Skip to main content
Log in

Role of Particle Size in Phagocytosis of Polymeric Microspheres

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Polymeric microspheres are extensively researched for applications in drug and vaccine delivery. However, upon administration into the body, microspheres are primarily cleared via phagocytosis by macrophages. Although numerous studies have reported on the biochemical pathways of phagocytosis, relatively little is known about the dependence of phagocytosis on particle size. Here, we investigate the previously unexplained dependence of phagocytosis on particle size.

Methods

Rat alveolar macrophages and IgG-opsonized and non-opsonized polystyrene microspheres were used as model macrophages and drug delivery particles. Phagocytosis, attachment and internalization were measured by flow cytometry and time-lapse video microscopy.

Results

Particles possessing diameters of 2–3 μm exhibited maximal phagocytosis and attachment. Rate of internalization, however, was not affected significantly by particle size. Maximal attachment of 2–3 μm microspheres is hypothesized to originate from the characteristic features of membrane ruffles in macrophages. Elimination of ruffles via osmotic swelling nearly eliminated the peculiar size-dependence of phagocytosis. A simple mathematical model is presented to describe the dependence of phagocytosis on particle size.

Conclusions

The dependence of phagocytosis on particle size originated primarily from the attachment step. These results reveal the importance of controlling drug delivery particle size distribution and selecting the size appropriate for avoiding or encouraging phagocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. A. LaVan, D. M. Lynn, and R. Langer. Moving smaller in drug discovery and delivery. Nat. Rev. Drug Discov. 1:77–84 (2002).

    Article  PubMed  CAS  Google Scholar 

  2. J. Hanes, M. Chiba, and R. Langer. Polymer microspheres for vaccine delivery. Pharm. Biotechnol. 6:389–412 (1995).

    PubMed  CAS  Google Scholar 

  3. V. R. Sinha, and A. Trehan. Biodegradable microspheres for protein delivery. J. Control. Release. 90:261–280 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. C. X. Song, V. Labhasetwar, X. M. Cui, T. Underwood, and R. J. Levy. Arterial uptake of biodegradable nanoparticles for intravascular local drug delivery: Results with an acute dog model. J. Control. Release. 54:201–211 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. M. Sakagami, and P. R. Byron. Respirable microspheres for inhalation: The potential of manipulating pulmonary disposition for improved therapeutic efficacy. Clin. Pharmacokinet. 44:263–277 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. Y. Li, H. L. Jiang, K. J. Zhu, J. H. Liu, and Y. L. Hao. Preparation, characterization and nasal delivery of alpha-cobrotoxin-loaded poly(lactide-co-glycolide)/polyanhydride microspheres. J. Control. Release. 108:10–20 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. Y. Yamaguchi, M. Takenaga, A. Kitagawa, Y. Ogawa, Y. Mizushima, and R. Igarashi. Insulin-loaded biodegradable PLGA microcapsules: Initial burst release controlled by hydrophilic additives. J. Control. Release. 81:235–249 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. S. H. Djaldetti, M. Bergman, R. Djaldetti, and H. Bessler. Phagocytosis—the mighty weapon of the silent warriors. Microsc. Res. Tech. 57:421–431 (2002).

    Article  PubMed  Google Scholar 

  9. A. Aderem, and D. M. Underhill. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17:593–623 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. S. D. Xiang, A. Scholzen, G. Minigo, C. David, V. Apostolopoulos, P. L. Mottram, and M. Plebanski. Pathogen recognition and development of particulate vaccines: Does size matter? Methods. 40:1–9 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. L. Peiser, S. Mukhopadhyay, and S. Gordon. Scavenger receptors in innate immunity. Curr. Opin. Immunol. 14:123–128 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. S. P. Hart, J. R. Smith, and I. Dransfield. Phagocytosis of opsonized apoptotic cells: roles for 'old-fashioned' receptors for antibody and complement. Clin. Exp. Immunol. 135:181–185 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. S. Greenberg, and S. Grinstein. Phagocytosis and innate immunity. Curr. Opin. Immunol. 14:136–145 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. L. -A. H. Allen, and A. Aderem. Mechanisms of phagocytosis. Curr. Opin. Immunol. 8:36–40 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. R. May, E. Caron, A. Hall, and L. M. Machesky. Involvement of the Arp2/3 complex in phagocytosis mediated by FcgammaR or CR3. Nat. Cell Biol. 2:246–248 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. G. Kaplan. Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scand. J. Immunol. 6:797–807 (1977).

    Article  PubMed  CAS  Google Scholar 

  17. L. Kobzik. Lung macrophage uptake of unopsonized environmental particulates—role of scavenger-type receptors. J. Immunol. 155:367–376 (1995).

    PubMed  CAS  Google Scholar 

  18. K. A. Beningo, and Y. L. Wang. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J. Cell Sci. 115:849–856 (2002).

    PubMed  CAS  Google Scholar 

  19. J. A. Champion, and S. Mitragotri. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A. 103:4930–4934 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. F. L. Ahsan, I. P. Rivas, M. A. Khan, and A. I. T. Suarez. Targeting to macrophages: Role of physicochemical properties of particulate carriers—liposomes and microspheres—on the phagocytosis by macrophages. J. Control. Release. 79:29–40 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. D. E. Owens III, and N. A. Peppas. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307:93–102 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. H. Kawaguchi, N. Koiwai, Y. Ohtsuka, M. Miyamoto, and S. Sasakawa. Phagocytosis of latex-particles by leukocytes .1. Dependence of phagocytosis on the size and surface-potential of particles. Biomaterials. 7:61–66 (1986).

    Article  PubMed  CAS  Google Scholar 

  23. Y. Tabata, and Y. Ikada. Effect of the size and surface-charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials. 9:356–362 (1988).

    Article  PubMed  CAS  Google Scholar 

  24. S. I. Simon, and G. W. Schmidschonbein. Biophysical aspects of microsphere engulfment by human-neutrophils. Biophys. J. 53:163–173 (1988).

    PubMed  CAS  Google Scholar 

  25. Y. Tabata, and Y. Ikada. Phagocytosis of polymer microspheres by macrophages. Adv. Polym. Sci. 94:107–141 (1990).

    Article  CAS  Google Scholar 

  26. S. Rudt, and R. H. Muller. In vitro phagocytosis assay of nano- and microparticles by chemiluminescence III Uptake of differently sized surface-modified particles, and its correlation to particle properties and in vivo distribution. Eur. J. Pharm. Sci. 1:31–39 (1993).

    Article  Google Scholar 

  27. H. M. Chen, R. Langer, and D. A. Edwards. A film tension theory of phagocytosis. J. Colloid Interface Sci. 190:118–133 (1997).

    Article  PubMed  CAS  Google Scholar 

  28. R. J. Helmke, V. F. German, and J. A. Mangos. A continuous alveolar macrophage cell-line—comparisons with freshly derived alveolar macrophages. In Vitro Cell Dev. Biol. Anim. 25:44–48 (1989).

    Article  CAS  Google Scholar 

  29. J. A. Steinkamp, J. S. Wilson, G. C. Saunders, and C. C. Stewart. Phagocytosis—flow cytometric quantitation with fluorescent microspheres. Science. 215:64–66 (1982).

    Article  PubMed  CAS  Google Scholar 

  30. F. Schroeder, and D. A. Kinden. Measurement of phagocytosis using fluorescent latex beads. J. Biochem. Biophys. Methods. 8:15–27 (1983).

    Article  PubMed  CAS  Google Scholar 

  31. A. Palecanda, J. Paulauskis, E. Al-Mutairi, A. Imrich, G. Z. Qin, H. Suzuki, T. Kodama, K. Tryggvason, H. Koziel, and L. Kobzik. Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles. J. Exp. Med. 189:1497–1506 (1999).

    Article  PubMed  CAS  Google Scholar 

  32. G. J. Dougherty, and W. H. McBride. Macrophage Heterogeneity. J. Clin. Lab. Immun. 14:1–11 (1984).

    CAS  Google Scholar 

  33. I. Carr. The Macrophage: A Review of Ultrastructure and Function. Academic Press, London, 1973.

    Google Scholar 

  34. D. Cox, P. Chang, Q. Zhang, P. G. Reddy, G. M. Bokoch, and S. Greenberg. Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J. Exp. Med. 186:1487–1494 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. M. M. Myat, S. Anderson, L. A. H. Allen, and A. Aderem. MARCKS regulates membrane ruffling and cell spreading. Curr. Biol. 7:611–614 (1997).

    Article  PubMed  CAS  Google Scholar 

  36. J. Israelchvili. Intermolecular and Surface Forces. Academic Press, San Diego, 1992.

    Google Scholar 

  37. E. M. V. Hoek, and G. K. Agarwal. Extended DLVO interactions between spherical particles and rough surfaces. J. Colloid Interface Sci. 298:50–58 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. W. J. Kowalski, W. P. Bahnfleth, and T. S. Whittam. Filtration of airborne microoorganisms: modeling and prediction. ASHRAE Trans. 105:4–17 (1999).

    Google Scholar 

  39. G. W. Burnett, and G. S. Schuster. Pathogenic microbiology. The C.V. Mosby Co., St. Louis, 1973.

Download references

Acknowledgements

JAC was supported by a fellowship from the National Science Foundation. This work was supported by a grant from the University of California Biotechnology Research and Education Program. This work was partially supported by the MRSEC Program of the National Science Foundation under Award No. DMR00-80034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Mitragotri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Champion, J.A., Walker, A. & Mitragotri, S. Role of Particle Size in Phagocytosis of Polymeric Microspheres. Pharm Res 25, 1815–1821 (2008). https://doi.org/10.1007/s11095-008-9562-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9562-y

Key words

Navigation