Skip to main content

Advertisement

Log in

The Potential Role of Interleukin-17 in Severe Asthma

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Asthma has long been characterized as a disease of dysregulated T-helper type 2 immune responses to environmental allergens. Clinical studies suggest that asthma is a heterogeneous disorder with distinct types of inflammatory processes. Accumulating evidence suggests that aberrant interleukin (IL)-17 production is a key determinant of severe forms of asthma. However, the identity of IL-17–producing cells and the factors regulating IL-17 production during the course of allergic inflammation remain elusive. In this review, we summarize the potential IL-17–producing cells and their involvement in the inflammatory responses that mediate distinct features of asthma. The role of proinflammatory cytokines and the complement pathway in regulating the generation of IL-17–producing T cells is also discussed. Understanding the biology of IL-17 in the context of allergic inflammation may be informative in the development of novel approaches to the diagnosis and treatment of asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wills-Karp M. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol. 1999;17:255–81.

    Article  PubMed  CAS  Google Scholar 

  2. Epstein MM. Targeting memory Th2 cells for the treatment of allergic asthma. Pharmacol Ther. 2006;109:107–36.

    Article  PubMed  CAS  Google Scholar 

  3. Renauld JC. New insights into the role of cytokines in asthma. J Clin Pathol. 2001;54:577–89.

    Article  PubMed  CAS  Google Scholar 

  4. Simpson JL, Scott R, Boyle MJ, Gibson PG. Inflammatory subtypes in asthma: assessment and identification using induced sputum. Respirology. 2006;11:54–61.

    Article  PubMed  Google Scholar 

  5. Hastie AT, Moore WC, Meyers DA, et al. Analyses of asthma severity phenotypes and inflammatory proteins in subjects stratified by sputum granulocytes. J Allergy Clin Immunol. 2010;125:1028–36. e1013.

    Article  PubMed  CAS  Google Scholar 

  6. • Al-Ramli W, Prefontaine D, Chouiali F, et al. T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. J Allergy Clin Immunol. 2009;123:1185–7. This article demonstrated that the number of IL-17–producing cells in the lung tissue of patients with severe asthma is significantly higher than that of patients with mild asthma. These immunoreactive IL-17 + cells were exclusively mononuclear cells and located within clusters of inflammatory cells in the subepithelial tissues..

    Article  PubMed  CAS  Google Scholar 

  7. Chakir J, Shannon J, Molet S, et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol. 2003;111:1293–8.

    Article  PubMed  CAS  Google Scholar 

  8. Fossiez F, Djossou O, Chomarat P, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183:2593–603.

    Article  PubMed  CAS  Google Scholar 

  9. Yao Z, Maraskovsky E, Spriggs MK, Cohen JI, Armitage RJ, Alderson MR. Herpesvirus saimiri open reading frame 14, a protein encoded by T lymphotropic herpesvirus, binds to MHC class II molecules and stimulates T cell proliferation. J Immunol. 1996;156:3260–6.

    PubMed  CAS  Google Scholar 

  10. Yao Z, Painter SL, Fanslow WC, et al. Human IL-17: a novel cytokine derived from T cells. J Immunol. 1995;155:5483–6.

    PubMed  CAS  Google Scholar 

  11. Lee J, Ho WH, Maruoka M, et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J Biol Chem. 2001;276:1660–4.

    Article  PubMed  CAS  Google Scholar 

  12. Li H, Chen J, Huang A, et al. Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family. Proc Natl Acad Sci USA. 2000;97:773–8.

    Article  PubMed  CAS  Google Scholar 

  13. Starnes T, Robertson MJ, Sledge G, et al. Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. J Immunol. 2001;167:4137–40.

    PubMed  CAS  Google Scholar 

  14. Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 2003;14:155–74.

    Article  PubMed  CAS  Google Scholar 

  15. Hymowitz SG, Filvaroff EH, Yin JP, et al. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J. 2001;20:5332–41.

    Article  PubMed  CAS  Google Scholar 

  16. Chang SH, Dong C. A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Res. 2007;17:435–40.

    PubMed  Google Scholar 

  17. Wright JF, Guo Y, Quazi A, et al. Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J Biol Chem. 2007;282:13447–55.

    Article  PubMed  CAS  Google Scholar 

  18. Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009;9:556–67.

    Article  PubMed  CAS  Google Scholar 

  19. Wright JF, Bennett F, Li B, et al. The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J Immunol. 2008;181:2799–805.

    PubMed  CAS  Google Scholar 

  20. Maitra A, Shen F, Hanel W, et al. Distinct functional motifs within the IL-17 receptor regulate signal transduction and target gene expression. Proc Natl Acad Sci USA. 2007;104:7506–11.

    Article  PubMed  CAS  Google Scholar 

  21. Qian Y, Liu C, Hartupee J, et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol. 2007;8:247–56.

    Article  PubMed  CAS  Google Scholar 

  22. Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–8.

    Article  PubMed  CAS  Google Scholar 

  23. Harrington LE, Mangan PR, Weaver CT. Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr Opin Immunol. 2006;18:349–56.

    Article  PubMed  CAS  Google Scholar 

  24. Murphy CA, Langrish CL, Chen Y, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med. 2003;198:1951–7.

    Article  PubMed  CAS  Google Scholar 

  25. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–41.

    Article  PubMed  CAS  Google Scholar 

  26. Bettelli E, Korn T, Oukka M, Kuchroo VK. Induction and effector functions of T(H)17 cells. Nature. 2008;453:1051–7.

    Article  PubMed  CAS  Google Scholar 

  27. Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.

    Article  PubMed  CAS  Google Scholar 

  28. Luger D, Silver PB, Tang J, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med. 2008;205:799–810.

    Article  PubMed  CAS  Google Scholar 

  29. Milner JD, Brenchley JM, Laurence A, et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;452:773–6.

    Article  PubMed  CAS  Google Scholar 

  30. Yang XO, Panopoulos AD, Nurieva R, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem. 2007;282:9358–63.

    Article  PubMed  CAS  Google Scholar 

  31. Yang XO, Pappu BP, Nurieva R, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity. 2008;28:29–39.

    Article  PubMed  CAS  Google Scholar 

  32. Chakir J, Shannon J, Molet S, et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol. 2003;111:1293–8.

    Article  PubMed  CAS  Google Scholar 

  33. Molet S, Hamid Q, Davoine F, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol. 2001;108:430–8.

    Article  PubMed  CAS  Google Scholar 

  34. Jovanovic DV, Di Battista JA, Martel-Pelletier J, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol. 1998;160:3513–21.

    PubMed  CAS  Google Scholar 

  35. Laan M, Cui ZH, Hoshino H, et al. Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J Immunol. 1999;162:2347–52.

    PubMed  CAS  Google Scholar 

  36. Jones CE, Chan K. Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-alpha, and granulocyte-colony-stimulating factor by human airway epithelial cells. Am J Respir Cell Mol Biol. 2002;26:748–53.

    PubMed  CAS  Google Scholar 

  37. Ye P, Rodriguez FH, Kanaly S, et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med. 2001;194:519–27.

    Article  PubMed  CAS  Google Scholar 

  38. Nakae S, Komiyama Y, Nambu A, et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity. 2002;17:375–87.

    Article  PubMed  CAS  Google Scholar 

  39. Nembrini C, Marsland BJ, Kopf M. IL-17-producing T cells in lung immunity and inflammation. J Allergy Clin Immunol. 2009;123:986–94. quiz 995–986.

    Article  PubMed  CAS  Google Scholar 

  40. Romani L, Fallarino F, De Luca A, et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature. 2008;451:211–5.

    Article  PubMed  CAS  Google Scholar 

  41. Nakamura R, Shibata K, Yamada H, Shimoda K, Nakayama K, Yoshikai Y. Tyk2-signaling plays an important role in host defense against Escherichia coli through IL-23-induced IL-17 production by gammadelta T cells. J Immunol. 2008;181:2071–5.

    PubMed  CAS  Google Scholar 

  42. Spinozzi F, Agea E, Bistoni O, et al. Increased allergen-specific, steroid-sensitive gamma delta T cells in bronchoalveolar lavage fluid from patients with asthma. Ann Intern Med. 1996;124:223–7.

    PubMed  CAS  Google Scholar 

  43. Lloyd CM, Hessel EM. Functions of T cells in asthma: more than just T(H)2 cells. Nat Rev Immunol. 2010;10:838–48.

    Article  PubMed  CAS  Google Scholar 

  44. Michel ML, Keller AC, Paget C, et al. Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J Exp Med. 2007;204:995–1001.

    Article  PubMed  CAS  Google Scholar 

  45. Akbari O, Stock P, Meyer E, et al. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med. 2003;9:582–8.

    Article  PubMed  CAS  Google Scholar 

  46. Matangkasombut P, Marigowda G, Ervine A, et al. Natural killer T cells in the lungs of patients with asthma. J Allergy Clin Immunol. 2009;123:1181–5.

    Article  PubMed  CAS  Google Scholar 

  47. Reynolds C, Barkans J, Clark P, et al. Natural killer T cells in bronchial biopsies from human allergen challenge model of allergic asthma. J Allergy Clin Immunol. 2009;124:860–2. author reply 862.

    Article  PubMed  CAS  Google Scholar 

  48. •• Wang YH, Voo KS, Liu B, et al. A novel subset of CD4(+) T(H)2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J Exp Med. 2010;207:2479–91. This article describes a novel subset of Th2 memory/effector cells that feature concurrent Th17 and Th2 cytokine production and contribute to the exacerbation of allergic asthma at the chronic stage..

    Article  PubMed  CAS  Google Scholar 

  49. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24:179–89.

    Article  PubMed  CAS  Google Scholar 

  50. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.

    Article  PubMed  CAS  Google Scholar 

  51. Mangan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006;441:231–4.

    Article  PubMed  CAS  Google Scholar 

  52. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007;8:942–9.

    Article  PubMed  CAS  Google Scholar 

  53. Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol. 2008;9:641–9.

    Article  PubMed  CAS  Google Scholar 

  54. Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. 2007;8:950–7.

    Article  PubMed  CAS  Google Scholar 

  55. Dinarello CA. Blocking interleukin-1beta in acute and chronic autoinflammatory diseases. J Int Med. 2011;269:16–28.

    Article  CAS  Google Scholar 

  56. Doisne JM, Soulard V, Becourt C, et al. Cutting edge: crucial role of IL-1 and IL-23 in the innate IL-17 response of peripheral lymph node NK1.1- invariant NKT cells to bacteria. J Immunol. 2011;186:662–6.

    Article  PubMed  CAS  Google Scholar 

  57. McGeachy MJ, Chen Y, Tato CM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol. 2009;10:314–24.

    Article  PubMed  CAS  Google Scholar 

  58. McGeachy MJ, Cua DJ. The link between IL-23 and Th17 cell-mediated immune pathologies. Semin Immunol. 2007;19:372–6.

    Article  PubMed  CAS  Google Scholar 

  59. Leonard WJ, Zeng R, Spolski R. Interleukin 21: a cytokine/cytokine receptor system that has come of age. J Leukoc Biol. 2008;84:348–56.

    Article  PubMed  CAS  Google Scholar 

  60. Yang L, Anderson DE, Baecher-Allan C, et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature. 2008;454:350–2.

    Article  PubMed  CAS  Google Scholar 

  61. Zhou L, Ivanov II, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007;8:967–74.

    Article  PubMed  CAS  Google Scholar 

  62. •• Lajoie S, Lewkowich IP, Suzuki Y, et al. Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nat Immunol. 2010;11:928–35. This article describes the reciprocal role of complement C3a and C5a in regulating the IL-23–Th17 axis that controls the severity of asthma..

    Article  PubMed  CAS  Google Scholar 

  63. Karp CL, Grupe A, Schadt E, et al. Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat Immunol. 2000;1:221–6.

    Article  PubMed  CAS  Google Scholar 

  64. Zhang X, Lewkowich IP, Kohl G, Clark JR, Wills-Karp M, Kohl J. A protective role for C5a in the development of allergic asthma associated with altered levels of B7-H1 and B7-DC on plasmacytoid dendritic cells. J Immunol. 2009;182:5123–30.

    Article  PubMed  CAS  Google Scholar 

  65. Polack FP, Teng MN, Collins PL, et al. A role for immune complexes in enhanced respiratory syncytial virus disease. J Exp Med. 2002;196:859–65.

    Article  PubMed  CAS  Google Scholar 

  66. • Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet. 2008;372:1107–19. This review highlights the concept that distinct inflammatory pathways contribute to the heterogeneity of asthma..

    Article  PubMed  Google Scholar 

  67. Barczyk A, Pierzchala W, Sozanska E. Interleukin-17 in sputum correlates with airway hyperresponsiveness to methacholine. Respir Med. 2003;97:726–33.

    Article  PubMed  CAS  Google Scholar 

  68. Wakashin H, Hirose K, Maezawa Y, et al. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med. 2008;178:1023–32.

    Article  PubMed  CAS  Google Scholar 

  69. Wilson RH, Whitehead GS, Nakano H, Free ME, Kolls JK, Cook DN. Allergic sensitization through the airway primes Th17-dependent neutrophilia and airway hyperresponsiveness. Am J Respir Crit Care Med. 2009;180:720–30.

    Article  PubMed  CAS  Google Scholar 

  70. McKinley L, Alcorn JF, Peterson A, et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J Immunol. 2008;181:4089–97.

    PubMed  CAS  Google Scholar 

  71. Schnyder-Candrian S, Togbe D, Couillin I, et al. Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med. 2006;203:2715–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Shawna Hottinger for editorial assistance and the National Institute of Allergy and Infectious Diseases (grant no. R01 AI090129-01 to Dr. Wang and RO1HL067736 and RO1AIO83315 to Dr. Wills-Karp) and the American Lung Association/American Academy of Allergy, Asthma and Immunology Foundation (Dr. Wang) for research support.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yui-Hsi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YH., Wills-Karp, M. The Potential Role of Interleukin-17 in Severe Asthma. Curr Allergy Asthma Rep 11, 388–394 (2011). https://doi.org/10.1007/s11882-011-0210-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-011-0210-y

Keywords

Navigation