Skip to main content

Advertisement

Log in

Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. COPD exacerbation, or episodic worsening of symptoms, often results in hospitalization and increased mortality rates. Airway infections by new bacterial strains, such as nontypeable Haemophilus influenzae (NTHi), are a major cause of COPD exacerbation. NTHi express lipooligosaccharides that contain sialic acids, and may interact with Siglec-14, a sialic acid recognition protein on myeloid cells that serves as an activating signal transduction receptor. A null allele polymorphism in SIGLEC14 may attenuate the inflammatory responses to NTHi by eliminating Siglec-14 expression. We asked if the loss of Siglec-14 attenuates the inflammatory response by myeloid cells against NTHi, and if the SIGLEC14-null polymorphism has any effect on COPD exacerbation. We found that NTHi interacts with Siglec-14 to enhance proinflammatory cytokine production in a tissue culture model. Inhibitors of the Syk tyrosine kinase suppress this response. Loss of Siglec-14, due to SIGLEC14-null allele homozygosity, is associated with a reduced risk of COPD exacerbation in a Japanese patient population. Taken together, Siglec-14 and its downstream signaling pathway facilitate the “infection–inflammation–exacerbation” axis of COPD disease progression, and may represent promising targets for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rabe KF, Hurd S, Anzueto A et al (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176:532–555

    Article  PubMed  Google Scholar 

  2. World Health Organization (2008) World Health Statistics 2008. WHO, Geneva

    Google Scholar 

  3. Chenna PR, Mannino DM (2010) Outcomes of severe COPD exacerbations requiring hospitalization. Semin Respir Crit Care Med 31:286–294

    Article  PubMed  Google Scholar 

  4. Garcia-Aymerich J, Serra Pons I, Mannino DM, Maas AK, Miller DP, Davis KJ (2011) Lung function impairment, COPD hospitalisations and subsequent mortality. Thorax 66:585–590

    Article  PubMed  Google Scholar 

  5. Decramer M, Nici L, Nardini S, Reardon J, Rochester CL, Sanguinetti CM, Troosters T (2008) Targeting the COPD exacerbation. Respir Med 102(Suppl 1):S3–S15

    Article  PubMed  Google Scholar 

  6. Sethi S, Evans N, Grant BJ, Murphy TF (2002) New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med 347:465–471

    Article  PubMed  Google Scholar 

  7. Sethi S, Murphy TF (2008) Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med 359:2355–2365

    Article  PubMed  CAS  Google Scholar 

  8. Barnes PJ (2002) New treatments for COPD. Nat Rev Drug Discov 1:437–446

    Article  PubMed  CAS  Google Scholar 

  9. Brinkman RR, Dube MP, Rouleau GA, Orr AC, Samuels ME (2006) Human monogenic disorders—a source of novel drug targets. Nat Rev Genet 7:249–260

    Article  PubMed  CAS  Google Scholar 

  10. Plomin R, Haworth CM, Davis OS (2009) Common disorders are quantitative traits. Nat Rev Genet 10:872–878

    Article  PubMed  CAS  Google Scholar 

  11. Ganrot PO, Laurell CB, Eriksson S (1967) Obstructive lung disease and trypsin inhibitors in alpha-1-antitrypsin deficiency. Scand J Clin Lab Invest 19:205–208

    Article  PubMed  CAS  Google Scholar 

  12. Ishii T, Matsuse T, Teramoto S, Matsui H, Miyao M, Hosoi T, Takahashi H, Fukuchi Y, Ouchi Y (1999) Glutathione S-transferase P1 (GSTP1) polymorphism in patients with chronic obstructive pulmonary disease. Thorax 54:693–696

    Article  PubMed  CAS  Google Scholar 

  13. Molfino NA (2004) Genetics of COPD. Chest 125:1929–1940

    Article  PubMed  Google Scholar 

  14. Hersh CP, Demeo DL, Lange C et al (2005) Attempted replication of reported chronic obstructive pulmonary disease candidate gene associations. Am J Respir Cell Mol Biol 33:71–78

    Article  PubMed  CAS  Google Scholar 

  15. Pillai SG, Ge D, Zhu G et al (2009) A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet 5:e1000421

    Article  PubMed  Google Scholar 

  16. Foreman MG, DeMeo DL, Hersh CP, Carey VJ, Fan VS, Reilly JJ, Shapiro SD, Silverman EK (2008) Polymorphic variation in surfactant protein B is associated with COPD exacerbations. Eur Respir J 32:938–944

    Article  PubMed  CAS  Google Scholar 

  17. Lin CL, Siu LK, Lin JC, Liu CY, Chian CF, Lee CN, Chang FY (2011) Mannose-binding lectin gene polymorphism contributes to recurrence of infective exacerbation in patients with COPD. Chest 139:43–51

    Article  PubMed  CAS  Google Scholar 

  18. Yang IA, Seeney SL, Wolter JM et al (2003) Mannose-binding lectin gene polymorphism predicts hospital admissions for COPD infections. Genes Immun 4:269–274

    Article  PubMed  CAS  Google Scholar 

  19. Takabatake N, Shibata Y, Abe S et al (2006) A single nucleotide polymorphism in the CCL1 gene predicts acute exacerbations in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 174:875–885

    Article  PubMed  CAS  Google Scholar 

  20. Pillai SG, Kong X, Edwards LD, Cho MH, Anderson WH, Coxson HO, Lomas DA, Silverman EK (2010) Loci identified by genome-wide association studies influence different disease-related phenotypes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 182:1498–1505

    Article  PubMed  Google Scholar 

  21. Hurst JR, Vestbo J, Anzueto A et al (2010) Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med 363:1128–1138

    Article  PubMed  CAS  Google Scholar 

  22. Hood DW, Makepeace K, Deadman ME, Rest RF, Thibault P, Martin A, Richards JC, Moxon ER (1999) Sialic acid in the lipopolysaccharide of Haemophilus influenzae: strain distribution, influence on serum resistance and structural characterization. Mol Microbiol 33:679–692

    Article  PubMed  CAS  Google Scholar 

  23. Mandrell RE, McLaughlin R, Aba Kwaik Y, Lesse A, Yamasaki R, Gibson B, Spinola SM, Apicella MA (1992) Lipooligosaccharides (LOS) of some Haemophilus species mimic human glycosphingolipids, and some LOS are sialylated. Infect Immun 60:1322–1328

    PubMed  CAS  Google Scholar 

  24. Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102:439–470

    Article  PubMed  CAS  Google Scholar 

  25. Varki A, Angata T (2006) Siglecs – the major subfamily of I-type lectins. Glycobiology 16:1R–27R

    Article  PubMed  CAS  Google Scholar 

  26. Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7:255–266

    Article  PubMed  CAS  Google Scholar 

  27. Angata T, Hayakawa T, Yamanaka M, Varki A, Nakamura M (2006) Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J 20:1964–1973

    Article  PubMed  CAS  Google Scholar 

  28. Yamanaka M, Kato Y, Angata T, Narimatsu H (2009) Deletion polymorphism of SIGLEC14 and its functional implications. Glycobiology 19:841–846

    Article  PubMed  CAS  Google Scholar 

  29. Greiner LL, Watanabe H, Phillips NJ, Shao J, Morgan A, Zaleski A, Gibson BW, Apicella MA (2004) Nontypeable Haemophilus influenzae strain 2019 produces a biofilm containing N-acetylneuraminic acid that may mimic sialylated O-linked glycans. Infect Immun 72:4249–4260

    Article  PubMed  CAS  Google Scholar 

  30. Taylor RE, Gregg CJ, Padler-Karavani V et al (2010) Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. J Exp Med 207:1637–1646

    Article  PubMed  CAS  Google Scholar 

  31. Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T, Kumagai H (2003) Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol 31:1007–1014

    PubMed  CAS  Google Scholar 

  32. Anthonisen NR, Manfreda J, Warren CP, Hershfield ES, Harding GK, Nelson NA (1987) Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann Intern Med 106:196–204

    Article  PubMed  CAS  Google Scholar 

  33. Rodriguez-Roisin R (2000) Toward a consensus definition for COPD exacerbations. Chest 117:398S–401S

    Article  PubMed  CAS  Google Scholar 

  34. American Thoracic Society (1995) Standardization of spirometry, 1994 update. Am J Respir Crit Care Med 152:1107–1136

    Article  Google Scholar 

  35. Japanese Respiratory Society (2001) The predicted values of spirometry and arterial blood gas analysis in Japanese. J Jpn Respir Soc 39:1–17

    Google Scholar 

  36. Nakano Y, Muro S, Sakai H et al (2000) Computed tomographic measurements of airway dimensions and emphysema in smokers. Correlation with lung function. Am J Respir Crit Care Med 162:1102–1108

    Article  PubMed  CAS  Google Scholar 

  37. Okazawa M, Muller N, McNamara AE, Child S, Verburgt L, Pare PD (1996) Human airway narrowing measured using high resolution computed tomography. Am J Respir Crit Care Med 154:1557–1562

    Article  PubMed  CAS  Google Scholar 

  38. Orlandi I, Moroni C, Camiciottoli G, Bartolucci M, Pistolesi M, Villari N, Mascalchi M (2005) Chronic obstructive pulmonary disease: thin-section CT measurement of airway wall thickness and lung attenuation. Radiology 234:604–610

    Article  PubMed  Google Scholar 

  39. Firth D (1993) Bias reduction of maximum likelihood estimates. Biometrika 80:27–38

    Article  Google Scholar 

  40. Jones C, Virji M, Crocker PR (2003) Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol Microbiol 49:1213–1225

    Article  PubMed  CAS  Google Scholar 

  41. Carlin AF, Lewis AL, Varki A, Nizet V (2007) Group B streptococcal capsular sialic acids interact with siglecs (immunoglobulin-like lectins) on human leukocytes. J Bacteriol 189:1231–1237

    Article  PubMed  CAS  Google Scholar 

  42. Carlin AF, Uchiyama S, Chang YC, Lewis AL, Nizet V, Varki A (2009) Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 113:3333–3336

    Article  PubMed  CAS  Google Scholar 

  43. Barnes PJ (2004) Alveolar macrophages as orchestrators of COPD. COPD 1:59–70

    Article  PubMed  Google Scholar 

  44. Hansel TT, Barnes PJ (2009) New drugs for exacerbations of chronic obstructive pulmonary disease. Lancet 374:744–755

    Article  PubMed  CAS  Google Scholar 

  45. Aaron SD, Angel JB, Lunau M, Wright K, Fex C, Le Saux N, Dales RE (2001) Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 163:349–355

    Article  PubMed  CAS  Google Scholar 

  46. Au DH, Bryson CL, Chien JW, Sun H, Udris EM, Evans LE, Bradley KA (2009) The effects of smoking cessation on the risk of chronic obstructive pulmonary disease exacerbations. J Gen Intern Med 24:457–463

    Article  PubMed  Google Scholar 

  47. Alsaeedi A, Sin DD, McAlister FA (2002) The effects of inhaled corticosteroids in chronic obstructive pulmonary disease: a systematic review of randomized placebo-controlled trials. Am J Med 113:59–65

    Article  PubMed  CAS  Google Scholar 

  48. Varki A (2011) Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self-associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology 21:1121–1124

    Article  PubMed  CAS  Google Scholar 

  49. Hogg JC (2001) Role of latent viral infections in chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med 164:S71–S75

    Article  PubMed  CAS  Google Scholar 

  50. Weinblatt ME, Kavanaugh A, Genovese MC, Musser TK, Grossbard EB, Magilavy DB (2010) An oral spleen tyrosine kinase (Syk) inhibitor for rheumatoid arthritis. N Engl J Med 363:1303–1312

    Article  PubMed  CAS  Google Scholar 

  51. Yasui K, Angata T, Matsuyama N, Furuta RA, Kimura T, Okazaki H, Tani Y, Nakano S, Narimatsu H, Hirayama F (2011) Detection of anti-Siglec-14 alloantibodies in blood components implicated in nonhaemolytic transfusion reactions. Br J Haematol 153(6):794–796

    Article  PubMed  Google Scholar 

  52. Hayashi S, Hogg JC (2007) Adenovirus infections and lung disease. Curr Opin Pharmacol 7:237–243

    Article  PubMed  CAS  Google Scholar 

  53. Wedzicha JA (2004) Role of viruses in exacerbations of chronic obstructive pulmonary disease. Proc Am Thorac Soc 1:115–120

    Article  PubMed  Google Scholar 

  54. Donaldson GC, Seemungal T, Jeffries DJ, Wedzicha JA (1999) Effect of temperature on lung function and symptoms in chronic obstructive pulmonary disease. Eur Respir J 13:844–849

    Article  PubMed  CAS  Google Scholar 

  55. Donaldson GC, Seemungal TA, Patel IS, Lloyd-Owen SJ, Wilkinson TM, Wedzicha JA (2003) Longitudinal changes in the nature, severity and frequency of COPD exacerbations. Eur Respir J 22:931–936

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Leela Davies, Xiaoxia Wang and Mina Fujishiro for experimental help, Andrea Verhagen and Sandra Diaz for general laboratory help, and Syed Raza Ali for general discussion. We also thank Dr. Michael A. Apicella (University of Iowa) for the generous gift of NTHi strain 2019. This work was supported by Global COE program “Frontier Biomedical Science Underlying Organelle Network” from the Ministry of Education, Culture, Sports, Science and Technology of Japan to Osaka University (to T.A. and N.T.); the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO), Japan (to K.K. and N.T.); and the National Institutes of Health/National Heart, Lung and Blood Institute (NIH/NHLBI) Programs of Excellence in Glycosciences (P01HL107150 to A.V. and V.N.).

Conflict of interest

  The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takashi Angata, Kozui Kida or Naoyuki Taniguchi.

Additional information

T. Angata and T. Ishii contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 637 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angata, T., Ishii, T., Motegi, T. et al. Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. Cell. Mol. Life Sci. 70, 3199–3210 (2013). https://doi.org/10.1007/s00018-013-1311-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1311-7

Keywords

Navigation