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Abstract  

The advent of QCT (quantitative computed tomography) and AI (artificial intelligence) 

using high-resolution computed tomography (HRCT) data has revolutionized the way 

interstitial diseases are studied. These quantitative methods provide more accurate 

and precise results compared to previous semi-quantitative methods, which were 

limited by human error such as interobserver disagreement or low reproducibility. The 

integration of QCT and AI and the development of digital biomarkers has facilitated not 

only diagnosis but also prognostication and prediction of disease behaviour not just in 

idiopathic pulmonary fibrosis (IPF) where they were initially studied but also in other 

fibrotic lung diseases. These tools provide reproducible, objective prognostic 

information which may facilitate clinical decision-making. However, despite the 

benefits of QCT and AI, there are still obstacles that need to be addressed. Important 

issues include optimal data management, data sharing and maintaining data privacy. In 

addition, the development of explainable AI will be essential to develop trust within 

the medical community and facilitate implementation in routine clinical practice.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Acronyms and Terminology 

ILD: Interstitial lung disease 

IPF: Idiopathic pulmonary fibrosis 

UIP: usual interstitial pneumonia 

NSIP: non-specific interstitial pneumonia 

CTD-FLD: connective tissue disease-related fibrotic lung disease  

FHP: fibrotic hypersensitivity pneumonitis 

ILA: interstitial lung abnormalities 

REF: progressive pulmonary fibrosis 

GGO: ground-glass opacification  

QCT: quantitative computed tomography   

AI: artificial intelligence 

CT: computer tomography 

CALIPER: Computer-Aided Lung Informatics for Pathology Evaluation and Rating 

AMFM: Adaptive multiple features method 

QLF: Quantitative Lung Fibrosis 

FRI: Functional Respiratory imaging  

SOFIA: Systematic Objective Fibrotic Imaging Analysis Algorithm 

DTA: Data-driven texture analysis 

 

Background 

Interstitial lung disease (ILD) is a group of disorders characterized by lung tissue 

inflammation and or fibrosis. Overall, they represent complex clinical entities with non-

specific pulmonary symptoms and functional findings. Patients present with 

progressive dyspnoea, dry cough, and restrictive patterns on pulmonary function tests. 

ILD is a broad term that encompasses many different conditions in which inflammation 

or fibrosis of interstitium is found in variable proportions affecting disease behaviour 

and response to treatment. At one end of the ILD spectrum is Idiopathic pulmonary 

fibrosis (IPF), a fibrotic disorder with an inexorably progressive course and poor 

prognosis (3-5 years) (1, 2). However, there are other ILDs that are mainly 

characterized by inflammation and have better outcomes with or without treatment 

and higher survival rates (3-6). Although there has been significant progress in 

treatment of these conditions in the last decade, in an addition to IPF, are other forms 

of pulmonary fibrosis which progress regardless of treatment and demonstrate and 



IPF-like disease course. These non-IPF progressive forms of fibrosis have recently been 

collectively named, “progressive pulmonary fibrosis” (REF).High-resolution computed 

tomography (HRCT) of the chest is central to diagnosis in patients suspected of fibrotic 

lung disease by providing detailed cross-sectional images of lungs and evaluating 

disease distribution in three dimensions. HRCT may also play a prognostic role in 

fibrotic lung disease and given that it is routinely performed in most patients with 

suspected fibrotic lung disease, is an attractive target for biomarker research in these 

diseases (7, 8).  

At the most basic level, a typical UIP pattern or probable usual interstitial pneumonia 

(UIP) pattern (so-called UIP-like disease) is associated with a poor prognosis based on 

recent antifibrotic therapy trials in IPF and progressive non-IPF disease (9-14). In 

addition to the HRCT phenotype, specific HRCT patterns can also be visually quantified 

(known as semiquantitative evaluation) and used as prognostic markers. 

Honeycombing, a cardinal sign of fibrosis on HRCT and a key pattern in the 

identification of UIP, is defined as clustered cystic air spaces, cysts of comparable 

diameters, and cyst diameters typically <10 mm surrounded by well-defined walls (15). 

When scored for extent visually, either alone or in combination with the extent of 

reticulation (sometimes called a “fibrosis score”), honeycombing has been consistently 

linked to mortality idiopathic fibrotic lung disease (IPF and idiopathic nonspecific 

interstitial pneumonia, “NSIP”), connective tissue disease-related fibrotic lung disease 

(CTD-FLD) and fibrotic hypersensitivity pneumonitis (FHP) over the past two decades 

(16-21). In one study involving 315 patients with IPF enrolled in a clinical trial of IFN-

g1b, Lynch et al. reported that the overall extent of fibrosis, defined as the extent of 

reticular and honeycombing patterns combined, was the strongest predictor of 

mortality (21). It is noteworthy that in this study, HRCT was a better predictor of 

mortality than pulmonary function in IPF. The severity of traction bronchiectasis is also 

a strong predictor of mortality in multiple fibrotic lung disease subsets (17, 18, 20, 22) 

and may be a sensitive surrogate marker of disease progression in IPF (23). Most 

recently, changes in aortosternal distance and fissural displacement measured 

manually predict outcomes in patients with IPF (24). In contrast, the presence of 

certain patterns may be associated with a more favourable outcome. In fibrotic 

hypersensitivity pneumonitis (FHP), the presence of mosaic attenuation and air 

trapping may be associated with a more favorable survival (25). Since disease severity 

based on HRCT fibrosis extent and lung function decline have been reported as 

independent predictors of outcome, these variables have been combined to create 

staging systems in IPF, systemic sclerosis related ILD, and fibrotic sarcoidosis (21, 26-

29). 

Despite this large body of literature reporting consistent findings, semiquantitative 

evaluation of HRCT is associated with a number of well-documented limitations; it is, 

1) liable to significant interobserver variability, 2) poorly reproducible, 3) insensitive to 

subtle changes in disease extent over short follow-up periods, 4) time-consuming, and 

5) requires domain expertise which may not be available (7, 8, 30, 31). This provides 

the rationale for applying computer-based image analysis to HRCT for both diagnostic 



support as well as reliable disease quantification also known as quantitative CT (Table 

1). 

   

Quantitative CT (QCT) 

Early studies 

The earliest move toward QCT in pulmonary fibrosis used simple measures of lung 

density based on density masks or whole-lung HRCT histogram analysis (8). Since the 

CT histogram provides a graphical representation of lung density per voxel in a CT 

image, it allows the mean lung attenuation, skewness, and kurtosis to be calculated. 

Kurtosis describes the sharpness of the peak of the histogram whereas skewness is a 

measure of the lack of symmetry of the CT histogram. Lung fibrosis increases the mean 

lung attenuation and reduces the kurtosis and leftward skewness of the histogram 

therefore these metrics may be used as surrogates of fibrosis extent on CT. In 144 IPF 

patients, Best et al. reported a correlation between kurtosis and physiologic decline 

and mortality. A key difficulty with this approach is that it cannot discriminate between 

different HRCT patterns commonly seen in patients with IPF (32). Recently, Ash et al. 

described local histogram-based objective quantification of different radiologic 

patterns of disease in 46 patients with IPF and found strong correlations between 

visual and objective histogram-based scores for disease extent as well as a poor 

prognosis in patients with higher fibrosis and honeycombing extent scores (33). 

 

Computer-Aided Lung Informatics for Pathology Evaluation and Rating (CALIPER) 

CALIPER has been used to predict survival and future physiological decline in patients 

with IPF, using a computer vision-based technique based on volumetric local histogram 

and morphological analysis to characterize and quantify different HRCT patterns (8). 

Furthermore, CALIPER extracts the pulmonary vessels and provides an estimation of 

the vessel volume, reported as a novel ‘vascular-related structures’ (VRS) variable. In a 

landmark study published in 283 patients with IPF, Jacob et al demonstrated on 

multivariable survival analysis which included CALIPER and semiquantitative HRCT 

pattern scores, only the computer-based variables independently predicted mortality, 

with VRS being the strongest predictor among them (34). In a subsequent study, 

published in 2018, the same group used a VRS-threshold for cohort enrichment in an 

IPF drug trial setting to reduce the IPF drug trial population size by 25%. Importantly, 

the VRS score identified a subset of patients in whom antifibrotic therapy reduced FVC 

decline (35). What is important to understand from these data, is that CALIPER was not 

originally designed to evaluate the pulmonary vessels; this variable was generated as a 

by-product of the software image preprocessing pipeline, which extracts the lung 

parenchyma from the airways and vessels. This finding is early evidence that 

computer-based image analysis provides an opportunity to identify novel HRCT 

biomarkers including those that may not be accessible visually. CALIPER has also been 

applied to CTD-FLD and FHP. In a cohort of 203 all-comers CTD-FLD, Jacob et al 



demonstrated that VRS was an independent predictor of mortality across all CTD-FLD 

subgroups (36). In addition, the authors stratified patients into three prognostically 

distinct groups based on CALIPER-related HRCT variables demonstrating the potential 

of this technology to identify novel outcome-based radiologic phenotypes in CTD. 

Likewise, in a cohort of 135 patients with a diagnosis of FHP, the same group (37) 

demonstrated stronger associations between restrictive functional indices and 

CALIPER-defined total ILD extent than semiquantitative scores. In a subsequent study, 

the authors applied a VRS threshold to identify a subgroup of patients with IPF-like 

disease behaviour among 103 patients with FHP. Similar results have been reported 

applying CALIPER to patients with unclassifiable fibrotic lung disease (38). 

Adaptive multiple features method (AMFM) 

AMFM identifies and quantifies HRCT patterns based on textural analysis, including 

normal lung, ground-glass opacification (GGO), emphysema, honeycombing, and 

nodules (8). Initially, this method was used to differentiate normal lung from the lung 

with emphysema. In the late 1990s, Hoffman et al. (39) compared AMFM with mean 

lung density (MLD) and histogram-based analysis and demonstrated high precision for 

the AMFM method in discriminating between normal and emphysematous lung. Later 

studies extended these experiments to patients with IPF and sarcoidosis, comparing 

the AMFM with these two methods to objectively characterize four groups of subjects; 

normal lung, emphysema, IPF, and sarcoidosis. In all four groups, the AMFM method 

demonstrated superiority over MLD and histogram-based analysis (40). In 2017 

Salisbury et al. demonstrated in 199 IPF patients enrolled in the PANTHER-IPF 

treatment trial, that baseline fibrosis (measured as ground glass-reticular opacities 

(GGR)) measured by AMFM predicts disease progression. Interestingly, changes in GGR 

only weakly correlated with FVC changes suggesting that a combination of FVC change 

and GGR change, as measured by the AMFM software, may provide improved 

prognostic signal over either variable in isolation (41). (Figure 1) 

Quantitative Lung Fibrosis (QLF) 

QLF quantifies fibrotic reticular patterns (8). A total ILD extent composite of 

Quantitative Interstitial Lung Disease (QILD) is the sum of QLF, honeycombing, and 

GGO patterns. QLF has been shown to correlate well with lung function measurement 

in ILD patients and has been used to evaluate disease progression in IPF and 

scleroderma-related ILD treatment trials (42). In a study of cyclophosphamide versus 

mycophenolate in 142 patients with scleroderma related ILD, Tashkin et al. found that 

QLF scores did not change in the treatment arms of the study, while QILD scores did 

show a small improvement in both treatment arms (43). The incorporation of 

QLF/QILD scores in secondary outcomes of clinical trials demonstrates the utility of 

computer-based imaging analysis tools for providing complementary measures of 

disease progression to conventional lung physiology (i.e. FVC)(44, 45).(Figure 2) 

Functional Respiratory Imaging (FRI) 



Functional Respiratory Imaging (FRI) combines low-dose HRCT with computer-based 

flow simulations. Respiratory gating using a handheld spirometer is performed during 

the acquisition to ensure repeatable lung volumes (Figure 3). FRI allows regional 

quantification of lung structure and function and shows low variability (1–3%) for 

airway volumes, blood vessel volumes, and airway resistances (46). FRI can also assess 

airway volume and therefore can quantify the severity of traction bronchiectasis, a 

potent predictor of mortality based on several studies which applied semiquantitative 

airway assessments. Recent studies in IPF show that disease progression, as 

determined by FVC decline, is associated with a reduction in CT-measured lung 

volumes (R2= 0.80, P, 0.001) and an increase in relative airway volumes (R2=0.29, P, 

0.001). Changes in FVC are correlated with changes in lung volumes (R2= 0.18, P, 

0.001) and changes in relative airway calibre (R2=0.15, P, 0.001) (47). Lobe and airway 

volumes can already be significantly affected by IPF, whereas conventional measures 

such as FVC remain within the normal (healthy) range while FRI metrics capture early 

changes. Additional studies are needed to be done to determine minimal clinically 

important differences. 

Deep learning 

A key drawback of many of the QCT tools described above is that their development 

requires some degree of “feature engineering”; the computer is trained to identify and 

quantify specific HRCT patterns by human operators. This means that all of the 

limitations associated with visual HRCT assessment are in principle incorporated into 

the system. A second significant issue is that the features upon which the computer is 

trained need to be known a priori, negating the possibility that novel, visually 

inaccessible HRCT biomarkers, might be discovered. Both of these challenges can be 

overcome if the computer can learn to extract the most predictive features from the 

images in an autonomous fashion. This is the key advantage of deep learning. 

Deep learning is a form of machine learning that has the capacity to autonomously 

identify patterns in high dimensional data (e.g., HRCT scans) and map these patterns to 

endpoints such as diagnosis and future disease progression(7, 48-50). Deep learning is 

very efficient at identifying subtle features within images that are important while at 

the same time, ignoring irrelevant variations between images including those 

introduced by different HRCT techniques. The key advantage of deep learning over 

many existing QCT techniques is that it simultaneously optimises feature extraction 

and classification during algorithm training; a priori knowledge of what image features 

to quantify for a given classification problem is not necessary. More concretely, deep 

learning bypasses the need to train computers on specific patterns; the computer 

learns itself, during training, which patterns on HRCT are most important for predicting 

a given task. This approach also has the added advantage of avoiding all of the 

limitations associated with visual HRCT assessment. Perhaps most importantly, since 

the computer learns autonomously without explicit programming, an opportunity is 

created for identifying novel HRCT biomarkers, including those that are not readily 

identified visually. In respiratory medicine, deep learning has been successfully applied 



to lung cancer detection, predicting mortality in patients with chronic obstructive 

pulmonary disease and classifying fibrotic lung disease on CT scans (7, 48, 51). 

 

Applications of Deep learning to fibrotic lung disease 

Deep learning, in principle, can be applied to a number of unresolved research 

questions related to imaging in fibrotic lung disease. Two important unanswered 

questions relate to 1) predicting progressive fibrotic lung disease using baseline 

imaging and clinical data and 2) early detection of clinically significant fibrotic lung 

disease.  

 

Identifying patients with progressive fibrotic lung disease 

The reliable identification of progressive fibrotic lung disease using baseline imaging 

and clinical data is of immediate clinical importance (10, 52-58). Since antifibrotic 

therapy is currently only licensed in those patients that demonstrate progression (i.e., 

progressive pulmonary fibrosis), patients must first undergo a period of progression 

before they qualify for treatment, meaning that an opportunity to initiate early 

treatment and reduce functional decline, is missed. Based on published data coming 

from recent clinical trials, UIP and probable UIP, (UIP-like disease) in general exhibit 

progressive disease behaviour, but the progressive disease is not confined to patients 

with UIP-like disease and currently, we cannot accurately predict progression using 

baseline HRCT data, in this non-UIP group. (10, 59) 

Recently, a deep learning algorithm, SOFIA (Systematic Objective Fibrotic Imaging 

Analysis Algorithm), trained to identify UIP-like features on HRCT and provide a “UIP 

probability” score was used to predict progression in a cohort of 504 suspected IPF 

patients, drawn from the Australian IPF Registry (7). This novel HRCT biomarker, the 

UIP probability score, was predictive of mortality, independently of disease severity 

(when expressed as a total fibrosis score on HRCT, or lung function). Furthermore, on 

subgroup analysis in patients whose HRCT was considered indeterminate (i.e., the 

HRCT was considered unhelpful based on visual assessment by two expert thoracic 

radiologists), the UIP probability score, again, was a strong predictor of mortality 

(RESULT: HR 1.73, P-value < 0.0001, 95% CIs). Finally, in patients who underwent 

surgical lung biopsy (n=86), the UIP probability score predicted mortality 

independently of guideline-based histologic diagnosis and total fibrosis extent, with 

both these latter variables failing to reach statistical significance (RESULT: HR 1.75, P-

value < 0.0001, 95% CIs). It is important to point out, that radiologists can also provide 

a UIP probability score, and this outperforms guideline-based HRCT diagnosis in 

survival analysis (7). However, in this setting, radiologists tend to default to the 

extremes of this scale (i.e., they tend to assign a UIP probability of 0% or 100%) 

whereas SOFIA provides a granular probability score as a continuous variable, 

regardless of the HRCT pattern; subjective biases to which human assessment are 

vulnerable, do not exist. (Figure 4) 



It is important to highlight that further work is needed to decode the outputs of SOFIA, 

particularly in cases where there is significant disagreement between the algorithm 

and the radiologists. More generally, a key challenge in deep learning is that the 

complexity that makes neural networks so efficient at identifying patterns in large 

datasets, can also make them difficult to interpret. Neural networks are often regarded 

as “black boxes” which is viewed as an obstacle to their implementation. Explainability 

is an increasingly important component of algorithm development particularly when 

algorithmic decision-making is based on features contained within the images which 

are invisible to human observers. Efficient deep learning also relies on being able to 

understand why an algorithm misclassifies certain images, making algorithm 

interpretability, crucial.  

Deep learning based QCT has also been developed. Data-driven texture analysis (DTA) 

is a deep learning-based tool which utilises a convolutional neural network to classify 

image patches based on the presence of fibrosis and quantifies fibrosis extent on 

HRCT. DTA fibrosis score has demonstrated good correlation with lung function and 

visual quantification of fibrosis by experts and can stratify patients based on fibrosis 

extent (Figure 5). By quantifying baseline line fibrosis extent, it can also be used to 

predict disease progression (RESULT: HR 1.14, P-value < 0.0001, 95% CIs) (60-62). 

Humphries at el. reported in a cohort of 393 IPF patients (62) significant associations 

with FVC and DLco decline as well as statistically significant outcome prediction, 

independent of lung function.  

 

Detection of early fibrotic lung disease 

The second open research question, to which deep learning can be applied is the 

characterization of interstitial lung abnormalities (ILA). ILA are defined as interstitial 

abnormalities that exceeds 5% extent of the total lung volume on HRCT and they 

present thorny clinical problem. Data extracted from longitudinal lung cancer and 

cardiovascular cohort studies show shared clinical and genetic associations between 

incidentally detected ILAs on HRCT and IPF.  ILAs are associated with aging and are 

more commonly seen in smokers. ILA are also seen in those expressing MUC5B 

promoter polymorphism positivity (63, 64) and ILA progression correlates to 

physiologic decline. But ILAs are common, seen in 7-9% of lung cancer screening 

subjects, exceeding the prevalence of IPF by almost two orders of magnitude (65). The 

current challenge is that it is not possible to predict which ILA will progress to clinically 

significant fibrotic lung disease and which will not.  As with diagnosis in established 

fibrotic lung disease, the current ILA classification is based on visually defined 

morphology, rather than disease behaviour, which means that classification of 

incidentally identified ILA is associated with all the limitations associated with visual 

HRCT evaluation. Also, the current ILA definition represents an umbrella term 

encompassing a range of non-fibrotic and fibrotic patterns. This definition will need 

refinement if progressive ILA are to be reliably identified. As with predicting 

progressive behaviour when fibrosis is established, one solution might be found in 



deep learning-based analysis; algorithmic training could be anchored to ILA behaviour 

with no a priori assumptions as to the importance of individual ILA patterns. A major 

challenge to this approach will be the collating of sufficiently large datasets to 

adequately power algorithm training.  

 

Challenges to development and implementation 

The use of QCT as biomarker in fibrotic lung disease faces several barriers. These 

include,  access to high quality data in sufficient quantities to drive novel QCT 

development, recognising and minimising biases in algorithm training, improving 

algorithm explainability, ensuring equal access for patients to AI-based technology and 

establishing reference standards for training, testing and algorithm deployment.  

The availability of large and diverse datasets is a critical factor in the development of 

effective machine learning models. Open-source datasets like The Open-Source 

Imaging Consortium (OSIC) (https://www.osicild.org) can help address these 

limitations by making data more accessible and secure, while also addressing privacy 

and ethical concerns. The multidisciplinary nature of OSIC, engaging radiologists, 

clinicians, computer, and data scientists as well as industry stakeholders helps to 

ensure the credibility and trustworthiness of the dataset and therefore, making it a 

valuable resource for the development of AI-powered healthcare solutions. 

The integration of machine learning with pathogenetics can have a major impact on 

drug development. Machine learning can help identify patterns and correlations in 

large population data, allowing the testing of hypotheses on a larger scale. This can 

lead to more personalized and effective treatments, as well as a deeper understanding 

of disease mechanisms. By leveraging the power of machine learning, drug 

development can be more efficient and targeted, ultimately improving patient 

outcomes. 

Deep learning algorithms come with unique risks because of they can reinforce biases 

in training data. Missing or unbalanced data can affect algorithm performance and 

amplify inequalities in healthcare in ways that are difficult to detect. Subgroups of 

patients with rare diseases may not see the benefit of these AI-based imaging analysis 

techniques because of insufficient data for algorithm development (66). Deep learning 

algorithms may also be manipulated to output conclusions that trend toward the use 

of specific third-party tests. Establishing ethical frameworks with by-in from all 

stakeholders and in particular, patients will be needed to foster trust in this 

technology. Bespoke governance frameworks which are tailored to address the unique 

challenges associated with AI will likely be needed. Preserving trust and transparency 

will be of paramount importance. Finding ways to encode ethical standards into AI 

training will be essential as well as preserving trust and transparency. 

Encouraging the medical community to fully embrace AI and machine learning tools 

may be hampered by a lack of understanding and concerns about quality, safety, and 

accuracy. However, it’s important to consider that first the quantitative analysis 

https://www.osicild.org/


provided by these tools can offer more reliable and objective data for disease 

assessment and precision medicine (67-71). Second, this can aid in clinical decision-

making and improve the accuracy of predictions about disease progression. It will also 

be important for all stakeholders to receive appropriate education and training on the 

use of these tools and how to appraise and overcome their limitations. 

Conclusion: 

Quantitative Computed Tomography (QCT) and Artificial Intelligence (AI) are 

increasingly being recognized as valuable tools in the diagnosis and prognosis of 

interstitial lung diseases (ILDs). Two key advantages are: first, they offer the advantage 

of being more precise and efficient compared to semi-quantitative methods, and 

second, can help in decision making for physicians. However, there are still challenges 

in terms of acceptance by the medical community and navigating technical and 

bureaucratic hurdles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



QCT 

The computer is trained to identify and quantify patterns in HRCT. Its development requires "function 

engineering", a human operator. 

Computer-Aided Lung Informatics 

for Pathology Evaluation and 

Rating (CALIPER) 

This tool uses volumetric local histogram and morphological analysis 

to characterize and quantify different HRCT patterns. Including the 

novel 'vascular-related structures' (VRS) variable, which has been 

shown to be an independent predictor of mortality and a potential 

tool to identify novel outcome-based radiologic phenotypes in 

various lung diseases. 

Adaptive multiple features 

method (AMFM) 

Identifies and quantifies HRCT patterns based on textural analysis 

(normal lung, GGO, emphysema, honeycombing, and nodules). 

Quantitative Lung Fibrosis (QLF) This tool quantifies fibrotic reticular patterns. A total ILD extent 

composite of Quantitative Interstitial Lung Disease (QILD) is the sum 

of QLF, honeycombing, and GGO patterns. It can provide 

complementary measures of disease progression to conventional 

lung physiology. 

Functional Respiratory Imaging 

(FRI) 

This technology combines low-dose HRCT with computer-based flow 

simulations. FRI enables precise quantification of lung structure and 

function, with low variability for airway volumes, blood vessel 

volumes, and airway resistances. It can also evaluate airway volume, 

making it useful for measuring the severity of traction 

bronchiectasis, which is a predictor of mortality. 

Deep learning 

It has the ability to autonomously identify patterns in high-dimensional data features (for example, HRCT 

scans). It has no human operator. 

Systematic Objective Fibrotic 

Imaging Analysis Algorithm 

(SOFIA) 

The algorithm is trained to identify usual interstitial pneumonia 

(UIP)-like features on high-resolution computed tomography (HRCT). 

It provides a "UIP probability" score. It can predict disease 

progression and mortality in patients with suspected idiopathic 

pulmonary fibrosis (IPF). 

Data-driven texture analysis (DTA) This technology classifies image patches based on the presence of 

fibrosis and quantifies fibrosis extent on HRCT. It can stratify 

patients based on fibrosis extent. 

 

TABLE 1. This table summarizes the tools of QCT and deep learning. 
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FIGURE 1. Adaptive multiple features method (AMFM). The image demonstrates a 

patient with low Ground Glass Reticular texture and a patient with high GGR. Colour 

coding: Grey (white overlay) = Normal; Pink= Broncho-vascular bundles; Yellow= 

Honeycombing; Green=Ground Glass; Purple/Blue= Ground Glass 

ReticularCourtesyReticular. Courtesy of Prof. Eric Hoffman. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. Coronal and axial computed tomography (CT) images with Quantitative Lung Fibrosis 

(QLF) characterization. Left: coronal (left) and original (right) coronal images. Right: Annotated 

axial high-resolution CT images with the classification of QLF (blue and red) and the 

corresponding original images. In whole lung, QLF extent is 10.6% and QLF score is 393 mL in 

volume. QLF scores in right and left lung are 11.5% and 9.5%, respectively.  QLF scores were 

20.1%, and 19.7% in the right and left lower lobes, which convert to 142mL and 105mL, 

respectively.  QLF score quantifies the extent, and characterizes the distribution of pulmonary 

fibrosis as predominately lower lung disease. Courtesy of Prof. Grace Hyun J Kim and Prof. 

Goldin Jonathan. 



 

 

 

 

 

 

 

 

 

 

 

FIGURE 3. Functional Respiratory Imaging. Visualization and quantification of airway volumes 

(depicted in blue), lobe volume, fibrosis (depicted in green), and emphysema (depicted in black 

and blood vessel volume (depicted in red). Courtesy of Fluidda, Inc. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4. Systematic Objective Fibrotic lung disease analysis Algorithm. A) Four slice HRCT 

montage of segmented lung slices depicted peripheral honeycombing consistent with a UIP 

pattern. SOFIA (Systematic Objective Fibrotic lung disease analysis Algorithm) scores for this 

case were UIP: 0.9963, Probable UIP: 0.0036, Indeterminate: 0.0001, and Alternative diagnosis: 

0.000. B) Saliency map for Figure A highlighting regions within the montage that were most 

influential algorithmic decision-making. 
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FIGURE 5. Data-driven texture analysis (DTA). Coronal CT sections on a 66-year-old female with 

IPF. Visual CT pattern was indeterminate for UIP. Baseline CT with B) DTA classification as red 

overlay. DTA score (calculated as percentage of lung volume classified as fibrosis) was 33.0 at 

baseline. C) Follow-up CT at 1 year and D) DTA classification as red overlay. DTA score 

increased to 39.0 at 1 year follow-up. Courtesy of Prof. Steve Humphries. 


