Skip to main content
Log in

Primary ciliary dyskinesia: Evolution of pulmonary function

  • Pneumology
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Pulmonary function tests were obtained in 11 patients with primary ciliary dyskinesia. Their mean age was 15 years (range 6–32). Their pulmonary function was obstructive, with a vital capacity (mean ± SD) of 75% ± 20% predicted, a forced expiratory volume in 1s (FEV1) of 63% ± 20% predicted and a raised residual volume of 169% ± 50% predicted. After inhalation of 200 μg of salbutamol the mean change in FEV1 was + 13.2% ± 9.6% of the baseline value. In the 10 oldest patients, lung function had been measured at regular intervals during 3–20 years. Interestingly, during childhood and adolescence the evolution was not unfavourable: vital capacity increased by 8% ± 20% and FEV1 remained stable (mean change 0.3% ± 12%). Only 2 patients had an unfavourable evolution.

Conclusion

At time of diagnosis, patients with primary ciliary dyskinesia have partially reversible obstructive airway disease. During regular follow up and therapy, there is no evidence of a further decline in lung function. Patients with associated immunodeficiency or important damage at the start of therapy may have a worse prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FEV1 :

forced expired volume in 1s

PCD:

primary ciliary dyskinesia

Raw:

airway resistance

Rrs5:

total respiratory system resistance at 5 Herz

RV:

residual volume

TLC:

total lung capacity

VC:

vital capacity

References

  1. Afzelius BA (1976) A human syndrome caused by immotile cilia. Science 193:317–319

    Article  PubMed  CAS  Google Scholar 

  2. Afzelius BA, Mossberg B (1980) Immotile cilia. Thorax 35:401–404

    Article  PubMed  CAS  Google Scholar 

  3. Barlocco EG, Valletta EA, Canciani M, Lungarella G, Gardi C, De Santi MM, Mastella G (1991) Ultrastructural ciliary defects in children with recurrent infections of the lower respiratory tract. Pediatr Pulmonol 10:11–17

    Article  PubMed  CAS  Google Scholar 

  4. Bibi H, Montgomery M, Pasterkamp H, Chernick V (1991) Relationship between response to inhaled salbutamol and methacholine bronchial provocation in children with suspected asthma. Pediatr Pulmonol 10:244–248

    Article  PubMed  CAS  Google Scholar 

  5. Carlén B, Stenram U (1987) Ultrastructural diagnosis in the immotile cilia syndrome. Ultrastruct Pathol 11:653–658

    Article  PubMed  Google Scholar 

  6. Corkey CWB, Levison H, Turner JAP (1981) The immotile cilia syndrome. A longitudinal survey. Am Rev Respir Dis 124:544–548

    PubMed  CAS  Google Scholar 

  7. De Boode WP, Collins JMP, Veerman AJP, Van der baan S (1989) Primaire ciliaire dyskinesie; een enquête-onderzoek naar het klinisch beeld. Ned Tijdschr Geneeskd 133:2338–2341

    PubMed  Google Scholar 

  8. Duiverman EJ, Clément J, Van de Woestijne KP, Neijens HJ, Van den Bergh ACM, Kerrebijn KF (1985) Forced oscillation technique. Reference values for resistance and reactance over a frequency spectrum of 2–26 Hz in healthy children aged 2.3–12.5 years. Bull Eur Physiopathol Respir 21:171–178

    PubMed  CAS  Google Scholar 

  9. Eber E, Oberwaldner B, Zach MS (1988) Airway obstruction and airway variability in cystic fibrosis: the isolated and combined effect of theophylline and sympathomimetics. Pediatr Pulmonol 4:205–212

    Article  PubMed  CAS  Google Scholar 

  10. Eliasson R, Mossberg B, Camner P, Afzelius BA (1977) The immotile-cilia syndrome. A congenital abnormality as an etiologic factor in chronic airway infections and male sterility. N Engl J Med 297:1–6

    PubMed  CAS  Google Scholar 

  11. Kartagener M (1933) Zur Pathogenese der Bronchiektasien. Mitteilung: Bronchiectasien bei Situs Inversus. Betr Klin Tuberk 83:489–501

    Article  Google Scholar 

  12. Klug B, Bisgaard H (1996) Measurement of lung function in awake 2–4 year old astmatic children during metacholine challenge and acute asthma: a comparison of the impulse oscillation technique, the interrupter technique, and trans-cutaneous measurement of oxygen versus whole body plethysmography. Pediatr Pulmonol 21:290–300

    Article  PubMed  CAS  Google Scholar 

  13. Kollberg H, Mossberg B, Afzelius BA, Philipson K, Camner P (1978) Cystic fibrosis compared with the immotile cilia syndrome. Scand J Respir Dis 59:297–306

    PubMed  CAS  Google Scholar 

  14. Mossberg B, Afzelius BA, Eliasson R, Camner P (1978) On the pathogenesis of obstructive lung disease. A study on the immotile-cilia syndrome. Scand J Respir Dis 59:55–65

    PubMed  CAS  Google Scholar 

  15. Pedersen M, Morkassel E, Nielsen MH, Mygind N (1981) Kartagener’s syndrome. Preliminary report on cilia structure, function and upper airway symptoms. Chest 80:858–860

    Article  PubMed  CAS  Google Scholar 

  16. Pereira Torres RA (1961) Sindrome de Kartagener. Rev Assoc Med Argent 75:26

    Google Scholar 

  17. Ramet J, Byloos J, Delree M, Sacre L, Clement P (1986) Neonatal diagnosis of the immotile cilia syndrome. Chest 90:138–140

    Article  PubMed  CAS  Google Scholar 

  18. Rossman CM, Newhouse MT (1988) Primary ciliary dyskinesia: evaluation and management. Pediatr Pulmonol 5:36–50

    Article  PubMed  CAS  Google Scholar 

  19. Rossman CM, Forrest JB, Lee RMKW, Newhouse AF, Newhouse MT (1981) The dyskinetic cilia syndrome. Abnormal motility in association with abnormal ciliary ultrastructure. Chest 80:860–864

    PubMed  CAS  Google Scholar 

  20. Rossman CM, Forrest JB, Lee RMKW, Newhouse MT (1980) The dyskinetic cilia syndrome. Ciliary motility in immotile cilia syndrome. Chest 78:580–582

    Article  PubMed  CAS  Google Scholar 

  21. Sanchez I, Powel RE, Chernick V (1992) Response to inhaled bronchodilators and nonspecific airway hyperreactivity in children with cystic fibrosis. Pediatr Pulmonol 14:52–57

    Article  PubMed  CAS  Google Scholar 

  22. Schidlow DV (1994) Primary ciliary dyskinesia (the immotle cilia syndrome). Ann Allergy 73:457–468

    PubMed  CAS  Google Scholar 

  23. Sleigh MA (1981) Primary ciliary dyskinesia. Lancet II:476

    Article  Google Scholar 

  24. Solymar L, Aronsson PH, Sixt R (1985) The forced oscillation technique in children with respiratory disease. Pediatr Pulmonol 1:256–261

    Article  PubMed  CAS  Google Scholar 

  25. Sturgess JM, Thompson MW, Czedledy-Nagy E, et al (1986) Genetic aspects of immotile cilia syndrome. Am J Med Genet 25:149–160

    Article  PubMed  CAS  Google Scholar 

  26. Turner JAP, Corkey CWB, Lee JYC, Sturgess J (1981) Clinical expressions of immotile cilia syndrome. Pedriatrics 67:805–810

    CAS  Google Scholar 

  27. Working party ‘Standardization of lung function testing’ (1983) Bull Eur Physiopath Respir 19:1s-92s

    Google Scholar 

  28. Working party ‘Standardization of lung function tests in paediatrics’ (1989) Eur Respir J 2:121s-264s

    Google Scholar 

  29. Working party ‘Standardization of lung function testing’ (1993) Eur Respir J 6:5s-100s

    Google Scholar 

  30. Zach MS, Oberwaldner B, Forche G, Polgar G (1985) Bronchodilators increase airway instability in cystic fibrosis. Am Rev Respir Dis 131:537–543

    PubMed  CAS  Google Scholar 

  31. Zapletal A, Paul T, Samanek M (1977) Die Bedeutung heutiger Methoden der Lungfunctionsdiagnostik zur Feststellung einer Obstruction der Atemwege bei Kindern und Jugendlichen. Z Erkrank Atm-Org 149:343–371

    CAS  Google Scholar 

  32. Zapletal A, Samanek M, Paul T (1982) Upstream and total airway conductance in children and adolescents. Bull Eur Physiopath Respir 18:31–37

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellinckx, J., Demedts, M. & Boeck, K.D. Primary ciliary dyskinesia: Evolution of pulmonary function. Eur J Pediatr 157, 422–426 (1998). https://doi.org/10.1007/s004310050843

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004310050843

Key words

Navigation