An international survey on the use of intrapleural tPA/DNase therapy for pleural infection

Estee P. M. Lau, Matin Eshraghi, Kirstie Dootson, Cindy Yeoh, Wint Ywe Phu, Y. C. Gary Lee, Natalia D. Popowicz

This manuscript has recently been accepted for publication in the ERJ Open Research. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJOR online.

Copyright ©The authors 2021. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org
An international survey on the use of intrapleural tPA/DNase therapy for pleural infection

Authors:
Estee P M LAU1,2, MPharm
estee.lau@resphealth.uwa.edu.au

Matin ESHRAGHI3, MPharm
Matin.esh1@outlook.com

Kirstie DOOTSON3, MPharm
Kirstie.dootson@hotmail.com

Cindy YEOH3, MPharm
Cindyyeoh91@gmail.com

Wint YWE PHU3, MPharm
Wintye.1997@hotmail.com

Y C Gary LEE1,4,5, MBChB PhD FRACP FCCP FRCP
gary.lee@uwa.edu.au

Natalia D POPOWICZ1,3,4, PhD
natalia.popowicz@health.wa.gov.au

Affiliations:
1 Pleural Medicine Unit, Institute for Respiratory Health, Perth, Australia.
2 School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.
3 School of Allied Health, Division of Pharmacy, University of Western Australia, Perth, Australia.
4 Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia.
5 Centre for Respiratory Health, School of Medicine, University of Western Australia, Perth, Australia.

*Correspondence: Dr Natalia Popowicz
Email: natalia.popowicz@health.wa.gov.au (NP)

EPML and ME are joint first authors.

Conflict of Interests: EPML, ME, KD, CY, WYP, YCGL and NP have reported that no potential conflicts of interest exist with any companies/organisations whose products or services may be discussed in this article. YCGL is an honorary consultant to Lung Therapeutics Ltd.
Ethical approval: This study was approved by the Human Research Ethics Committee (HREC) of University of Western Australia (RA/4/20/5593).

Key words: tissue plasminogen activator; deoxyribonuclease; pleural; infection; empyema

Word Count: 2069

Summary of “take home” message
This international survey observed a large variation in practice among leaders in the field. There is a general acceptance of starting with a lower (<10mg) dose of tPA (with the possibility of escalation) as evidence accumulates.
Abstract

Introduction Intrapleural tissue plasminogen activator (tPA) combined with human recombinant DNase (DNase) could be an effective alternative to surgery in managing pleural infection as demonstrated in the Multi-centre Intrapleural Sepsis Trial (MIST)-2. However, the optimal delivery regime is still unknown. The aim of this survey is to identify the current practice of tPA/DNase use by physicians with published interests in pleural infection, and their opinions on dose de-escalation of tPA/DNase therapy.

Methods Potential participants were identified using four search strategies. Only practicing physicians who are managing patients with pleural infections and are either actively involved in pleural research and publications, or members of relevant pleural disease guideline panels at the time of survey were included.

Results An invitation email with the questionnaire was sent to 102 participants of which 49 (48%) responded. Most respondents (90%, n=44) have used tPA/DNase to manage pleural infection but the dosing and delivery regimens employed varied. Many (86%, n=38/44) respondents have used 10mg tPA, while 73% (n=32), 16%, (n=7) and 9% (n=4) have used 5mg, 2.5mg and 1mg doses respectively. Most respondents instilled tPA/DNase concurrently (61%, n=27) and routinely administered 6 doses of tPA/DNase (52%, n=23) twice daily (82%, n=36). Respondents would consider using a lower starting dose of tPA (with the possibility of escalation if clinically needed) if 80% [IQR 50-80] of patients could be successfully treated at that dose.

Conclusion This survey observed a large variation in the current treatment protocol of intrapleural tPA/DNase therapy worldwide and the need for more data on this subject.

Word count: 248
Introduction

Pleural infection accounts for over 90,000 hospital admissions in the United States alone each year [1]. It is associated with high morbidity and a mortality of 25% in the elderly [2]. Despite being a centuries-old illness, the incidence of pleural infection continues to rise, causing a significant healthcare burden [3,4]. In recent years, several observational studies and randomised clinical trials have focused on exploring the effectiveness of intrapleural fibrinolytic therapy in the management of pleural infection as an alternative to surgery [2,5,6].

Fibrinolytics, such as tissue plasminogen activator (tPA), break down fibrinous loculations within the pleural space, while human recombinant DNase (DNase) reduces pleural fluid viscosity, allowing a more effective evacuation of infected pleural fluid [5]. The findings from the Multi-centre Intrapleural Sepsis Trial (MIST)-2 trial demonstrated that combined tPA/DNase therapy in the management of pleural infection enhanced pleural drainage, reduced the need for surgery and length of hospitalisation [6]. This remarkable breakthrough has generated significant interests worldwide, but the adoption of tPA/DNase therapy into treatment has been variable.

Since the publication of MIST-2, several studies attempted to optimise intrapleural tPA/DNase therapy, focusing particularly on two hurdles of implementation: the complexity of the intrapleural instillations and clinicians’ concerns of the costs and risks of tPA. First, the original delivery protocol in MIST-2 involved instillation of tPA, followed by clamping of the chest tube which was then reopened for drainage before DNase was instilled following the same steps [6]. The process was delivered twice a day for six doses. This regime demands considerable staff time, and in some centres only clinicians (not nurses) are allowed to perform these intrapleural instillations, creating significant time pressure. Various studies
have piloted different simplified delivery methods, all aimed to reduce demand on complexity of the delivery regime [1,7,8]. Second, tPA is expensive and is associated with potential bleeding risks. The original dose of 10mg was chosen empirically without a phase I dose-escalation assessment. Studies testing efficacy of lower tPA doses has reported promising results [7,9], but no head-on randomised trials have been performed to evaluate these lower dosing regimens.

The lack of data on optimal tPA/DNase doses, administration protocols and cost-effectiveness are likely to create heterogeneity in practice. The objective of this study was to survey international pleural experts on current tPA/DNase treatment protocols used in clinical practice and to seek their opinion on acceptable treatment success rates with dose de-escalation in the management of pleural infection. This will provide insight into the current adoption of tPA/DNase therapy and the concerns limiting its use, providing guidance on future directions into intrapleural tPA/DNase research.
Methods

We conducted a descriptive, cross-sectional, international survey to identify the use of tPA/DNase in practice by physicians with published interests in pleural infection, and their opinions on dose de-escalation of tPA/DNase therapy. The targeted participants were practicing physicians who are managing patients with pleural infections and are either actively involved in pleural research and publications (recognised as the first and last authors), or members of pleural disease guideline groups/committees.

To identify potential survey participants who meet the above criteria, four literature search strategies were performed. Articles were selected after a structured literature review carried out between March and May 2019. Key terms employed were:

- “intrapleural”, or “pleural infection”, or “empyema”, or “parapneumonic” or “pleural effusion”, or “pleural empyema” OR
- “tPA”, or “alteplase”, or “tissue plasminogen activator” or “fibrinolytic” OR
- “DNase” or “deoxyribonuclease” or “dornase alpha”.

Search was limited to publications on human studies of adults >18 years published since 2009. Authors of published articles citing MIST-2 (n=260) as well as authors cited within the current (2010) British Thoracic Society pleural disease guidelines including its medical members were also identified. Duplicates were removed and participants were included in the mailout if they were identified as current practicing physicians with identifiable contact information at the time of search.
A questionnaire, containing 18 questions (see Supporting Information, S1 Table) was developed using Qualtrics Software (Qualtrics, Provo UT, USA, September 2019), and was reviewed for content validity by five local clinicians with pleural interests at Sir Charles Gairdner Hospital (Perth, Western Australia). Ethics approval was granted by the Human Research Ethics Committee (HREC) of University of Western Australia (RA/4/20/5593).

An initial email invitation was sent to all participants. Each participant was provided with a unique link to ensure a single submission per participant over a 4-week period. A follow-up email was sent to non-respondents after a two-week period. Questionnaire responses were also de-identified. Data were analysed using GraphPad Prism 9.1.0 (GraphPad Software, La Jolla, CA, USA) and were presented as median with IQR. Results were considered significant at \(p < 0.05 \).

Results

A total of 119 physicians were identified using these search strategies. After screening for contact information, 17 physicians were excluded: 16 had no identifiable contact information, and one has deceased. The remaining 102 physicians were sent an invitation email for participation. Of the 102 physicians contacted, 49 (48%) physicians completed the survey. These physicians estimated that they had treated a combined total of 1342 (median=20) patients with pleural infections in the past 12 months. They were based in Europe (n=22), USA (n=14), Australia (n=6), New Zealand (n=3), Asia (n=2) and one each from Africa and Canada. Of these physicians, 28 identified their primary area/speciality as respiratory/pulmonary medicine (57%), 18 as interventional pulmonology/pleural specialists (37%), and 3 as thoracic surgery (6%).
Variations exist in the current treatment protocols of intrapleural tPA/DNase therapy used by the respondents, Table 1. Most respondents (90%, n=44) have used tPA/DNase for the management of pleural infections in their patients. The remaining 10% did not adopt tPA/DNase therapy in their practice due to either insufficient data on safety and efficacy (n=1), therapy not approved for used/available in their current workplace (n=2), or surgery being the preferred option (n=2). The analyses presented herein is on the 44 respondents who have used tPA/DNase in their practice.

Of those who have used tPA/DNase to manage pleural infections, 20% (8 from USA and 1 from Australia) used tPA/DNase routinely in all patients admitted with pleural infections under their care. The remainder (n=35) estimated that they used tPA/DNase in 50% [median, IQR 30-70] of their patients. When asked about the reason for not using tPA/DNase routinely in all patients (respondents were allowed to select more than one reason), most of them (70%, n=31) selected the option of ‘I only use tPA/DNase in patients who failed to respond to conventional treatment (antibiotics and chest tube drainage)’. Other reasons selected include insufficient efficacy (n=6) or safety (n=2) data, only using tPA/DNase as a last line treatment prior to surgical referral (n=6), and prohibitive cost (n=4). Some respondents provided additional comments stating they would decide treatment on a case-by-case basis depending on the pleural space appearances on ultrasound and CT scans (n=1), reserve tPA/DNase therapy for patients not suitable for surgery (n=2), when surgery may be delayed (n=1), or as an attempt to avoid surgery (n=1). One respondent declared the use of urokinase instead of tPA due to personal perceived efficiency and cost effectiveness (n=1).
tPA Doses

The respondents used a range of tPA doses (10mg, 5mg, 4mg, 2.5mg and 1mg), with the higher doses (10mg and 5mg) more commonly employed than the lower ones (2.5mg and 1mg), Fig 1. In addition, 27% (n=12) and 11% (n=5) of respondents have only used 10mg and 5mg tPA respectively. When asked what the respondents perceived was the lowest effective dose, 70% (n=19/27) chose 5mg tPA, while others believed 10mg (n=3), 2.5mg (n=3), 2mg (n=1), and 1mg (n=1) were the lowest effective tPA dose. The rest (n=17) of the physicians did not specify a dose.

tPA/DNase administration and dosing regimen

Most respondents (61%, n=27) delivered tPA/DNase concurrently into the pleural space using two separate syringes (i.e. drugs not admixed before instillation), while others adhered to the MIST-2 protocol by administering them separately. One respondent reported to have administered tPA/DNase concurrently in one syringe. Another administered the initial dose of tPA and DNase separately but the subsequent doses concurrently.

Over half of respondents (52%, n=23) used 6 doses of tPA/DNase in each patient as per the MIST-2 protocol, while the remaining respondents may use less than 6 doses per patient based on clinical response. Most respondents (82%, n=36) adopted a twice-daily dosing regimen whereas only 18% of them used it once daily. Ward limitations and the complexity of the pleural space have also determined the dosing regimen for two respondents.

Although 27% (n=12) of respondents reported that they would not deviate from their usual protocol under any circumstances, 73% (n=32) of them would, based on various reasons, including patient’s bleeding risk and clinical response, complexity of the infection, side
effects, staffing issues, and costs. One respondent reported to have used a simplified regimen (not specified) to enable administration by junior staff in a non-respiratory inpatient service.

Dose de-escalation

There are ongoing dose de-escalation studies to establish the lowest effective tPA dose. It is anticipated with decreasing dose of tPA, the number of successfully treated patients will also decrease. As such, physicians were asked for their acceptable ‘minimum percentage of patients successfully treated at a lower dose for dose de-escalation to be considered successful’. Our question specifically stated that the dose of tPA could be raised if clinical response was inadequate. Respondents considered it a success if 80% [median, IQR 50-80] of patients were successfully treated with a certain starting dose of tPA. However, they would only adopt lower doses of tPA in their protocol if at least 100 [median, IQR 50-200] patients have been successfully treated in published (e.g. retrospective observational) studies. Some respondents also commented the need for more evidence-based trials in this area.

Discussion

This study is the first to provide insight on the real-world use of intrapleural tPA/DNase therapy in clinical practice. Although most clinicians surveyed have used tPA/DNase therapy, there is a large variation in dosage regimen and administration protocols among physicians around the world.

As the treatment regimen in MIST-2 protocol is labour-intensive and time-consuming, it is not surprising that practice has evolved into many different variations in order to be adapted to local conditions. In addition, recent findings on concurrent administration of tPA/DNase
and the efficacy of 5mg tPA from our observational studies may have influenced the physicians’ decisions [8,9]. Replies of the respondents suggest that physicians require more safety and efficacy data before they would consider dose de-escalation in their practice. Hence, there is clearly a need for more controlled studies in order to determine the best possible outcome.

More recently, a consensus statement by an international group of 22 experts was published to address the knowledge gap on the use of tPA and DNase in adult patients with pleural infection [10]. The consensus-based recommendations provide a standardised guidance since the publication of MIST-2 trial, which will be valuable considering the wide variation in treatment protocols worldwide at present as shown in the survey results.

This study has limitations. First, we limited the survey to clinicians with published interests in tPA/DNase and/or pleural infection. This selected population no doubt is likely to include the strongest advocates of the use of tPA/DNase and cannot be considered representative of the general clinician population. The confidence and experience needed to aid the decision-making process may also be lacking in other physicians. Second, to keep the survey simple, we did not further categorise pleural infections (e.g. into community- or hospital-acquired or Indwelling Pleural Catheters (IPC) related infections) which may alter the replies. Third, like any survey, the answers were based on physicians’ perceived views and recall of personal experiences and cannot be interpreted as necessarily evidence based. Fourth, it is almost certain that clinicians may individualise treatment to particular patients (e.g. lower dose for older patients with higher bleeding comorbidities) which is beyond the scope of this survey.

In conclusion, this survey shows that there is a need for further investigations on the practical aspects of intrapleural tPA/DNase therapy in the management of pleural infection given the uncertainties about the best delivery regimens. The study highlighted implementation
challenges especially the complex, labour-intensive MIST-2 protocol. In addition, it is worth noting that this is a constantly evolving field and the ‘one size fits all’ approach may not be suitable as we work towards personalised treatment. Future studies should aim at investigating the lowest effective dose and comparing the safety and efficacy of different treatment regimens and administration protocols of intrapleural tPA/DNase. Further investigations into subgroups of pleural infection and high-risk populations will be useful.

Table 1. Summary of survey results

<table>
<thead>
<tr>
<th>Physicians using tPA/DNase</th>
<th>n= 44/49 (90%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physicians using tPA/DNase in all patients</td>
<td>n= 9/44 (20%)</td>
</tr>
<tr>
<td>Doses of tPA used:</td>
<td>n=</td>
</tr>
<tr>
<td>10mg</td>
<td>n= 38 (86%)</td>
</tr>
<tr>
<td>5mg</td>
<td>n= 32 (73%)</td>
</tr>
<tr>
<td>4mg</td>
<td>n= 1 (2%)</td>
</tr>
<tr>
<td>2.5mg</td>
<td>n= 7 (16%)</td>
</tr>
<tr>
<td>1mg</td>
<td>n= 4 (9%)</td>
</tr>
<tr>
<td>tPA/DNase administration:</td>
<td>n=</td>
</tr>
<tr>
<td>Concurrently</td>
<td>n= 27 (61%)</td>
</tr>
<tr>
<td>Separately</td>
<td>n= 15 (34%)</td>
</tr>
<tr>
<td>Number of tPA/DNase doses:</td>
<td>n=</td>
</tr>
<tr>
<td>Less than 6 doses</td>
<td>n= 20 (45%)</td>
</tr>
<tr>
<td>6 doses</td>
<td>n= 23 (52%)</td>
</tr>
<tr>
<td>Dosing frequency:</td>
<td>n=</td>
</tr>
<tr>
<td>Once daily</td>
<td>n= 8 (18%)</td>
</tr>
<tr>
<td>Twice daily</td>
<td>n= 36 (82%)</td>
</tr>
</tbody>
</table>

*% of 44 physicians

Fig 1. (A) The total number of physicians using 10mg, 5mg, 2.5mg and 1mg of tPA and (B) the estimated total number of patients given the respective tPA doses (plotted based on data from physicians who responded to the question).
References

Supporting Information
S1 Table. Survey Questionnaire