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Summary 

BAP-65, CURB-65, and the XGBoost model showed low predictive performance for in-

hospital death in pneumonic COPD exacerbation. Further large-scale studies with more 

variables are warranted to develop an ideal prognostic model. 
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ABSTRACT 

Introduction 

There is no established clinical prediction model for in-hospital death among patients 

with pneumonic chronic obstructive pulmonary disease (COPD) exacerbation. We 

aimed to externally validate BAP-65 and CURB-65 and to develop a new model based 

on the eXtreme Gradient Boosting (XGBoost) algorithm. 

Methods 

This multicentre cohort study included patients aged ≥40 years with pneumonic COPD 

exacerbation. The input data were age, sex, activities of daily living, mental status, 

systolic and diastolic blood pressure, respiratory rate, heart rate, peripheral blood 

eosinophil count, and blood urea nitrogen. The primary outcome was in-hospital death. 

BAP-65 and CURB-65 underwent external validation using the area under the receiver 

operating characteristic curve (AUROC) in the whole dataset. We used XGBoost to 

develop a new prediction model. We compared the AUROCs of XGBoost with that of 

BAP-65 and CURB-65 in the test dataset using bootstrap sampling. 

Results 

We included 1190 patients with pneumonic COPD exacerbation. The in-hospital 

mortality was 7% (88/1190). In the external validation of BAP-65 and CURB-65, the 

AUROCs (95% confidence interval [CI]) of BAP-65 and CURB-65 were 0.69 (0.66–

0.72, and 0.69 (0.66–0.72), respectively. XGBoost showed an AUROC of 0.71 (0.62–

0.81) in the test dataset. There was no significant difference in the AUROCs of 



 

XGBoost vs BAP-65 (absolute difference, 0.054; 95% CI, -0.057–0.16) or vs CURB-65 

(absolute difference, 0.0021; 95% CI, -0.091–0.088).  

Conclusion 

BAP-65, CURB-65, and XGBoost showed low predictive performance for in-hospital 

death in pneumonic COPD exacerbation. Further large-scale studies including more 

variables are warranted.  

 

Keywords: Chronic obstructive pulmonary disease, Machine Learning, Pneumonia, 

Prognosis 

   



 

INTRODUCTION 

Chronic obstructive pulmonary disease (COPD) is a common respiratory disease that is 

characterised by airflow limitation due to chronic inflammation of the airways and lungs 

[1]. Patients with COPD often experience acute worsening of baseline symptoms, and 

with coexisting consolidation (pneumonic COPD exacerbation) on chest imaging, 

mortality is increased compared to non-pneumonic COPD exacerbation [2]. A previous 

study suggested that pneumonic COPD exacerbation might have a different inflammation 

profile from non-pneumonic COPD exacerbation [3,4].  

CURB-65 (confusion, blood urea nitrogen > 19 mg/dL, respiratory rate ≥ 30 

breaths/min, systolic blood pressure < 90 mmHg or diastolic blood pressure ≤  60 

mmHg, and age ≥ 65 years) is a simple prediction model in patients with community-

acquired pneumonia and has been validated internally and externally [5,6]. On the other 

hand, BAP-65 (blood urea nitrogen ≥ 25 mg/dL, altered mental status, heart rate ≥ 

109 beats/min, and age ≥ 65 years) is an easily computable prediction model in patients 

with COPD exacerbation, that has shown good performance in internal validation and 

external validation cohorts [7,8]. However, we could not evaluate how many patients with 

pneumonic COPD exacerbation were included in those studies. Another study showed 

that CURB-65 had poor predictive ability for death in pneumonic COPD exacerbation [9]. 

To date, there is no established clinical prediction model specifically for the population 

with pneumonic COPD exacerbation. It is also unclear whether BAP-65 and CURB-65 

can be applied to patients with pneumonic COPD exacerbation [10]. Our study had two 

purposes: (i) the external validation of BAP-65 and CURB-65 for predicting in-hospital 

death among patients with pneumonic COPD exacerbation, and (ii) the development of a 



 

high-performance clinical prediction model using a modern machine learning algorithm 

that is gaining ground in the medical field [11].  

 

METHODS 

Study design 

Our study was a multicentre retrospective cohort study conducted across five acute care 

hospitals in Japan. To maximise patient capture, patient data were collected during 

different periods in each hospital between April 1, 2008, and July 31, 2020.  

Pneumonic COPD exacerbation is diagnosed when the criteria for both 

pneumonia and COPD exacerbation are met [12,13,14]. To select patients with 

pneumonic COPD exacerbation, we used the validated algorithm based on the 10th 

revision of the International Classification of Diseases and Related Health Problems 

(eFigure 1) [14]. First, patients aged ≥ 40 years who had both pneumonia and COPD 

exacerbation were selected. Patients with other differential diagnoses mimicking 

pneumonic COPD exacerbation were excluded, including heart failure, pneumothorax, 

asthma exacerbation, and obstructive pneumonia.  

This study was approved by the institutional review board of each hospital 

(approval number, 200811). This article was reported according to the Transparent 

Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis 

(TRIPOD) statement (eTable1) [15]. 

Input and output data 

The following input data on the day of admission were collected from the data warehouse 

or electrical medical records in each hospital: age, sex, the activities of daily living status 

(full support or not), mental status (altered mental status or not), vital signs (systolic and 



 

diastolic blood pressure, respiratory rate, and heart rate), laboratory results (peripheral 

blood eosinophil count and blood urea nitrogen), and presence of tracheal intubation. 

Activities of daily living were defined as full support when the Barthel index was zero, 

and altered mental status was defined as a Japan Coma Scale score ≥ 1. These two 

variables are used for administrative purposes in the Japanese original case-mix 

classification system or Diagnosis Procedure Combination [16,17]. The Ministry of 

Health, Labour, and Welfare regularly evaluates the trend, quality, and cost of the health 

care system using Diagnosis Procedure Combination data. We extracted data from the 

database containing Diagnosis Procedure Combination data submitting the anonymised 

patient data to the Ministry of Health, Labour, and Welfare. Our variable selection was 

based on existing clinical prediction models of pneumonia or COPD exacerbation 

[5,7,18]. We did not collect data on other comorbidities from the Diagnosis Procedure 

Combination database because these variable codes were not fully externally validated. 

The primary outcome was in-hospital death which was derived from the electrical medical 

records in each hospital.  

Statistical analysis 

The study process is illustrated in Figure 1. Patient characteristics were summarised as 

means for continuous variables and as percentages for categorical variables. All 

statistical analyses were performed using R software version 4.0.2 (R Foundation for 

Statistical Computing, Vienna, Austria). The scripts are available in the GitHub 

repository (https://github.com/AkihiroShiroshita/Prediction-model-for-Pnuemonic-

COPD-exacerbation.git). 

  



 

External validation of BAP-65 and CURB-65 

We conducted the external validation of BAP-65 and CURB-65 with respect to the entire 

dataset to evaluate their performance in a large sample size. We calculated the sensitivity 

and specificity using each total score as the cut-off point. To assess the calibration ability, 

we summarised the mortality according to each total risk score. To assess the 

discriminatory ability of the two models, we calculated the area under the receiver 

operating characteristic curve (AUROC). We used multiple imputation to cope with 

missing data [19]. We created a total of 100 datasets using multiple imputation with 

chained equations and calculated the AUROC within each dataset. Thereafter, we 

combined the estimates of AUROC using Rubin’s combining rule [20,21].  

Model development via machine learning 

We used the eXtreme Gradient Boosting (XGBoost) algorithm to develop a clinical 

prediction model for in-hospital death among patients with pneumonic COPD 

exacerbation. The XGBoost algorithm is a powerful ensemble method of machine 

learning that combines a set of weak learners of the decision tree [22]. Its parallel 

computation enables the efficient and accurate development of a prediction model. 

Because it extracts variable importance, imputation of missing data, scaling, or 

normalisation is not required. What is required in the algorithm is the proper tuning of the 

hyperparameters, which are parameters that control the behaviour of the model. In our 

study, the original data were first partitioned into training and test datasets. We used the 

stratified sampling method with a 7:3 ratio for data splitting, which allowed the two 

datasets to have similar in-hospital mortality. Second, we developed prediction models 

using a training dataset. We performed a grid search with 4-fold cross-validation to obtain 

the optimal hyperparameters for maximising the mean AUROC (eFigure2) [22]. In the 



 

grid search, the hyperparameter candidates for max_depth (maximum tree depth) was {2, 

4, 6, 8, 10}, and min_child_weight (minimum degree of impurity needed in a node) was 

{1, 2, 3, 4, 5}. After fixing max_depth and min_child_weight, we searched the maximum 

number of trees based on the cross-validation. We set the remaining hyperparameters as 

default. Third, for external validation, we validated the trained model using the test 

dataset. We used the AUROC as an index to validate the model. Finally, the importance 

of the variables based on the impurity metric was plotted. Impurity is the degree of 

misclassification. It displays the degree to which each input data influences the output in 

our XGBoost model. 

Model comparison  

We compared the model performances of the three prediction models using the test 

dataset to allow comparison on a one-to-one basis. To evaluate the discriminatory 

performance, we described the ROC curves of the three prediction models. Thereafter, 

we estimated the differences in AUROCs using bootstrap sampling (BAP-65 vs XGBoost, 

and CURB-65 vs XGBoost) [23]. The XGBoost model can take into account missing data 

while BAP-65 and CURB-65 cannot. The XGBoost model used the whole test dataset 

while BAP-65 and CURB-65 only used the patient data without missing values.  

 

  



 

RESULTS 

The patient selection flowchart is shown in Figure 1. We initially selected 1431 patients. 

After excluding 241 patients with other diagnoses, 1190 patients with pneumonic COPD 

exacerbation were included in our analysis. Patient characteristics are summarised in 

Table 1. The in-hospital mortality rate was 88/1190 (7%). The Number of intratracheal 

intubations was 16/1190 (1%), and median length of hospital stay was 12 (interquartile 

range: 8–18) days.  

External validation of BAP-65 and CURB-65 

Table 2 presents the summary of the number of patients with each total score. The 

calibration performances of both prediction models were low. The AUROC of BAP-65 

was 0.69 (95% confidence interval [CI]: 0.66 to 0.72) and that of CURB-65 was 0.69 

(95% CI: 0.66 to 0.72). The discriminatory performance of both prediction models was 

also low. 

Model development via machine learning 

Based on the results of the grid search, we set up the hyperparameters as follows: 

max_depth (maximum tree depth) = 4, min_child_weight (minimum degree of impurity 

needed in a node) = 2, eta (learning rate) = 0.1, subsample (the proportion of cases to be 

randomly sampled for each tree) = 0.8, colsample_bytree (the proportion of predictor 

variables sampled for each tree) = 0.8, gamma (minimal loss to expand on a leaf node) = 

0, lambda (L2 regularisation term on weights) = 1, alpha (L1 regularisation term on 

weights) = 0, scale_pos_weight (balance of positive and negative weights) = 1, and 

maximum number of trees = 37. Cross-validation of the developed model revealed a mean 

AUROC of 0.76, and external validation in the test dataset revealed an AUROC of 0.72 

(95% CI: 0.62 to 0.82). Feature importance is illustrated in Figure 2, and it revealed that 



 

blood urea nitrogen was the most important factor for predicting in-hospital death. 

Systolic blood pressure and altered mental status also had important roles in the XGBoost 

model. On the contrary, activities of daily living and sex showed little importance.  

Model comparison 

We performed model comparisons using the test data. The XGBoost model used the 

whole test dataset (N = 357), while BAP-65 and CURB-65 used the data of 314 and 281 

patients, respectively, because of missing values. Figure 3 shows the ROC curves of the 

BAP-65, CURB-65, and XGBoost models. There was no significant difference in 

AUROCs between the XGBoost model and BAP-65 (absolute difference, 0.054; 95% 

CI: -0.057 to 0.16) or between the XGBoost model and CURB-65 (absolute difference, 

0.0021; 95% CI: -0.091 to 0.088).  

 

DISCUSSION 

Our study revealed that contrary to the study results for either pneumonia or COPD 

exacerbation, all three models (BAP-65, CURB-65, and XGBoost model) had low 

discriminatory ability for predicting in-hospital death among patients with pneumonic 

COPD exacerbation. Further large-scale studies are needed to develop a specific clinical 

prediction model for pneumonic COPD exacerbation. 

 The two simple scoring systems, i.e. BAP-65 and CURB-65, showed low 

predictive performance in our dataset of patients with pneumonic COPD exacerbation. 

Although our study did not contrast their predictive abilities in either pneumonia or COPD 

exacerbation with pneumonic COPD exacerbation, CURB-65 was externally validated 

for the Japanese population and BAP-65 was validated for the Chinese population [24,25]. 



 

Contrary to the results in either pneumonia or COPD exacerbation, CURB-65 or BAP-65 

was not externally validated in our patient cohort. Our results were consistent with those 

of a previous retrospective cohort study that revealed CURB-65 had poor performance 

for predicting death in pneumonic COPD exacerbation while it had high performance for 

non-pneumonic COPD exacerbation [26]. Our target population included patients with a 

specific category of pneumonic COPD exacerbation. The disease spectrum of pneumonic 

COPD exacerbation which fulfils the diagnostic criteria for both pneumonia and COPD 

exacerbation, may differ from that of COPD exacerbation and pneumonia. A specific 

clinical prediction model for pneumonic COPD exacerbation is warranted. 

A strength of our study was the use of a powerful machine learning technique 

that can overcome the drawbacks of the development processes of BAP-65 and CURB-

65. However, the XGBoost model also had a low predictive performance for in-hospital 

deaths in pneumonic COPD exacerbation. Contrary to the recursive partition that was 

used in the development of BAP-65, the XGBoost model avoids model instability [5,27]. 

In addition, unlike logistic regression, which was used in the development of CURB-65, 

the XGBoost model is not based on the assumption of linearity and does not require the 

categorisation of continuous variables [5]. It can also find the optimal interaction terms 

between variables. Despite its high ability, our XGBoost model did not show high 

performance.  

However, our study had several weaknesses. First, our sample may have been 

too small to develop internally and externally validated prediction models. The number 

of events required for model development is at least 10 events per variable [28]. Our input 

data included 10 variables, and at least 100 events were required; however, there were 

only about 60 events in our training dataset. Although we used the XGBoost model, which 



 

may require a smaller sample size, we could not overcome the problem in our dataset [29]. 

Second, other missing variables should have been included in the model. For example, in 

a previous study, the DECAF score, a simple and validated scoring system for predicting 

outcomes in COPD exacerbation. tended to have a higher predictive performance than 

CURB-65 in pneumonic COPD exacerbation [26]. However, we could not collect the 

values for the Extended Medical Research Council Dyspnea Scale, arterial blood gas 

analysis results, or atrial fibrillation because they were not routinely collected in our 

clinical site. They may be additional candidates for future prediction models. According 

to a systematic review of prediction models for COPD exacerbation, patients’ baseline 

characteristics such as body mass index, forced expiratory volume in 1 second, and 

previous COPD exacerbation were used in studies with a low risk of bias [30]. These 

could also be additional candidates.   

The feature importance plot in our study highlighted the importance of blood 

urea nitrogen, systolic blood pressure, and altered mental status. These variables should 

be included in a new clinical prediction model for pneumonic COPD exacerbation. On 

the contrary, activities of daily living and sex were of little importance in the model. In 

our study, the activities of daily living were categorised as full support or not, and this 

might have led to the loss of notable information. Approximately 90% of the included 

patients were men, which may have led to the unimportance of sex as a variable. Our 

study revealed some candidates for the included variables in developing a new model. 

In our study, we could not conclude which clinical model was superior. In our 

test dataset, the number of patients was approximately 300, and the in-hospital mortality 

was 25, which was much smaller than the necessary sample size for precise external 

validation [31,32]. The results of the external validation of BAP-65 and CURB-65 in the 



 

whole dataset showed that the predictive ability for in-hospital death could be similar 

between CURB-65 and BAP-65. Physicians who use either BAP-65 or CURB-65 will not 

have to change their practice based on our study. 

Our study had several limitations. First, as we pointed out before, our sample 

size was small. Because we could not include additional patients after the patient 

enrolment period or incorporate another patient cohort, we could not address the problem. 

Second, only Japanese patients were included, suggesting a lack of generalisability. Third, 

the primary outcome in our study was in-hospital mortality, and long-term outcomes 

could not be evaluated. Fourth, we could not set aside an additional dataset for external 

validation before splitting the dataset. Because we performed external validation on the 

split dataset, the AUROC in the test dataset may have been overestimated. Fifth, altered 

mental status was evaluated based on the Japan Coma Scale. Although this scale has been 

widely used in Japan because of its simplicity, its accuracy has not been validated in 

patients with COPD. Sixth, we could not collect data on the patients’ code status (Do-

not-intubate or not). In our study, the rate of tracheal intubation was lower than mortality. 

This may have decreased the generalisability of our study results to intensive care units. 

To overcome these limitations, large-scale studies from different regions are needed.  

 

CONCLUSION 

BAP-65, CURB-65, and the XGBoost model showed poor performance in predicting in-

hospital death among patients with pneumonic COPD exacerbation. Further large-scale 

studies with more variables are needed to develop a new prognostic model for pneumonic 

COPD exacerbation. 
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Table 1. Patient characteristics 

Characteristics Survivors  

(N = 1102) 

Non-survivors  

(N = 88) 

Total  

(N = 1190) 

P-values 

Age (years) 77 ± 8 80 ± 7 77 ± 8 0.006 

Male  974 (88) 85 (97) 1059 (89) 0.029 

Full support in activities of daily living  188 (17) 23 (26) 211 (18) 0.045 

Altered mental status  132 (12) 39 (44) 171 (14) < 0.001 

  Missing data  8 (1) 0 (0) 8 (1)  

Systolic blood pressure (mmHg) 133 ± 26 125 ± 25 132 ± 26 0.010 

  Missing data  149 (14) 5 (6) 154 (13)  

Diastolic blood pressure (mmHg) 75 ± 17 72 ± 16 75 ± 17 0.130 

  Missing data  155 (14) 5 (6) 160 (13)  

Respiratory rate (breaths/minutes) 25 ± 6 27 ± 7 25 ± 7 < 0.001 

  Missing data  219 (20) 8 (9) 227 (19)  

Heart rate (beats/minutes) 102 ± 19 106 ± 21 102 ± 19 0.061 



 

  Missing data  142 (13) 3 (3) 145 (12)  

Blood urea nitrogen (mg/dL)  20 ± 11 30 ± 21 21 ± 12 < 0.001 

  Missing data  13 (1) 1 (1) 14 (1)  

Blood eosinophil count (counts/µL) 99 ± 169 53 ± 123 96 ± 167 0.068 

  Missing data  409 (37) 41 (47) 450 (38)  

 Data are presented as mean ± standard deviation or as number (%) 

  



 

Table 2. Risk scores and in-hospital mortality of BAP-65 and CURB-65 

Risk scores Patients (number, %) In-hospital mortality (number, %) 

BAP-65 Class   

1  20 0 (0) 

2  455 20 (4) 

3  404 27 (7) 

4  120 32 (27) 

5 22 5 (23) 

CURB-65   

0 21 0 (0) 

1 306 16 (5) 

2 351 14 (4) 

3 191 31 (16) 

4 57 13 (23) 

5 8 2 (25) 



 

Figure Legends 

 

Figure 1. Patient selection flow and framework of the study process 

COPD, chronic obstructive pulmonary disease; XGBoost, eXtreme Gradient Boosting 

  



 

 

 

Figure 2. Important variables based on the impurity metric 

Blood urea nitrogen was the most important feature. Activities of daily living and sex 

were of little importance.  

  



 

 

 

Figure 3. The receiver operating characteristic curves of BAP-65, CURB-65, and the 

eXtreme Gradient Boosting (XGBoost) model in the test dataset  

The XGBoost model showed the best discriminatory performance. 

 

 



eTable1. The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist 

 

Section/Topic Item  Checklist Item Page 

Title and abstract 

Title 1 D;V 
Identify the study as developing and/or validating a multivariable prediction model, the target population, 

and the outcome to be predicted. 
1 

Abstract 2 D;V 
Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, 

statistical analysis, results, and conclusions. 
3,4 

Introduction 

Background and 

objectives 

3a D;V 
Explain the medical context (including whether diagnostic or prognostic) and rationale for developing 

or validating the multivariable prediction model, including references to existing models. 
5 

3b D;V 
Specify the objectives, including whether the study describes the development or validation of the 

model or both. 
5 

Methods 

Source of data 

4a D;V 
Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately 

for the development and validation data sets, if applicable. 
 

4b D;V 
Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-

up.  
6 

Participants 

5a D;V 
Specify key elements of the study setting (e.g., primary care, secondary care, general population) 

including number and location of centres. 
6 

5b D;V Describe eligibility criteria for participants.  6 



5c D;V Give details of treatments received, if relevant.  Not applicable 

Outcome 

6a D;V Clearly define the outcome that is predicted by the prediction model, including how and when assessed.  6 

6b D;V Report any actions to blind assessment of the outcome to be predicted.  6 

Predictors 

7a D;V 
Clearly define all predictors used in developing or validating the multivariable prediction model, 

including how and when they were measured. 
6 

7b D;V Report any actions to blind assessment of predictors for the outcome and other predictors.  6 

Sample size 8 D;V Explain how the study size was arrived at. 6 

Missing data 9 D;V 
Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple 

imputation) with details of any imputation method.  
7,8 

Statistical 

analysis methods 

10a D Describe how predictors were handled in the analyses.  7 

10b D 
Specify type of model, all model-building procedures (including any predictor selection), and method 

for internal validation. 
7,8 

10c V For validation, describe how the predictions were calculated.  7 

10d D;V Specify all measures used to assess model performance and, if relevant, to compare multiple models.  7,8 

10e V Describe any model updating (e.g., recalibration) arising from the validation, if done. 7,8 

Risk groups 11 D;V Provide details on how risk groups were created, if done.  7,8 

Development vs. 

validation 
12 V 

For validation, identify any differences from the development data in setting, eligibility criteria, outcome, 

and predictors.  
6 

Results 

Participants 

13a D;V 
Describe the flow of participants through the study, including the number of participants with and 

without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.  
9 

13b D;V 
Describe the characteristics of the participants (basic demographics, clinical features, available 

predictors), including the number of participants with missing data for predictors and outcome.  
9, Table 1 



13c V 
For validation, show a comparison with the development data of the distribution of important variables 

(demographics, predictors and outcome).  
9, Table 1 

Model 

development  

14a D Specify the number of participants and outcome events in each analysis.  8 

14b D If done, report the unadjusted association between each candidate predictor and outcome. Not applicable 

Model 

specification 

15a D 
Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, 

and model intercept or baseline survival at a given time point). 
9 

15b D Explain how to the use the prediction model. 9 

Model 

performance 
16 D;V Report performance measures (with CIs) for the prediction model. 9,10 

Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance). 9 

Discussion 

Limitations 18 D;V 
Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing 

data).  
11,12 

Interpretation 

19a V 
For validation, discuss the results with reference to performance in the development data, and any other 

validation data.  
10 

19b D;V 
Give an overall interpretation of the results, considering objectives, limitations, results from similar 

studies, and other relevant evidence.  
10 

Implications 20 D;V Discuss the potential clinical use of the model and implications for future research.  11,12 

Other information 

Supplementary 

information 

21 D;V 
Provide information about the availability of supplementary resources, such as study protocol, Web 

calculator, and data sets.  
13 

Funding 22 D;V Give the source of funding and the role of the funders for the present study.  2 

 



*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model 

are denoted by V, and items relating to both are denoted D;V. 

  



eFigure1: The validated patient selection algorithm based on the 10th revision of the 

International Statistical Classification of Diseases and Related Health Problems (ICD-10) 

  



eFigure2: The detailed description of the eXtreme Gradient Boosting algorithm 

 

 


