Skip to main content
Log in

Age Dependency of Oxygen Uptake and Related Parameters in Exercise Testing: An Expert Opinion on Reference Values Suitable for Adults

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Background

Spiroergometry has been established to determine physical capacity. Reference values collected mostly in a younger population can be obtained from a number of studies and therefore may differ. Regression equations are complex and cannot be transferred easily to clinical practice. Our aim was to obtain reference values for spiroergometric parameters in cardiopulmonary exercise in healthy adult populations.

Methods

Eighteen studies of healthy adults (>40 years) that assessed maximal oxygen uptake (VO2max), oxygen uptake in relation to body weight (VO2max/kg), and oxygen pulse (VO2max/heart rate) were included. After data processing, spiroergometric parameters were correlated to age. Regression analysis was performed separately for each study and also weighted with the number of participants.

Results

For all spiroergometric parameters, age dependency was detectable for both males and females. After performing regression analysis, the following linear regression equations were determined: VO2max: Males = −28 × age (years) + 4,000; females = −20 × age (years) + 2,700 (ml/min); VO2max/kg: Males = −0.42 × age (years) + 58; females = −0.35 × age (years) + 46 (ml/min/kg); VO2max/heart rate: Males = −0.10 × age (years) + 20.50; females = −0.05 × age (years) + 13 (ml/min/heart rate).

Conclusions

The present study provides practicable reference values for the spiroergometric parameters of adult men and women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Preisser AM, Ochmann U (2011) Cardiopulmonary exercise testing in occupational medical fitness examination and assessment. Pneumologie 65:662–670

    Article  PubMed  CAS  Google Scholar 

  2. Posner JD, Gorman KM, Klein HS, Cline CJ (1987) Ventilatory threshold: measurement and variation with age. J Appl Physiol 63:1519–1525

    PubMed  CAS  Google Scholar 

  3. Takeshima N, Kobayashi F, Watanabe T, Tanaka K, Tomita M, Pollock ML (1996) Cardiorespiratory responses to cycling exercise in trained and untrained elderly: with special reference to the lactate threshold. Appl Human Sci 15:267–273

    Article  PubMed  CAS  Google Scholar 

  4. Neder JA, Nery LE, Castelo A, Andreoni S, Lerario MC, Sachs A et al (1999) Prediction of metabolic and cardiopulmonary responses to maximum cycle ergometry: a randomised study. Eur Respir J 14:1304–1313

    Article  PubMed  CAS  Google Scholar 

  5. Koch B, Schäper C, Ittermann T, Spielhagen T, Dörr M, Völzke H et al (2009) Reference values for cardiopulmonary exercise testing in healthy volunteers: the SHIP study. Eur Respir J 33:389–397

    Article  PubMed  CAS  Google Scholar 

  6. Jones NL, Makrides L, Hitchcock C, Chypchar T, McCartney N (1985) Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis 131:700–708

    PubMed  CAS  Google Scholar 

  7. Pothoff G, Winter U, Wassermann K, Jäkel D, Steinbach M (1994) Ergospirometric studies of normal probands for an unsteady-state increment test program. Z Kardiol 83:116–123

    PubMed  CAS  Google Scholar 

  8. Saltin B, Grimby G (1968) Physiological analysis of middle-aged and old former athletes: comparison with still active athletes of the same ages. Circulation 38:1104–1115

    Article  PubMed  CAS  Google Scholar 

  9. Ong KC, Loo CM, Ong YY, Chan SP, Earnest A, Saw SM (2002) Predictive values for cardiopulmonary exercise testing in sedentary Chinese adults. Respirology 7:225–231

    Article  PubMed  Google Scholar 

  10. Åstrand I, Astrand PO, Hallbäck I, Kilbom A (1973) Reduction in maximal oxygen uptake with age. J Appl Physiol 35:649–654

    PubMed  Google Scholar 

  11. Sidney KH, Shephard RJ (1977) Maximum and submaximum exercise tests in men and women in the seventh, eighth and ninth decades of life. J Appl Physiol 43:280–287

    PubMed  CAS  Google Scholar 

  12. Blackie SP, Fairbarn MS, McElvaney GN, Morrison NJ, Wilcox PG, Pardy RL (1989) Prediction of maximal oxygen uptake and power during cycle ergometry in subjects older than 55 years of age. Am Rev Respir Dis 139:1424–1429

    Article  PubMed  CAS  Google Scholar 

  13. Fairbarn MS, Blackie SP, McElvaney NG, Wiggs BR, Paré PD, Pardy RL (1994) Prediction of heart rate and oxygen uptake during incremental and maximal exercise in healthy adults. Chest 105:1365–1369

    Article  PubMed  CAS  Google Scholar 

  14. Funk M, Schneider J (2012) Spiroergometric reference values for the sociomedical assessment of performance in adults aged over 60 years. Pneumologie 66:329–337

    Article  PubMed  CAS  Google Scholar 

  15. Neder JA, Nery LE, Peres C, Whipp BJ (2001) Reference values for dynamic responses to incremental cycle ergometry in males and females aged 20 to 80. Am Respir Crit Care Med 164:1481–1486

    Article  CAS  Google Scholar 

  16. McDonough JR, Kusumi F, Bruce RA (1970) Variations in maximal oxygen intake with physical activity in middle-aged men. Circulation 41:743–752

    Article  PubMed  CAS  Google Scholar 

  17. Drinkwater BL, Horvath SM, Wells CL (1975) Aerobic power of females, ages 10 to 68. J Gerontol 30:385–394

    Google Scholar 

  18. Herdy AH, Uhlendorf D (2011) Reference values for cardiopulmonary exercise testing for sedentary and active men and women. Arq Bras Cardiol 96:54–59

    Article  PubMed  Google Scholar 

  19. Bruce RA, Kusumi F, Hosmer D (1973) Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am Heart J 85:546–562

    Article  PubMed  CAS  Google Scholar 

  20. Vogel JA, Patton JF, Mello RP, Daniels WL (1986) An analysis of aerobic capacity in a large United States population. J Appl Physiol 60:494–500

    PubMed  CAS  Google Scholar 

  21. Inbar O, Oren A, Scheinowitz M, Rotstein A, Dlin R, Casaburi R (1994) Normal cardiopulmonary responses during incremental exercise in 20- to 70-yr old men. Med Sci Sports Exerc 26:538–546

    PubMed  CAS  Google Scholar 

  22. Hansen JE, Sue DY, Wassermann K (1984) Predicted values for clinical exercise testing. Am Rev Respir Dis 129(Suppl):49–55

    Google Scholar 

  23. Storer TW, Davis JA, Caiozzo VJ (1990) Accurate prediction of VO2max in cycle ergometry. Med Sci Sports Exerc 22:704–712

    Article  PubMed  CAS  Google Scholar 

  24. Lubinski W, Golczewski T (2010) Physiologically interpretable prediction equations for spirometric indexes. J Appl Physiol 108:1440–1446

    Article  PubMed  Google Scholar 

  25. Mohrer D, Liberati A, Tetzlaff J, Altman DG, for the PRISMA group (2009) Preferred reporting items for systematic review and mate-analyses: The PRISMA statement. PLoS Med 6:e1000097. doi:10.1371/journal.pmed.1000097

Download references

Conflict of interest

The author has no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, J. Age Dependency of Oxygen Uptake and Related Parameters in Exercise Testing: An Expert Opinion on Reference Values Suitable for Adults. Lung 191, 449–458 (2013). https://doi.org/10.1007/s00408-013-9483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-013-9483-3

Keywords

Navigation