 

NETs, which may correlate with Haemophilus abundance (5), our trial participants had higher FEV1 and 

were not enriched for frequent exacerbations (20, 21) , which could explain the lower Haemophilus 

predominance in our study. 

 

One limitation of our study was the imbalance between placebo and danirixin groups in baseline 

smoking status, which could lead to differences in both NETs formation and VOCs. Participants were 

asked to refrain from smoking for at least 4 hours prior to each visit, however that time limit may be of 

insufficient duration to impact VOCs. Furthermore, ongoing systemic inflammation from smoking 

between visits may impact NETs production. Only 1 subject in the danirixin group was on systemic 

steroids and anti-infectives during the study, therefore this is unlikely to impact our overall results and 

conclusions. Additionally we note that there is a lack of robust evidence that steroids impact NET 

production. 

 



In conclusion, measuring exhaled VOCs is feasible in RCTs, and our results suggest that VOCs may relate 

to Haemophilus abundance. Several challenges remain for implementing breath analyses into RCTs, 

especially the longitudinal variability in individual VOC abundance. We recommend that GC-MS form 

part of any VOC evaluation, and that backup samples are taken in further exploration of the utility of 

VOCs as a diagnostic tool.  
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Table 1 Baseline Demographics of trial participants 

  Placebo (n=5) Danirixin (n=14) 

Age (years)  62 (6) 65 (7) 

Sex (Male/Female)  2/3 6/8 

Race  (n)  
White/Caucasian/European 

 5 14 

Current smoker (%)  2043 4320 

Smoking Pack Year History  48 (13) 44 (19) 

Body Mass Index (kg/m2)  30.9 27.1 

    

FEV1 (L)  2.49 (0.64) 1.94 (0.71) 

FEV1%predicted  79.1 (7.5) 69.5 (18.4) 

FVC (L)  4.07 (1.16) 3.34 (1.17) 

FEV1/FVC  0.62 (0.08) 0.59 (0.08) 

CAT score  17.0 (1.00) 17.3 (5.97) 

    

Medications, n (%)    
Long-acting cholinergic 

Short-acting beta-2 agonist 
Inhaled corticosteroid 

Long-acting beta-2 agonist 
Corticosteroid – systemic 

Anti-infectives 

 3 (60) 
4 (80) 
3 (60) 
3 (60) 

0 
0 

9 (64) 
8 (57) 
6 (43) 
9 (64) 
1 (7) 
1 (7) 

 

 

 

 

 

Results presented as mean (standard deviation). 

FEV1%predicted = Forced expiratory volume in 1 second % predicted 

  



 

Figure 1 CONSORT diagram 

CONSORT diagram for trial participants. The “Primary Completer” population was defined via subjects 

who provided “good” or “acceptable” quality sputum samples (based on % of squamous cells and viable 

leukocytes) at baseline and day 14. The primary completer population was used for sputum NETs 

analyses, but the entire study population was used for the microbiome analysis. 

  



 

Figure 2 Changes in lung microbiome composition and bacterial load during study 

 

Figure 1A: Alpha (Shannon) diversity showed no significant differences by treatment group (p=0.858, 

Wilcoxin rank-sum test) using pooled samples across visits between treatment groups 1B: Changes in 

relative abundance of Proteobacteria (including Haemophilus) during study. No significant differences in 

a linear mixed-effects model (using the patient as a random effect) were observed between danirixin 

(n=12) and placebo (n=5) groups (p=0.174). 1D: No significant differences in bacterial load as measured 

via 16S qPCR between danirixin and placebo groups was observed (p=0.8551, LME). 1D-E: Overall 

microbiome composition was similar between danirixin and placebo groups at the (D) phylum and (E) 

genus levels. 

  



 

Figure 3 Joint-effects model to evaluate predictive ability of VOCs for Haemophilus Influenzae relative 

abundance 

 

Plot of predicted values for joint-effects model for VOCs against the measured values of Haemophilus 

relative abundance. Each point represents the predicted and measured value for a single sample at the 

screening visit (n=31). The dashed orange line represents the lines for a perfect model. 

  



 

Figure 4 Individual VOCs ordered by correlation with Haemophilus influenza relative abundance, 

percent sputum neutrophils and sputum NET area as measured by GC-MS  

Individual VOCs or molecular features (MFs), measured by GC-MS, ordered by correlation against a) 

Haemophilus influenza relative abundance b) percent sputum neutrophils and c) sputum NET area. MF 

78 has strongest correlation with Haemophilus influenza relative abundance, MFs 65, 57 and 11 with 

percent sputum neutrophils and MFs 50, 43, 8 and 63 with sputum NET area, showing overall lack of 

overlap between VOCs that may relate to host microbiome, sputum neutrophils and sputum NETs.    


