Skip to main content

Advertisement

Log in

Pulmonary vascular remodeling in pulmonary hypertension

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Pulmonary vascular remodeling is the key structural alteration in pulmonary hypertension and involves changes in the intima, media and adventitia, often with the interplay of inflammatory cells. This review examines the pathology of these changes and highlights some of the pathogenetic mechanisms that underlie the remodeling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abe K, Toba M, Alzoubi A, Ito M, Fagan KA, Cool CD, Voelkel NF, McMurtry IF, Oka M (2010) Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation 121:2747–2754

    Article  PubMed  Google Scholar 

  • Archer SL, Weir EK, Wilkins MR (2010) Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation 121:2045–2066

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjornsson J, Edwards WD (1985) Primary pulmonary hypertension: a histopathologic study of 80 cases. Mayo Clin Proc 60:16–25

    Article  CAS  PubMed  Google Scholar 

  • Caslin AW, Heath D, Madden B, Yacoub M, Gosney JR, Smith P (1990) The histopathology of 36 cases of plexogenic pulmonary arteriopathy. Histopathology 16:9–19

    Article  CAS  PubMed  Google Scholar 

  • Chazova I, Loyd JE, Newman JH, Belenkov Y, Meyrick B (1995) Pulmonary artery adventitial changes and venous involvement in primary pulmonary hypertension. Am J Pathol 146:389–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cool CD, Stewart JS, Werahera P, Miller GJ, Williams RL, Voelkel NF, Tuder RM (1999) Three-dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell specific markers: evidence for a dynamic and heterogeneous process of pulmonary endothelial cell growth. Am J Pathol 155:411–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davie NJ, Gerasimovskaya EV, Hofmeister SE, Richman AP, Jones PL, Reeves JT, Stenmark KR (2006) Pulmonary artery adventitial fibroblasts cooperate with vasa vasorum endothelial cells to regulate vasa vasorum neovascularization—a process mediated by hypoxia and endothelin-1. Am J Pathol 168:1793–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorfmuller P, Perros F, Balabanian K, Humbert M (2003) Inflammation in pulmonary arterial hypertension. Eur Respir J 22:358–363

    Article  CAS  PubMed  Google Scholar 

  • Fishman AP (1997) A century of primary pulmonary hypertension. In: Rubin LJ, Rich S (eds) Primary pulmonary hypertension. Lung biology in health and disease. Decker, New York, pp 1–17

    Google Scholar 

  • Graham BB, Bandeira AP, Morrell NW, Butrous G, Tuder RM (2010) Schistosomiasis-associated pulmonary hypertension: pulmonary vascular disease: the global perspective. Chest 137:20S–29S

    Article  PubMed  Google Scholar 

  • Hassoun PM, Mouthon L, Barbera JA, Eddahibi S, Flores SC, Grimminger F, Jones PL, Maitland ML, Michelakis ED, Morrell NW, Newman JH, Rabinovitch M, Schermuly R, Stenmark KR, Voelkel NF, Yuan JX, Humbert M (2009) Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 54:S10–S19

    Article  CAS  PubMed  Google Scholar 

  • Haworth SG, Rabinovitch M, Meyrick B, Michel R, Pietra GG, Polak JM, Reid LM, Tuder RM (1998) Primary pulmonary hypertension: executive summary from the World Symposium-Primary Pulmonary Hypertension. In: Rich S (ed) World Symposium-Primary Pulmonary Hypertension. World Health Organization, Geneva, pp 2–5

    Google Scholar 

  • Heath D, Edwards JE (1958) The pathology of hypertensive pulmonary vascular disease; a description of six grades of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circulation 18:533–547

    Article  CAS  PubMed  Google Scholar 

  • Heath D, Wagenvoort CA (1975) Classification and nomenclature. In: Hatano S, Strasser T (eds) Primary pulmonary hypertension: report on a WHO meeting, October 15-17, 1973. World Health Organizaiton, Geneva, pp 15–17

    Google Scholar 

  • Hsia CC, Hyde DM, Ochs M, Weibel ER (2010) An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med 181:394–418

    Article  PubMed  Google Scholar 

  • Humbert M, Monti G, Brenot F, Sitbon O, Portier A, Grangeot-Keros L, Duroux P, Galanaud P, Simonneau G, Emilie D (1995) Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med 151:1628–1631

    Article  CAS  PubMed  Google Scholar 

  • Hyde DM, Harkema JR, Tyler NK, Plopper CG (2006) Design-based sampling and quantitation of the respiratory airways. Toxicol Pathol 34:286–295

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Mickael C, Chabon J, Gebreab L, Rutebemberwa A, Garcia AR, Koyanagi DE, Sanders L, Gandjeva A, Kearns MT, Barthel L, Janssen WJ, Mauad T, Bandeira A, Schmidt E, Tuder RM, Graham BB (2015) The causal role of IL-4 and IL-13 in Schistosoma mansoni pulmonary hypertension. Am J Respir Crit Care Med 192:998–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majka SM, Skokan M, Wheeler L, Harral J, Gladson S, Burnham E, Loyd JE, Stenmark KR, Varella-Garcia M, West J (2008) Evidence for cell fusion is absent in vascular lesions associated with pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 295:L1028–L1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMurtry IF, Davidson AB, Reeves JT, Grover RF (1976) Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. Circ Res 38:99–104

    Article  CAS  PubMed  Google Scholar 

  • Muhlfeld C, Ochs M (2013) Quantitative microscopy of the lung: a problem-based approach. Part 2. Stereological parameters and study designs in various diseases of the respiratory tract. Am J Physiol Lung Cell Mol Physiol 305:L205–L221

    Article  PubMed  Google Scholar 

  • Newman JH, Holt TN, Hedges LK, Womack B, Memon SS, Willers ED, Wheeler L, Phillips JA 3rd, Hamid R (2011) High-altitude pulmonary hypertension in cattle (Brisket disease): candidate genes and gene expression profiling of peripheral blood mononuclear cells. Pulm Circ 1:462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palevsky HI, Schloo BL, Pietra GG, Weber KT, Janicki JS, Rubin E, Fishman AP (1989) Primary pulmonary hypertension. Vascular structure, morphometry, and responsiveness to vasodilator agents. Circulation 80:1207–1221

    Article  CAS  PubMed  Google Scholar 

  • Pietra GG, Edwards WD, Kay JM, Rich S, Kernis J, Schloo B, Ayres SM, Bergofsky EH, Brundage BH, Detre KM (1989) Histopathology of primary pulmonary hypertension. A qualitative and quantitative study of pulmonary blood vessels from 58 patients in the National Heart, Lung, and Blood Institute, Primary Pulmonary Hypertension Registry. Circulation 80:1198–1206

    Article  CAS  PubMed  Google Scholar 

  • Pietra GG, Capron F, Stewart S, Leone O, Humbert M, Robbins IM, Reid LM, Tuder RM (2004) Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol 43:25S–32S

    Article  PubMed  Google Scholar 

  • Pugliese SC, Poth JM, Fini MA, Olschewski A, El Kasmi KC, Stenmark KR (2015) The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. Am J Physiol Lung Cell Mol Physiol 308:L229–L252

    Article  CAS  PubMed  Google Scholar 

  • Savai R, Pullamsetti SS, Kolbe J, Bieniek E, Voswinckel R, Fink L, Scheed A, Ritter C, Dahal BK, Vater A, Klussmann S, Ghofrani HA, Weissmann N, Klepetko W, Banat GA, Seeger W, Grimminger F, Schermuly RT (2012) Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 186:897–908

    Article  CAS  PubMed  Google Scholar 

  • Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F (2011) Mechanisms of disease: pulmonary arterial hypertension. Nat Rev Cardiol 8:443-455

    Article  CAS  PubMed  Google Scholar 

  • Simonneau G, Galie N, Rubin LJ, Langleben D, Seeger W, Domenighetti G, Gibbs S, Lebrec D, Speich R, Beghetti M, Rich S, Fishman A (2004) Clinical classification of pulmonary hypertension. J Am Coll Cardiol 43:5S–12S

    Article  PubMed  Google Scholar 

  • Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Krishna KR, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62:D34–D41

    Article  PubMed  Google Scholar 

  • Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, Trembath RC, Jennings S, Barker L, Nicklin P, Walker C, Budd DC, Pepke-Zaba J, Morrell NW (2010) Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 122:920–927

    Article  CAS  PubMed  Google Scholar 

  • Stacher E, Graham BB, Hunt JM, Gandjeva A, Groshong SD, McLaughlin VV, Jessup M, Grizzle WE, Aldred MA, Cool CD, Tuder RM (2012) Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med 186:261–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Stenmark KR, Tuder RM, El Kasmi KC (2015) Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxic pulmonary hypertension. J Appl Physiol 119:1164–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sylvester JT, Shimoda LA, Aaronson PI, Ward JP (2012) Hypoxic pulmonary vasoconstriction. Physiol Rev 92:367–520

    Article  CAS  PubMed  Google Scholar 

  • Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, McMahon GG, Waltenberger J, Voelkel NF, Tuder RM (2001) Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. Faseb J 15:427–438

    Article  CAS  PubMed  Google Scholar 

  • Tuder RM (2014) How do we measure pathology in PAH (lung and RV) and what does it tell us about the disease. Drug Discov Today 19:1257–1263

    Article  PubMed  Google Scholar 

  • Tuder RM, Erzurum SC (2009) Pulmonary endothelium and pulmonary hypertension. In: Voelkel NF, Rounds S (eds) The pulmonary endothelium: function in health and disease. Wiley-Blackwell, Chichester, pp 449–460

    Chapter  Google Scholar 

  • Tuder RM, Zaiman AL (2004) Pathology of pulmonary vascular disease. In: Peacock A, Rubin LJ (eds) Pulmonary circulation. Arnold, London, pp 25–32

    Google Scholar 

  • Tuder RM, Groves B, Badesch DB, Voelkel NF (1994) Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol 144:275–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuder RM, Chacon M, Alger LA, Wang J, Taraseviciene-Stewart L, Kasahara Y, Cool CD, Bishop AE, Geraci MW, Semenza GL, Yacoub M, Polak JM, Voelkel NF (2001) Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis. J Pathol 195:367–374

    Article  CAS  PubMed  Google Scholar 

  • Tuder RM, Archer SL, Dorfmuller P, Erzurum SC, Guignabert C, Michelakis E, Rabinovitch M, Schermuly R, Stenmark KR, Morrell NW (2013a) Relevant issues in the pathology and pathobiology of pulmonary hypertension. J Am Coll Cardiol 62:D4–D12

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuder RM, Stacher E, Robinson J, Kumar R, Graham BB (2013b) Pathology of pulmonary hypertension. Clin Chest Med 34:639–650

    Article  PubMed  Google Scholar 

  • Voelkel NF, Tuder RM, Bridges J, Arend WP (1994) Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline. Am J Respir Cell Mol Biol 11:664–675

    Article  CAS  PubMed  Google Scholar 

  • Wagenvoort CA, Wagenvoort N (1970) Primary pulmonary hypertension. A pathologic study of the lung vessels in 156 clinically diagnosed cases. Circulation 42:1163–1184

    Article  Google Scholar 

  • Weibel ER, Gomez DM (1962) Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science 137:577–585

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author’s work mentioned in this review was supported by grants R24 HL123767 and P01 HL014985-41A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubin M. Tuder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuder, R.M. Pulmonary vascular remodeling in pulmonary hypertension. Cell Tissue Res 367, 643–649 (2017). https://doi.org/10.1007/s00441-016-2539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2539-y

Keywords

Navigation