Chronic cough associated with COPD exacerbation, pneumonia and death in the general population

Eskild M. Landt, Yunus Çolak, Børge G. Nordestgaard, Peter Lange, Morten Dahl


This manuscript has recently been accepted for publication in the *ERJ Open Research*. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJOR online.

Copyright ©The authors 2023. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org
Chronic cough associated with COPD exacerbation, pneumonia and death in the general population

Eskild M. Landt¹, Yunus Çolak²-³, Børge G. Nordestgaard³-⁵, Peter Lange²,³,⁵,⁶, Morten Dahl¹,³,⁵

Affiliations: ¹Department of Clinical Biochemistry, Zealand University Hospital, Køge, Denmark.
²Department of Internal Medicine, Section of Respiratory Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark. ³The Copenhagen General Population Study, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark.
⁴Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark. ⁵Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. ⁶Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark.

Correspondence: Morten Dahl, Professor, MD, PhD, DMSc, Department of Clinical Biochemistry, Zealand University Hospital, Lykkebækvej 1, DK-4600, Køge, Denmark. E-mail: modah@regionsjaelland.dk

Take home message: Chronic cough is associated with 4.6-fold risk for COPD exacerbation, 2.2-fold risk for pneumonia, and 1.7-fold risk for death.

Manuscript length: Abstract word count: 250, total word count: 2729, references: 29, tables/figures: 6
ABSTRACT

Background: Chronic cough affects up to 10% of the general population and was previously perceived as a comorbidity of underlying conditions, but is nowadays classified as a disease in its own entity that could confer increased risk of morbidity and mortality. We tested the hypothesis that chronic cough is associated with increased risk of chronic obstructive pulmonary disease (COPD) exacerbation, pneumonia, and all-cause mortality in the general population.

Methods: We identified 2801 individuals with chronic cough, defined as cough lasting >8 weeks, among 44,756 randomly selected individuals from the Copenhagen General Population Study, and recorded COPD exacerbations, pneumonia, and all-cause mortality during follow-up.

Results: During up to 5.9 years follow-up (median:3.4 years), 173 individuals experienced COPD exacerbation, 767 experienced pneumonia, and 894 individuals died. Individuals with chronic cough versus those without had cumulative incidences at age 80 of 12% versus 3% for COPD exacerbation, 30% versus 15% for pneumonia, and 25% versus 13% for death from all causes. After adjustment for age, sex, and smoking, individuals with chronic cough versus those without had adjusted hazard ratios of 4.6 (95% confidence interval:2.9-7.2) for COPD exacerbation, 2.2 (1.7-2.7) for pneumonia, and 1.7 (1.4-2.0) for all-cause mortality. Among current smokers aged >60 years with airflow limitation, those with versus without chronic cough had an absolute 5-year risk of 10% versus 4% for COPD exacerbation, 16% versus 8% for pneumonia, and 19% versus 12% for all-cause mortality.

Conclusion: chronic cough is associated with higher risks of COPD exacerbation, pneumonia and death, independent of airflow limitation and smoking.
INTRODUCTION

Chronic cough is defined as a cough lasting >8 weeks and affects up to 10% of the general population [1-2]. Although chronic cough previously was perceived as a comorbidity of underlying conditions, it is nowadays classified as a disease in its own entity [3]. Risk factors for chronic cough include bronchiectasis, asthma, airflow limitation, gastroesophageal reflux disease, upper airway cough syndrome, smoking, and obesity [1,4].

Recently different mechanisms of cough were suggested between patients with chronic obstructive pulmonary disease (COPD) and chronic refractory cough [5], suggesting drugs for the treatment of chronic cough may potentially be beneficial for some patients with chronic cough and COPD and not others. Cough as a defence mechanism of aspiration is important for the pathogenesis of chronic cough, and prandial aspiration may occur more often in COPD contributing to susceptibility to acute exacerbations and pneumonia in some of the patients [6]. Chronic cough in individuals with COPD has been associated with a more severe disease phenotype in terms of more accompanying respiratory symptoms and lower lung function [7-9], and it has been suggested that chronic cough could be an important predictor of acute exacerbations and perhaps other future COPD-related outcomes. If patients with chronic cough have a higher susceptibility for future COPD-related outcomes like COPD exacerbation, pneumonia and mortality, then these patients should perhaps be treated more intensely.

We tested the hypothesis that chronic cough is associated with increased risk of COPD exacerbation, acute pneumonia, and all-cause mortality in the general population. For this purpose, we identified individuals with chronic cough from 44,756 randomly selected individuals from the Copenhagen General Population Study and followed them for up to 5.9 years. Risk was
also investigated according to age, airflow limitation, and current smoking, as these covariates are important factors for COPD severity and prognosis.

MATERIALS AND METHODS

Study design and participants

The Copenhagen General Population Study is a Danish contemporary population-based cohort initiated in 2003 with ongoing enrolment (e-Figure 1). All individuals in Denmark are assigned a unique identification number at birth/immigration and recorded in the national Danish Civil Registration System. By using this unique number, individuals aged 20-100 years are randomly selected and invited from the national Danish Civil Registration System to reflect the adult Danish population. The participation rate of the Copenhagen General Population Study is 49.3%. From January 1, 2013 to 2018, using a nested cohort design, 44,756 consecutive individuals were asked about presence of chronic cough and completed a clinical questionnaire, underwent a physical health examination, and gave blood for biochemical analyses (e-Figure 1) [1, 7]. Questionnaires were reviewed at the day of attendance by a healthcare professional together with the participant. The study was approved by Herlev and Gentofte Hospital and a Danish ethical committee and was conducted according to the Declaration of Helsinki (identification no.: H-KF-01-144/01). All participants provided written informed consent.

Chronic cough and clinical outcomes
Chronic cough was defined as an affirmative response to the question: “Do you have a cough lasting for more than 8 weeks?” in accordance with the clinical recommendations from the American College of Chest Physicians, British Thoracic Society, and the European Respiratory Society [3,10-12]. Participants were also asked about sputum production (= phlegm from the lungs in the morning and/or during the day for as long as three consecutive months each year). Productive chronic cough was defined in those who had chronic cough with sputum production. Non-productive chronic cough was defined in those who had chronic cough without sputum production.

COPD exacerbations (International Classification of Diseases[ICD]-10: J41-44) and pneumonia (ICD-10: J12-18) were defined as acute emergency department visits or hospital admissions according to the national Danish Patient Registry, which is a complete register of all public and private hospital contacts in Denmark. Information on all-cause mortality and cause specific mortality (COPD, ICD10: J41-44; respiratory diseases, ICD10: J00-99; ischemic heart disease (IHD), ICD10: I20-25; cardiovascular diseases, ICD10: I00-I99) was retrieved from the national Danish Register of Causes of Death.

Forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) were measured pre-bronchodilator as described in detail elsewhere [13]. Airflow limitation was defined as FEV1/FVC <0.70. From 2014 to 2018 individuals with airflow limitation with a pre-bronchodilator FEV1/FVC<0.70 were asked to undergo reversibility testing in which post-bronchodilator lung function was measured 15 min following inhalation of 400 µg of salbutamol (Ventoline Diskus, GlaxoSmithKline) [7]. Smoking status was reported as never, former, and current smoking. Former and current smokers provided information on type and daily amount of consumed tobacco, and cumulative tobacco consumption was calculated in pack-years: one pack-year corresponded to 20 cigarettes or equivalent (cigars, cheroots, or pipe tobacco) consumed daily for a year.
Statistical analyses

All statistical analyses were conducted using STATA/SE version 12.1 for Windows (StataCorp), and a two-tailed P-value <0.05 was considered as statistically significant. Number of individuals with missing values were few and random among study groups, and we chose not to fill in missing values in the analysis. All participants were included for the baseline cross-sectional analysis using Pearson’s χ²-squared tests for comparisons of categorical attributes, and Student’s t-tests and Wilcoxon’s rank-sum tests, respectively, for comparisons of normally and non-normally distributed continuous attributes. Participants who had a COPD diagnosis prior to the baseline survey were excluded from the cumulative incidences and cox regression analyses. End of study follow-up was December 31st 2018. Cumulative incidences of COPD exacerbation and pneumonia were calculated and graphed using Fine-Gray competing risk models with death as competing event. Cumulative incidence of all-cause mortality was calculated and graphed using Kaplan-Meier estimated probability of survival. Hazard ratios (HRs) for COPD exacerbations and pneumonias were calculated using modified Cox regressions according to the method of Anderson-Gill [14]. HR for all-cause mortality was calculated using regular Cox regression. Age, sex, and smoking were included in adjusted analyses, and interactions between airflow limitation and current smoking with chronic cough were investigated. For COPD exacerbation and pneumonia, absolute 5-year risks were calculated using Fine-Gray competing risk models with death as competing event, and for all-cause mortality, we used regular Kaplan-Meier analysis, all with study entry as left truncation. These data were presented as estimated incidence rates (number of events per 5 years) in percent.
RESULTS

During up to 5.9 years follow-up (median: 3.4 years) (e-Figure 1), 173 (0.4%) individuals experienced an exacerbation of COPD, 767 (1.7%) experienced pneumonia, and 894 (2.0%) individuals died. Baseline characteristics of individuals with and without a subsequent clinical outcome are shown in Table 1. As expected, individuals with a future outcome were older, had lower FEV$_1$ % predicted, had more often airflow limitation, and were more often current smokers or ex-smokers and had higher tobacco consumption compared with individuals who remained free from outcomes during follow-up. Prevalence of chronic cough was higher at baseline examination in individuals with a future outcome (Table 1). Individuals with chronic cough at baseline versus those without had higher risk of spirometric COPD (e-Figure 2).

The cumulative incidences of COPD exacerbation, pneumonia, and all-cause mortality were higher in those with chronic cough compared with those without chronic cough (Figure 1). At age 80, 12% of those with chronic cough at baseline had experienced a COPD exacerbation versus 3.2% in those without chronic cough. Corresponding values were 30% versus 15% for pneumonia and 25% versus 13% for all-cause mortality. As expected, the cumulative incidences for clinical COPD outcomes were higher in those with versus without airflow limitation and in current- versus non-smokers (Figure 2).

During a median of 3.4 years of follow-up, 81 individuals with chronic cough (3%) experienced a COPD exacerbation, 132 (5%) experienced pneumonia, and 113 (4%) died. After statistical adjustment for age, sex, and smoking, individuals with chronic cough versus those without had an increased HR for COPD exacerbation of 4.6 (95% confidence interval: 2.9-7.2) (Figure 3). Corresponding HRs were 2.2 (1.7-2.7) for pneumonia and 1.7 (1.4-2.0) for all-cause mortality, respectively. Results were similar after stratification for airflow limitation and current
smoking and no statistically significant interactions were observed between these parameters and chronic cough (Figure 3). This suggests that the increased risks of COPD outcomes in individuals with chronic cough versus those without were independent of influences caused by airflow limitation and current smoking. When the analysis was stratified by chronic cough type, the HRs for COPD exacerbation and pneumonia were higher in individuals with productive chronic cough vs individuals with sputum production alone (P=0.001 and P=0.01) or non-productive chronic cough (P=0.05 and P<0.03) (Figure 4). A similar trend was seen for all-cause mortality but results were not statistically significant (Ps≥0.15). When the analysis was stratified by cause-specific mortality, individuals with chronic cough versus those without had increased HRs of 6.7 (3.2-14) for COPD-specific mortality, 3.1 (2.1-4.7) for respiratory disease-related mortality, and 1.9 (1.3-2.8) for cardiovascular disease-related mortality (e-Figure 3).

The lowest 5-year absolute risk for COPD exacerbation was 0.1% and could be observed in non-smokers without chronic cough aged <60 years without airflow limitation (Figure 5). Corresponding values for pneumonia and all-cause mortality were 0.8% and 0.5%, respectively. The absolute risks increased with presence of chronic cough, current smoking, increasing age, and airflow limitation. The highest 5-year absolute risk for COPD exacerbation was 10% in current smokers with chronic cough aged ≥60 years with airflow limitation (Figure 5). Corresponding values for pneumonia and all-cause mortality were 16% and 19%, respectively.

**DISCUSSION**

We tested the hypothesis that chronic cough is associated with increased risk of COPD exacerbation, pneumonia, and all-cause mortality in the general population using a contemporary Danish population-based cohort with 44,756 randomly selected individuals. We found that chronic
cough is a strong predictor of future COPD exacerbation, pneumonia, and death, and that this is independent of age, sex, smoking, and airflow limitation. To our knowledge this is the first study investigating clinical COPD outcomes in the general population using a chronic cough definition in accordance with the current recommendations and guidelines [3].

Supportive findings have been reported in previous studies focused either on chronic cough in patients with COPD [8] or using the term chronic bronchitis [15,16]. Koo et al. demonstrated that presence of chronic cough for 3 months in COPD patients was associated with lower lung function, more severe dyspnoea, and frequent acute exacerbations, defined as worsening of symptoms which required medical treatment [8]. We corroborated such findings in a previous study showing that chronic cough in COPD was associated with a more severe disease phenotype in terms of more accompanying respiratory symptoms and lower lung function [7]. Çolak et al. showed that chronic respiratory symptoms are associated with increased respiratory hospitalisations and death in individuals with normal spirometry from the Copenhagen General Population Study both in never- and ever-smokers, separately [14]. Our study adds to these previous findings and shows that chronic cough is an independent predictor of future clinical COPD outcomes, including COPD exacerbations, pneumonia, and death in the general population.

Balte et al. recently found that chronic bronchitis was associated with increased risk of respiratory hospitalisations and death in individuals without airway obstruction in the National Heart, Lung and Blood Institute Pooled Cohort Study [17]; however, the risk of death was only significantly affected in ever-smokers. Similar findings were reported when looking at the cough component of chronic bronchitis (with and without phlegm) with HR for COPD-related outcomes (mortality and hospitalisations) of 2.0 (95% CI: 1.3-2.9) in never-smokers and 1.7 (1.5-2.1) in ever-smokers. Our study expands on these findings in several ways. We found similar prevalence of chronic cough (6% versus 5%) and higher risks of respiratory outcomes with chronic cough but
with shorter follow-up time. In addition, we restricted our analyses to the clinical definition of chronic cough in a cohort of approximately 45,000 randomly selected adults, including individuals with airflow limitation, and investigated the risks conferred by chronic cough on COPD exacerbation, pneumonia, and all-cause mortality.

Cough is a major symptom of COPD linked with exacerbation frequency and clinical deterioration. Acute exacerbations of COPD are associated with cough as a symptom [18]. Deslee et al. showed that assessing cough in the past week was superior to the usual chronic bronchitis definition in identifying cough-associated impairment of health-related quality of life using the St. George’s Respiratory Questionnaire in individuals with COPD [19]. This finding is supported by recent cross-sectional studies in Japan and US showing that chronic cough negatively impacts quality of life [20,21].

In our study, airflow limitation and current smoking were important in that cumulative incidences for all clinical COPD outcomes at age 80 were indeed higher in the presence of these covariates. Nonetheless, airflow limitation and current smoking still had no influence on risk of outcomes, i.e. no effect modification or interaction. Moreover, the absolute 5-year risks reveal additive effects of both risk factors: airflow limitation being most important for respiratory-related outcomes including COPD exacerbation and pneumonia, and current smoking imparting more massively on all-cause mortality.

When stratifying the analysis by chronic cough type, the risks for clinical COPD outcomes were nominally higher in those with productive chronic cough as opposed to sputum production alone or non-productive chronic cough indicating productive chronic cough was the stronger predictor of future clinical outcomes in the population. A possible mechanism underlying the relationship between productive chronic cough and subsequent COPD exacerbation could be a
higher prevalence of aspiration in these patients [6, 22, 23]. Indeed cough is a defence mechanism of aspiration, and aspiration occurs more often in COPD contributing to susceptibility to exacerbations and pneumonia [6, 23]. This could also contribute to higher risk of COPD mortality in the affected individuals as was observed in the current study.

Strengths of the present study include the use of a large contemporary population-based cohort with randomly selected individuals, the use of chronic cough defined as a cough >8 weeks, and the fact that the main findings regarding increased risks of future clinical COPD outcomes and death were replicated in subgroup analyses with regards to airflow limitation and current smoking. A potential limitation is that we did not have post-bronchodilator spirometry for all participants for the cross-sectional analysis of COPD in individuals with chronic cough at baseline versus those without. However, results were similar for pre-bronchodilator and post-bronchodilator defined COPD [7], and thus we do not think that this substantially biased our findings. Because 99.9% of the participants were of white Caucasian descent, the generalizability of our results could potentially be constrained; however, this may also make our results less dependent on influences caused by ethnic differences. Some of the individuals with the most severe types of chronic cough may not have attended the physical examination and participated in the Copenhagen General Population Study. This could theoretically tend to bias the results towards the null hypothesis and lead us to underestimate some of the associations observed between chronic cough and subsequent COPD outcomes.

Since chronic cough has been associated with increased accompanying respiratory symptoms and low lung function in individuals with COPD [7], and in the present study also with increased risk of adverse clinical outcomes, targeting chronic cough with effective drugs could potentially improve disease burden and prognosis in some patients. The highest risk for any events was observed in patients with chronic productive cough. However, in these patients the
effectiveness of therapy with novel antitussive drugs such as P2X3 antagonists has not been proved yet. Instead, the results of this study are good premises to treat patients (especially COPD patients) with productive chronic cough more intensely with mucolytics, antibiotics or bronchodilators [3, 24-26]. We have an existing therapy, azithromycin, which has been shown in several studies to reduce exacerbation rates, and it is recommended in the ERS and CHEST cough guidelines [3, 25]. It works as an antibacterial drug and promotility agent (an agonist of motilin) thus reducing aspiration events. The presence of chronic cough in COPD should be an indication for this existing treatment. Azithromycin has also been tested for other chronic cough related diseases beyond COPD, e.g. in sarcoidosis cough, idiopathic pulmonary fibrosis cough, and asthmatic cough, but with differing results [24, 27-29].

In conclusion, chronic cough is a strong and independent predictor of future clinical outcomes in the general population and associated with 4.5-fold risk of COPD exacerbation, 2.2-fold risk of pneumonia, and 1.7-fold risk death. The highest absolute risks were observed in older current smokers with chronic cough and airflow limitation, but the presence of chronic cough was associated with the adverse outcomes also in nonsmokers with normal lung function.
Author contributions: EML, YÇ, and MD had full access to all data in the study and had final responsibility for the decision to submit for publication. EML, YÇ, BGN, PL, and MD contributed to the study concept and design. EML, YÇ, BGN, PL, and MD collected, analysed, or interpreted the data. EML wrote the draft manuscript and did the statistical analyses. EML, YÇ, BGN, PL, and MD revised the manuscript for important intellectual content. BGN, PL, and MD obtained funding and provided administrative, technical, or material support. MD supervised the study.

Disclosure: Dr. Nordestgaard has consultancies with Amarin, Akcea, Amgen, AstraZeneca, Denka Seiken, Kowa, Novartis, Novo Nordisk and Silence Therap. No conflicts of interest exist for Eskild M Landt, Yunus Çolak, Peter Lange, and Morten Dahl.

Funding: Danish Lung Association, Danish Cancer Society, Novo Nordisk Foundation, Department of Clinical Biochemistry and Department of Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, and Department of Public Health, University of Copenhagen. The sponsors did not participate in the design and conduct of the study; collection, management, analysis, or interpretation of the data; or in preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.
REFERENCES


FIGURE LEGENDS

Figure 1. Cumulative incidence of COPD exacerbation, pneumonia and all-cause mortality according to chronic cough. Cumulative incidences of COPD exacerbation and pneumonia were obtained from Fine-Gray competing risk model, while cumulative incidence of all-cause mortality was obtained from Kaplan-Meier analysis. Dashed lines highlight absolute risk at age of 80 years.

Figure 2. Cumulative incidence of COPD exacerbation, pneumonia and all-cause mortality according to chronic cough, stratified analysis. Cumulative incidences of COPD exacerbation and pneumonia were obtained from Fine-Gray competing risk model, while cumulative incidence of all-cause mortality was obtained from Kaplan-Meier analysis. Dashed lines highlight absolute risk at age of 80 years.

Figure 3. Risk of COPD exacerbation, pneumonia and all-cause mortality in individuals with chronic cough versus those without chronic cough, stratified analysis. Hazard ratios (HRs) with 95% confidence intervals (CIs) were obtained from Cox proportional hazards models. Individuals = number of individuals with chronic cough. Events = number of individuals with chronic cough who had an event during follow-up. Individuals without chronic cough was used as reference group in the analyses. Adjustment for smoking status was omitted when stratifying for current smoking. AL = Airflow limitation. C.c. = chronic cough.

Figure 4. Risk of COPD exacerbations, pneumonia and all-cause mortality in individuals with sputum production, non-productive chronic cough, and productive chronic cough. Hazard ratios (HRs) with 95% confidence intervals (CIs) were obtained from Cox proportional hazards models. Sputum production = phlegm from the lungs in the morning and/or during the day for as long as three consecutive months each year. Non-productive chronic cough was chronic cough without
sputum production. Productive chronic cough was chronic cough with sputum production. C.c. = chronic cough.

**Figure 5.** Absolute 5-year risk of COPD exacerbation, pneumonia and all-cause mortality for different combinations of risk factors and chronic cough. The Fine-Gray regression model was implemented when accounting for competing risk. AL = Airflow limitation.
Table 1. Baseline characteristics according to clinical COPD outcomes in individuals in the Copenhagen General Population Study

<table>
<thead>
<tr>
<th></th>
<th>None</th>
<th>COPD exacerbation</th>
<th>Pneumonia</th>
<th>Death</th>
<th>Any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects</td>
<td>43,158 (96)</td>
<td>173 (0.4)</td>
<td>767 (1.7)</td>
<td>894 (2.0)</td>
<td>1598 (3.6)</td>
</tr>
<tr>
<td>Male sex</td>
<td>18,981 (44)</td>
<td>76 (44)</td>
<td>430 (56)</td>
<td>526 (59)</td>
<td>888 (56)</td>
</tr>
<tr>
<td>Age, years</td>
<td>59 (50-69)</td>
<td>73 (66-79) *</td>
<td>72 (63-80)</td>
<td>76 (68-82)</td>
<td>73 (65-80)</td>
</tr>
<tr>
<td>FEV1, % predicted</td>
<td>99 ± 15</td>
<td>59 ± 21 *</td>
<td>86 ± 24</td>
<td>93 ± 24</td>
<td>88 ± 25</td>
</tr>
<tr>
<td>Airflow limitation †</td>
<td>8545 (20)</td>
<td>140 (83) *</td>
<td>324 (43) *</td>
<td>366 (42)</td>
<td>694 (44) *</td>
</tr>
<tr>
<td>Current smoker</td>
<td>4674 (11)</td>
<td>52 (30) *</td>
<td>133 (18) *</td>
<td>168 (19)</td>
<td>298 (19) *</td>
</tr>
<tr>
<td>Ex-smoker</td>
<td>18,148 (42)</td>
<td>104 (60) *</td>
<td>410 (53) *</td>
<td>458 (51)</td>
<td>829 (52) *</td>
</tr>
<tr>
<td>Never smoker</td>
<td>20,025 (46)</td>
<td>17 (10) *</td>
<td>218 (28) *</td>
<td>263 (29)</td>
<td>461 (29) *</td>
</tr>
<tr>
<td>Tobacco consumption, pack-years</td>
<td>14 (5-26)</td>
<td>38 (25-50) *</td>
<td>24 (10-41)</td>
<td>25 (11-43)</td>
<td>25 (11-43)</td>
</tr>
<tr>
<td>Chronic cough</td>
<td>2587 (6)</td>
<td>40 (23) *</td>
<td>113 (15) *</td>
<td>113 (13)</td>
<td>214 (13) *</td>
</tr>
</tbody>
</table>

Data are presented as n (%), median (25 and 75 percentiles) or mean ± SD. *P < 0.05 vs subjects without any outcome during follow-up using Pearson’s χ², Student’s t-test, or Wilcoxon’s rank-sum test. † Airflow limitation defined as FEV1/FVC < 0.7.
Figure 1

a) COPD exacerbation

Cumulative incidence, %

log rank p < 0.0001

Chronic cough

12% vs 3%

No chronic cough

Age, yr

b) Pneumonia

Cumulative incidence, %

log rank p < 0.0001

Chronic cough

30% vs 15%

No chronic cough

Age, yr

c) Death

Cumulative incidence, %

log rank p < 0.0001

Chronic cough

25% vs 13%

No chronic cough

Age, yr

Figure 1
Figure 2
Figure 3

<table>
<thead>
<tr>
<th>COPD exacerbation</th>
<th>Individuals / Events</th>
<th>Unadjusted HR (95% CI)</th>
<th>Adjusted for age, sex and smoking HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>2001/81</td>
<td>5.7 (3.6-8.9)</td>
<td>4.6 (2.9-7.2)</td>
</tr>
<tr>
<td>Non-smokers AL</td>
<td>1010/14</td>
<td>9.0 (3.5-20)</td>
<td>7.6 (2.6-21)</td>
</tr>
<tr>
<td>AL</td>
<td>900/56</td>
<td>3.3 (2.3-4.2)</td>
<td>3.3 (2.6-5.5)</td>
</tr>
<tr>
<td>Non-smokers</td>
<td>2032/105</td>
<td>3.4 (1.9-6.1)</td>
<td>3.3 (1.6-6.9)</td>
</tr>
<tr>
<td>Current smokers</td>
<td>709/446</td>
<td>6.0 (3.1-11)</td>
<td>6.6 (3.3-13)</td>
</tr>
</tbody>
</table>

Pneumonia

<table>
<thead>
<tr>
<th></th>
<th>Individuals / Events</th>
<th>Unadjusted HR (95% CI)</th>
<th>Adjusted for age, sex and smoking HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>2001/112</td>
<td>2.3 (1.9-2.8)</td>
<td>2.2 (1.7-2.7)</td>
</tr>
<tr>
<td>Non-smokers AL</td>
<td>1010/54</td>
<td>2.4 (1.7-3.3)</td>
<td>2.4 (1.7-3.3)</td>
</tr>
<tr>
<td>AL</td>
<td>800/44</td>
<td>1.9 (1.4-2.5)</td>
<td>1.8 (1.3-2.4)</td>
</tr>
<tr>
<td>Non-smokers</td>
<td>2032/91</td>
<td>2.1 (1.6-2.7)</td>
<td>2.2 (1.7-2.8)</td>
</tr>
<tr>
<td>Current smokers</td>
<td>709/41</td>
<td>2.1 (1.4-3.0)</td>
<td>2.0 (1.5-2.9)</td>
</tr>
</tbody>
</table>

All-cause mortality

<table>
<thead>
<tr>
<th></th>
<th>Individuals / Events</th>
<th>Unadjusted HR (95% CI)</th>
<th>Adjusted for age, sex and smoking HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>2001/113</td>
<td>1.8 (1.5-2.2)</td>
<td>1.7 (1.4-2.0)</td>
</tr>
<tr>
<td>Non-smokers AL</td>
<td>1010/53</td>
<td>1.7 (1.3-2.2)</td>
<td>1.7 (1.3-2.3)</td>
</tr>
<tr>
<td>AL</td>
<td>800/38</td>
<td>1.8 (1.4-2.4)</td>
<td>1.8 (1.2-2.1)</td>
</tr>
<tr>
<td>Non-smokers</td>
<td>2032/79</td>
<td>1.7 (1.3-2.1)</td>
<td>1.8 (1.4-2.2)</td>
</tr>
<tr>
<td>Current smokers</td>
<td>709/34</td>
<td>1.4 (0.9-2.0)</td>
<td>1.4 (0.9-2.0)</td>
</tr>
</tbody>
</table>

Figure 3
<table>
<thead>
<tr>
<th>Condition</th>
<th>Control</th>
<th>Sputum w/o chronic cough</th>
<th>Non-productive chronic cough</th>
<th>Productive chronic cough</th>
<th>Control</th>
<th>Sputum w/o chronic cough</th>
<th>Non-productive chronic cough</th>
<th>Productive chronic cough</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD exacerbation</td>
<td>39308/148</td>
<td>2318/41</td>
<td>1380/19</td>
<td>1416/52</td>
<td>39308/624</td>
<td>2316/119</td>
<td>1380/42</td>
<td>1416/90</td>
</tr>
<tr>
<td></td>
<td>1 [ref.]</td>
<td>3.5 (2.2-5.5)</td>
<td>3.4 (1.6-7.0)</td>
<td>9.8 (5.8-17)</td>
<td>1 [ref.]</td>
<td>2.4 (1.9-3.0)</td>
<td>1.7 (1.2-2.5)</td>
<td>3.3 (2.6-4.2)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>39308/624</td>
<td>2.9 (1.4-6.3)</td>
<td>7.3 (4.4-12)</td>
<td></td>
<td>1 [ref.]</td>
<td>1.6 (1.5-2.3)</td>
<td>1.7 (1.2-2.5)</td>
<td>2.9 (2.2-3.8)</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>39308/658</td>
<td>1 [ref.]</td>
<td></td>
<td></td>
<td>39308/658</td>
<td>2318/121</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 [ref.]</td>
<td>2.1 (1.7-2.5)</td>
<td></td>
<td></td>
<td>1.6 (1.3-2.0)</td>
<td>1.5 (1.1-2.1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4
Figure 5

- COPD exacerbation - No AL at baseline
- COPD exacerbation - AL at baseline
- Pneumonia - No AL at baseline
- Pneumonia - AL at baseline
- Mortality - No AL at baseline
- Mortality - AL at baseline
Available follow-up period (≥ 31st Dec. 2016)

Copenhagen General Population Study
1st and 2nd examinations (n = 130,060)

Nested cohort study of chronic cough (n = 44,756)

e-Figure 1. Study design
### Table 2. Risk of COPD in individuals with chronic cough.

<table>
<thead>
<tr>
<th></th>
<th>Individuals / events</th>
<th>Chronic cough / events</th>
<th>Crude OR (95% CI)</th>
<th>Adjusted for age, sex and smoking OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-bronchodilator COPD</td>
<td>29927 / 5569</td>
<td>2079 / 639</td>
<td>2.0 (1.8-2.2)</td>
<td>1.4 (1.2-1.5)</td>
</tr>
<tr>
<td>Post-bronchodilator COPD</td>
<td>25529 / 2209</td>
<td>1815 / 294</td>
<td>2.3 (2.0-2.6)</td>
<td>1.5 (1.3-1.8)</td>
</tr>
</tbody>
</table>

*Figure 2.* Risk of COPD in individuals with chronic cough. Odds ratios (ORs) with 95% confidence intervals (CIs) were obtained from logistic regression models. COPD = FEV₁/FVC<0.70 in individuals without asthma.
e-Figure 3. Risk of all-cause mortality, respiratory disease-related mortality, and cardiovascular disease-related mortality in individuals with chronic cough. Hazard ratios (HRs) with 95% confidence intervals (CIs) were obtained from Cox proportional hazards models. C.c. = chronic cough.