Beyond airflow obstruction: acknowledging the diversity of abnormal spirometry patterns

Sateesh Sakhamuri, Terence Seemungal

Please cite this article as: Sakhamuri S, Seemungal T. Beyond airflow obstruction: acknowledging the diversity of abnormal spirometry patterns. ERJ Open Res 2023; in press (https://doi.org/10.1183/23120541.00193-2023).

This manuscript has recently been accepted for publication in the ERJ Open Research. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJOR online.

Copyright ©The authors 2023. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org
Research Letter

Beyond airflow obstruction: acknowledging the diversity of abnormal spirometry patterns

Authors: Sateesh Sakhamuri,1 Terence Seemungal2

Affiliations:
1 Medical Associates Hospital, St. Joseph, Trinidad and Tobago
2 Faculty of Medical Sciences, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago

Corresponding Author:
Dr. Sateesh Sakhamuri, MD, FCCP, ATSF, FAPSR
Consultant Pulmonologist
Medical Associates Hospital
St. Joseph
Trinidad and Tobago
Email: ssmadhav@gmail.com

Co-Author:
Prof. Terence Seemungal, FRCP, PhD
Dean
Faculty of Medical Sciences
The University of the West Indies
St. Augustine Campus
Trinidad and Tobago
Email: terence.seemungal@sta.uwi.edu

Key words: Non-obstructive abnormal spirometry, Restrictive spirometry, Preserved ratio impaired spirometry, Forced vital capacity, Forced expiratory volume in one second

Funding: Bold- Trinidad and Tobago study was funded by the Ministry of Health, Trinidad and Tobago
To the Editor,

The primary purpose of spirometry is to identify the obstructive ventilatory defect, indicated by diminished forced expiratory volume in one second to forced vital capacity ratio (FEV1/FVC). However, it also has several screening and prognostic applications by detecting non-obstructive abnormal spirometry (NOAS), a condition where either FEV1 or FVC or both are reduced while the ratio remains normal. Both FVC and FEV1 are known to be related to all-cause mortality and morbidity even in the general population [1]. Studies indicate that NOAS is prevalent in up to 30% of the general population [2] and an even greater proportion of those experiencing symptoms. However, there is substantial variation exists in how NOAS is interpreted. Additionally, it’s worth noting that NOAS differs from the non-specific pattern (NSP) described by Hyatt et al, around 15 years ago. NSP is characterized by an abnormally low FEV1 with normal FEV1/FVC ratio and normal total lung capacity (TLC) [3]. However, in the current study, we didn’t measure static lung volumes.

The pulmonary function interpretation guidelines [4], including the recently published ERS/ATS 2022 guidelines [5], only focused on the reduced FVC with a normal FEV1/FVC ratio as a possible restrictive ventilatory impairment (restrictive spirometry) within their interpretation algorithm, while overlooking the importance of reduced FEV1. Additionally, over the past decade, more than 50 publications have studied reduced FEV1 with normal FEV1/FVC ratio, referring to it as preserved ratio impaired spirometry (PRISM) [6], yet neglecting the significance of decreased FVC. Regrettably, current guidelines and research studies often treat restrictive spirometry and PRISM as similar entities, despite their potential for exclusivity. There have been no studies published that directly compare these two physiological groups.

While FEV1 and FVC are strongly correlated [7], both restrictive spirometry and PRISM approaches have limitations. Diminished FVC is a poor predictor of true restriction [8, 9], and FEV1 is heavily reliant on FVC, and is thought to rarely decrease independently when the FEV1/FVC ratio and FVC are normal. Given these limitations, we suggest the identification of three patterns by considering both abnormal FEV1 and FVC in interpretation: 1. NOAS due to isolated reduced flow (FEV1), which may indicate early airflow obstruction [10] or suboptimal effort; 2. NOAS due to isolated reduced volume (FVC), which may represent early restriction or suboptimal effort; and 3. NOAS due to both reduced flow and volume (FEV1 and FVC), likely due to restriction or airflow obstruction with air
trapping or suboptimal effort. These three potential functional phenotypes might also have different outcomes.

In our Burden of lung disease (BOLD)-Trinidad and Tobago study, we examined these NOAS patterns through a national community-based cross-sectional investigation. The study received approval from the ethics committees of the Faculty of Medical Sciences at the University of the West Indies and the Ministry of Health, Trinidad and Tobago. Non-institutionalized adults aged 40 years and older were chosen using two-stage stratified cluster sampling across the country. After giving consent, participants completed several questionnaires and underwent spirometry testing. Spirometry was conducted following the 1994 American Thoracic Society (ATS) criteria [11], using the Easy-One portable spirometer (ndd Medizintechnik; Zurich, Switzerland). Spirometry quality control was performed by the BOLD central pulmonary function reading centre in London, UK. A more detailed description of our study’s methodology has been previously published [12]. In this study, we employed the Global lung Function Initiative (GLI) race-neutral lower limit of normal values for interpretation, considering the Caribbean population, which predominantly includes Afro-Caribbean and Indo-Caribbean ethnic groups, is likely distinct from their ancestors and not represented in the GLI database. Furthermore, GLI recognizes the need for ethnicity-free reference equations to accurately understand disparities in lung health and avoid underestimating the impact of social determinants on lung health [13]. The 2022 ERS/ATS guidelines recommended a z-score based classification and was used to estimate the severity of FEV1 and FVC reductions [2]. Chi-square tests were applied to assess differences in categorical variables and Student’s t-test to examine differences in continuous variables.

Out of 1104 participants, 382 reported experiencing respiratory symptoms (cough, phlegm, or shortness of breath). Among the individuals who reported symptoms, 65% were female, 68% were between the ages of 40-60, 43% were of Indo-Caribbean ethnicity and 34% were Afro-Caribbean ethnicity. Additionally, 45% of the symptomatic individuals were obese, 69% were non-smokers, and 27% were exposed to dust or fumes.

Among the symptomatic individuals, 45.5% were found to have NOAS, while 10.2% displayed airflow obstruction. Within the NOAS group, 79.3% exhibited reductions in both FEV1 and FVC, while a smaller but significant percentage showed reduced FEV1 or FVC alone (9.2% and 11.5%, respectively) (Figure 1). In their respective isolated abnormal groups, FEV1 and FVC displayed only mild
decreases (z-scores -1.65 to -2.5). Meanwhile, in nearly all cases within the combined abnormal group (99%), FEV1 and FVC exhibited mild to moderate reductions (z-scores -1.65 to -4.0). No statistically significant differences were observed among the three NOAS groups regarding gender, age, ethnicity, body mass index (BMI), smoking status, occupational dust or fumes exposure and comorbidities.

Limitations of the current study include its cross-sectional design and the reliance on self-reported data. These results warrant validation through additional large-scale studies. Furthermore, more research is needed to evaluate these functional groups with static lung volumes and assess their functional progression, mortality, and morbidity outcomes.

Our study demonstrates that the current NOAS patterns, restrictive spirometry and PRISM may not be the same entities. They might overlook a significant portion of individuals with abnormal spirometry, who may deserve further work-up. Given that spirometry is a well-established screening and diagnostic tool for pulmonary dysfunction, morbidity, and mortality, it is essential not to neglect any of its indices and miss the opportunity to investigate further. Consequently, we recommend that pulmonary function guidelines and research groups consider incorporating both abnormal FEV1 and FVC values in interpretation when the FEV1/FVC ratio is normal.

Declarations: S.S. reports consulting fees from Glaxo-Smith-Kline; and honoraria or payments from Glaxo-Smith-Kline and Astra-Zeneca. T.S. reports consulting fees from Glaxo-Smith-Kline, Astra-Zeneca and Bohringer-Ingelheim; honoraria or payments from Glaxo-Smith-Kline, Astra-Zeneca and Bohringer-Ingelheim; and support for attending meetings and/or travel from Glaxo-Smith-Kline, Astra-Zeneca and Bohringer-Ingelheim.
Figure 1. A. Scatter plot graph and B. Venn diagram distribution of non-obstructive abnormal spirometry (NOAS) based on FEV1 and FVC changes in the participants of BOLD-Trinidad and Tobago study with respiratory symptoms.
References

