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Take home: The lack of comparability in indices of ventilation heterogeneity between free- 

and controlled-breathing MBNW protocols is confirmed in asthma. 
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To the Editor:  

Multiple Breath Nitrogen Washout (MBNW) is an emerging clinical test for assessing 

ventilation heterogeneity(1), often characteristically increased in asthma. MBNW indices 

both indicate and predict response to asthma treatment(2-4), and therefore may be an 

important tool for guiding treatment decisions(2). Two established breathing protocols are 

currently in use: 1-litre tidal volume-controlled breathing (CB)(5, 6) and unrestricted free 

breathing (FB)(7). The CB protocol requires targeted tidal volume (VT) and respiratory rate 

(RR), whereas the FB protocol encourages relaxed tidal breathing, making it more suitable 

for paediatrics(8). Two recently-published studies in healthy adults showed that indices of 

conductive and acinar ventilation heterogeneity (Scond and Sacin, respectively), and to a lesser 

extent, lung clearance index (LCI), were not comparable between breathing protocols(9, 10). 

Importantly, differences between the protocols were dependent on the magnitude of 

ventilation heterogeneity. Thus, the assumption is that these effects would be amplified in 

disease, where ventilation heterogeneity is greater and clinical utility is most relevant. 

However, this has not been confirmed to date. We hypothesised that people with asthma, 

where ventilation heterogeneity is greater, would exhibit greater differences between the two 

protocols, than the differences seen in healthy adults.  

Therefore, this study aimed to determine in adults with asthma: 1) whether CB and FB 

MBNW protocols provide comparable functional residual capacity (FRC) and indices of 

ventilation heterogeneity (LCI, Scond and Sacin), and 2) whether patient-related factors 

(anthropometrics and/or breathing pattern) influence any observable differences. 

Written informed consent was obtained from participants with respiratory physician-

diagnosed asthma recruited from the Woolcock Institute and Royal North Shore Hospital 

(ethics approval LNR/16/HAWKE/11). The study protocol has been previously published(9). 

Briefly, spirometry and plethysmography were obtained according to ATS/ERS standards 

and current reference values(11, 12). After a fixed period, participants then performed 

MBNW according to ERS/ATS consensus guidelines(8) with either the FB or CB protocol in 



successive triplicates (Exhalyzer D, collected in Spiroware v3.1.6 and reanalysed in v3.3.1, 

Eco Medics AG, Duernten, Switzerland), in randomised order. During each trial, once a 

stable breathing pattern and end-expiratory lung volume (EELV) was established, nitrogen 

washout during 100% O2 inhalation was commenced. The CB protocol required participants 

to breathe at a RR between 8-12 breaths.min-1 and VT between 0.95-1.3 L following visual 

feedback. In the FB protocol, participants were encouraged to adopt relaxed tidal breathing 

but advised to adjust tidal volumes upwards if insufficient expired N2 phase III slope was 

observed; calculated Scond and Sacin were adjusted for VT, as per consensus guidelines(8). At 

least 3 technically acceptable trials with FRC values ±10% of the mean were obtained for 

each protocol, and quality control and post hoc analysis was performed by a single operator 

(BMH). For each MBNW parameter, the mean of 3 trials was compared between the FB vs 

CB protocols using Pearson’s correlation, paired t-tests, and Bland-Altman plots. 

Associations between potential predictors (age, sex, height, BMI, RR and VT) and between-

protocol differences (FB-CB) were examined using linear regression.  

We studied 20 (16 female, 4 male) non-smoking participants with a median(IQR) age of 

43(31.5) and BMI of 25(7.1). Study participants had mean±SD %predicted FEV1 

89.2±19.2%predicted and FEV1/FVC 74.4±8.35 %. Compared to the CB protocol, the FB 

protocol had smaller mean VT (mean difference±SD -0.36±0.22 L, p<0.0001), and a faster 

mean RR (mean difference±SD 3.16±3.33 breaths.min-1, p=0.029). 

There was no significant difference in FRC measured between protocols (FRCCB 2.62±0.72 

L vs FRCFB 2.60±0.71 L, p=0.64), with strong correlation between the two (r=0.97, p<0.0001) 

and no evidence of proportional bias in the Bland-Altman plot (p=0.81) (Fig 1A). This is 

similar to observations in healthy adults(9), and supports the argument that FRC is not 

altered between MBNW protocols, so long as care is taken to ensure stable breathing and 

EELV before and during washout.  Both FRCCB (p=0.006) and FRCFB (p=0.005) were 

significantly reduced compared to FRCpleth (2.87±0.60 L), as may be expected in disease 



from a gas dilution method reliant on communicating lung volume. Interestingly, within-

subject differences in FRC between protocols were associated with BMI (y=0.02x+0.51, 

p=0.036, Fig. 1B), but not with age, sex, height, mean VT, or mean RR.  We had previously 

found a trend towards a significance relationship between BMI and between-protocol 

differences in FRC(9). The association we observed in this study could be attributed to a 

wider range for BMI, with more obese participants exhibiting higher FRCFB values. The 

mechanisms for this are unknown, but may have implications for testing in a clinical 

population. 

Significant differences were seen in LCI between protocols, with higher values obtained 

using FB (LCICB 7.23±1.04 vs LCIFB 7.46±1.17, p=0.02), but the two protocols were strongly 

correlated (r=0.94, p<0.0001). This finding was consistent with our previous findings in 

health(9) except that now there was no proportional bias between protocols in asthma 

evident (y=0.12x – 0.64, p=0.18, Fig. 1C). Previous studies suggested an effect of changing 

VT on LCI(13), where shallow breathing may contribute to a higher LCI through an increased 

dead space to VT ratio and its effects on FRC and cumulative expired volume (CEV); though 

this effect was not statistically significant in our data. However, as we also previously 

demonstrated in health(9) and the lack of differences observed in other studies(14), the 

mean difference of 0.23±0.41 seen here was relatively small and unlikely to be clinically 

significant. For comparison, the minimal clinically important difference for MBNW is yet to be 

established, however a change of 1 unit is often used for LCI in interventional studies(15).   

Results for Scond and Sacin were also similar to that observed in health. Scond was not 

significantly different between the CB and FB protocols (ScondCB 0.033±0.018 L-1 vs ScondFB 

0.031±0.022 L-1, p=0.59), with significant correlation between the two (r=0.70, p=0.0006), 

and no evidence of proportional bias (p=0.20, Fig. 1D). In contrast, Sacin was significantly 

different between the protocols (SacinCB 0.086±0.05 vs SacinFB 0.108±0.07, p=0.01), with 

significant correlation between the two (r=0.87, p<0.0001), but evidence of proportional bias 



(y=1.17x+0.007,p<0.0001, Fig. 1E). These findings are consistent with the larger differences 

expected from the proportional bias observed in health(9, 10), particularly for Sacin. However, 

neither between-protocol differences in Scond nor in Sacin had any associations with age, sex, 

height, BMI, mean VT, or mean RR. This lack of dependence on breathing pattern in asthma 

is contrary to what we observed in health for Sacin, and may suggest that the contribution of 

disease to between-protocol differences is larger than that of the breathing pattern. 

Alternatively this could have been skewed by one individual whose VT was greater during FB 

than CB (Fig. 1E).  

It is interesting to note that the magnitudes of the between-protocol differences and limits of 

agreement seen in this study in asthma (-0.0020(-0.034, 0.030) L-1 for Scond, 0.0215(-0.044, 

0.087) L-1 for Sacin) were similar in range to those published in health (0.0002(−0.030, 0.030) 

L-1 for Scond and 0.029(−0.045, 0.103) L-1 in Sacin)(9), despite the larger Scond and Sacin values. 

A possible explanation may again be that the degree of abnormal ventilation distribution due 

to asthma is a stronger contributor to the measured Scond and Sacin than variations in the 

breathing pattern. It is also possible that relative variability is lower in disease, unlike in 

health where the small values of Scond and Sacin close to zero render any variations 

proportionately larger.  

We do not have data on between-session repeatability in these patients, though published 

studies exist for comparison(9, 16): the between-protocol differences and limits of agreement 

seen here were similar or larger than previously reported between-session repeatability for 

the MBNW test in health (-0.003(-0.021, 0.015) L-1 for Scond, -0.002(-0.039, 0.034) L-1 for 

Sacin, over 2-10 weeks)(9), but less than the between-session repeatability in asthma (0.004(-

0.072, 0.079) L-1 for Scond, -0.024(-0.156, 0.108) L-1 for Sacin, over 2 weeks)(16), reflecting 

contributions from protocol differences, test variability, as well as disease.  

  



 

The limitations of this study include the small sample size and the high proportion of 

participants who had undergone lung function testing before, though 15/20 were naïve to 

MBNW. Nevertheless, these data confirm in disease that the two protocols should not 

be simply treated interchangeably in prospective studies, with implications for the 

interpretation of previously-published data. It should also be noted that the data presented in 

this study were analysed using the updated software version for the Exhalyser D device, 

which takes into account a recently documented sensor error(17, 18); comparisons with 

health are also based on updated results, for which a correction has been issued[REF]. 

Further work is warranted to better understand the applicability of the VT correction(10), 

dependence on phase III slope estimation(19), and other possible sources contributing to 

differences between these two established MBNW protocols.  
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Figure 1 – Differences between controlled (CB) and free breathing (FB) protocols, and 

associated factors. (A) Functional residual capacity (FRC), showing no significant 

differences between the two protocols (mean difference (95% limits of agreement) -0.019 (-

0.364, 0.327) L, p=0.64) and no proportional bias (p=0.81), with (B) between-protocol 

differences in FRC related to body mass index (p=0.036). (C) Lung clearance index (LCI), 

showing significant differences (0.235 (-0.578,1.048), p=0.020) but no proportional bias 

(p=0.179) between protocols. (D) Conductive ventilation heterogeneity (Scond), showing no 

significant differences between protocols (-0.0020 (-0.034, 0.030) L-1, p=0.59) and no 

proportional bias (p=0.203). (E) Acinar ventilation heterogeneity (Sacin), was significantly 



different between protocols (0.0215 (-0.044, 0.087) L-1, p=0.01) with a significant 

proportional bias (p=0.018), and (F) between-protocol differences in Sacin were not predicted 

by between-protocol differences in tidal volume (VT,FB−VT,CB )(p=0.98) or respiratory rate 

(p=0.38, data not shown). 

 


