Skip to main content
Log in

Physiology of the Pulmonary Circulation and the Right Heart

  • Pulmonary Hypertension (Z-C Jing, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The pulmonary circulation is a high-flow and low-pressure circuit. The functional state of the pulmonary circulation is defined by pulmonary vascular pressure–flow relationships conforming to distensible vessel models with a correction for hematocrit. The product of pulmonary arterial compliance and resistance is constant, but with a slight decrease as a result of increased pulsatile hydraulic load in the presence of increased venous pressure or proximal pulmonary arterial obstruction. An increase in left atrial pressure is transmitted upstream with a ratio ≥1 for mean pulmonary artery pressure and ≤1 the diastolic pulmonary pressure. Therefore, the diastolic pressure gradient is more appropriate than the transpulmonary pressure gradient to identify pulmonary vascular disease in left heart conditions. Exercise is associated with a decrease in pulmonary vascular resistance and an increase in pulmonary arterial compliance. Right ventricular function is coupled to the pulmonary circulation with an optimal ratio of end-systolic to arterial elastances of 1.5–2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• West JB. The role of the fragility of the pulmonary blood-gas barrier in the evolution of the pulmonary circulation. Am J Physiol Regul Integr Comp Physiol. 2013;304:R171–6. Enlightening review allowing for the understanding why the pulmonary circulation in mammals is a separate high flow-low pressure vascular system.

    Article  PubMed  CAS  Google Scholar 

  2. Swan HJC, Ganz W, Forrester JS, et al. Catheterization of the heart in man with use of a flow-directed catheter. N Engl J Med. 1970;283:447–51.

    Article  PubMed  CAS  Google Scholar 

  3. Howell JBL, Permutt S, Proctor DF, Riley RL. Effect of inflation of the lung on different parts of the pulmonary vascular bed. J Appl Physiol. 1961;16:71–6.

    PubMed  CAS  Google Scholar 

  4. • Naeije R, Boerrigter BG. Pulmonary hypertension at exercise in COPD: does it matter? Eur Respir J. 2013;41:1002–4. Brief review with pressure recordings showing the influence of altered respiratory mechanics of pulmonary vascular pressure tracings in patients with COPD.

    Article  PubMed  Google Scholar 

  5. Halpern SD, Taichman DB. Misclassification of pulmonary hypertension due to reliance on pulmonary capillary wedge pressure rather than left ventricular end-diastolic pressure. Chest. 2009;136:37–43.

    Article  PubMed  Google Scholar 

  6. Battacharya J, Nanjo S, Staub NC. Micropuncture measurement of lung microvascular pressure during 5-HT infusion. J Appl Physiol. 1982;52:634–7.

    Google Scholar 

  7. Cope DK, Grimbert F, Downey JM, Taylor AE. Pulmonary capillary pressure: a review. Crit Care Med. 1992;20:1043–56.

    Article  PubMed  CAS  Google Scholar 

  8. Gaar Jr KA, Taylor AE, Owens LJ, Guyton AC. Pulmonary capillary pressure and filtration coefficient in the isolated perfused lung. Am J Physiol. 1967;213:910–4.

    PubMed  Google Scholar 

  9. Fesler P, Pagnamenta A, Vachiéry JL, et al. Single arterial occlusion to locate resistance in patients with pulmonary hypertension. Eur Respir J. 2003;21:31–6.

    Article  PubMed  CAS  Google Scholar 

  10. Kim NH, Fesler P, Channick RN, et al. Preoperative partitioning of pulmonary vascular resistance correlates with early outcome after thromboendarterectomy for chronic thromboembolic pulmonary hypertension. Circulation. 2004;109:18–22.

    Article  PubMed  Google Scholar 

  11. • Toshner M, Suntharalingam J, Fesler P, et al. Occlusion pressure analysis role in partitioning of pulmonary vascular resistance in CTEPH. Eur Respir J. 2012;40:612–7. Bold attempt at an interesting clinical application of the single occlusion method for the diagnosis of proximal operable CTEPH.

    Article  PubMed  Google Scholar 

  12. Maggiorini M, Mélot C, Pierre S, et al. High altitude pulmonary edema is initially caused by an increased capillary pressure. Circulation. 2001;103:2078–83.

    Article  PubMed  CAS  Google Scholar 

  13. Naeije R, Mélot C, Mols P, Hallemans R. Effects of vasodilators on hypoxic pulmonary vasoconstriction in normal man. Chest. 1982;82:404–10.

    Article  PubMed  CAS  Google Scholar 

  14. Naeije R, Mélot C, Niset G, Delcroix M, Wagner PD. Improved arterial oxygenation by a pharmacological increase in chemosensitivity during hypoxic exercise in normal subjects. J Appl Physiol. 1993;74:1666–71.

    PubMed  CAS  Google Scholar 

  15. Mélot C, Naeije R, Hallemans R, Lejeune P, Mols P. Hypoxic pulmonary vasoconstriction and pulmonary gas exchange in normal man. Respir Physiol. 1987;68:11–27.

    Article  PubMed  Google Scholar 

  16. Kovacs G, Berghold A, Scheid S, Olschewski H. Pulmonary artery pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J. 2009;34:888–94.

    Article  PubMed  CAS  Google Scholar 

  17. Granath A, Jonsson B, Strandell T. Circulation in healthy old men, studied by right heart catheterization at rest and during exercise in supine and sitting position. Acta Med Scand. 1964;176:425–46.

    Article  PubMed  CAS  Google Scholar 

  18. Granath A, Strandell T. Relationships between cardiac output, stroke volume, and intracardiac pressures at rest and during exercise in supine position and some anthropometric data in healthy old men. Acta Med Scand. 1964;176:447–66.

    Article  PubMed  CAS  Google Scholar 

  19. •• Naeije R, Chesler NC. Pulmonary circulation at exercise. Compr Physiol. 2012;2:711–41. Comprehensive actualized review of the pulmonary circulation at exercise.

    PubMed  Google Scholar 

  20. Permutt S, Bromberger-Barnea B, Bane HN. Alveolar pressure, pulmonary venous pressure and the vascular waterfall. Med Thorac. 1962;19:239–60.

    PubMed  CAS  Google Scholar 

  21. West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung: relation to vascular and alveolar pressures. J Appl Physiol. 1964;19:713–24.

    PubMed  CAS  Google Scholar 

  22. Leeman M, Lejeune P, Closset J, Vachiéry JL, Mélot C, Naeije R. Nature of pulmonary hypertension in canine oleic acid pulmonary edema. J Appl Physiol. 1990;69:293–8.

    PubMed  CAS  Google Scholar 

  23. Zapol WM, Snider MT. Pulmonary hypertension in severe acute respiratory failure. N Engl J Med. 1977;296:476–80.

    Article  PubMed  CAS  Google Scholar 

  24. Naeije R, Lipski A, Abramowicz M, et al. Nature of pulmonary hypertension in congestive heart failure. Effects of cardiac transplantation. Am J Respir Crit Care Med. 1997;147:881–7.

    Google Scholar 

  25. Linehan JH, Haworth ST, Nelin LD, Krenz GS, Dawson CA. A simple distensible model for interpreting pulmonary vascular pressure-flow curves. J Appl Physiol. 1992;73:987–94.

    PubMed  CAS  Google Scholar 

  26. Krenz GS, Dawson CA. Flow and pressure distributions in vascular networks consisting of distensible vessels. Am J Physiol Heart Circ. 2003;284:H2192–203.

    CAS  Google Scholar 

  27. Reeves JT, Linehan JH, Stenmark KR. Distensibility of the normal human lung circulation during exercise. Am J Physiol Lung Cell Mol Physiol. 2005;288:L419–25.

    Article  PubMed  CAS  Google Scholar 

  28. Argiento P, Chesler N, Mulè M, et al. Exercise stress echocardiography for the study of the pulmonary circulation. Eur Respir J. 2010;35:1273–8.

    Article  PubMed  CAS  Google Scholar 

  29. Argiento P, Vanderpool RR, Mule M, et al. Exercise stress echocardiography of the pulmonary circulkation: limits of normal and sex differences. Chest. 2012;142:1158–65.

    Article  PubMed  Google Scholar 

  30. Lalande S, Yerly P, Faoro V, Naeije R. Pulmonary vascular distensibility predicts aerobic capacity in healthy individuals. J Physiol. 2012;590:4279–88.

    Article  PubMed  CAS  Google Scholar 

  31. Groepenhoff H, Overbeek MJ, Mulè M, et al. Exercise pathophysiology in patients with chronic mountain ickness. Chest. 2012;142:877–84.

    Article  PubMed  CAS  Google Scholar 

  32. •• Naeije R, Vanderpool R, Dhakal B, et al. Exercise-induced pulmonary hypertension: physiological basis and methodological concerns. Am J Respir Crit Care Med. 2013;187:576–83. Actualized comprehensive review on the diagnosis and mechanisms of exercise-induced pulmonary hypertension.

    Article  PubMed  Google Scholar 

  33. Pavelescu A, Vanderpool R, Vachiéry JL, Grunig E, Naeije R. Echocardiography of pulmonary vascular function in asymptomatic carriers of BMPR2 mutations. Eur Respir J. 2012;40:1287–9.

    Article  PubMed  Google Scholar 

  34. Mélot C, Delcroix M, Closset J, et al. Starling resistor vs. distensible vessel models for embolic pulmonary hypertension. Am J Physiol. 1995;268:H817–27.

    PubMed  Google Scholar 

  35. Lau E. Early detection of pulmonary vascular disease in pulmonary arterial hypertension: time to move forward. Eur Heart J. 2011;32:2489–98.

    Article  PubMed  Google Scholar 

  36. Whittaker SRF, Winton FR. The apparent viscosity of blood flowing in the isolated hindlimb of the dog, and its variation with corpuscular concentration. J Physiol. 1933;78:339–69.

    PubMed  CAS  Google Scholar 

  37. Naeije R, Vanderpool R. Pulmonary hypertension in chronic mountain sickness. High Alt Med Biol. 2013;14:117–25.

    Article  PubMed  CAS  Google Scholar 

  38. Faoro V, Huez S, Vanderpool RR, et al. Pulmonary circulation and gas exchange at exerciuse in Sherpas at high altitude. J Appl Physiol. 2013.

  39. Moraes DL, Colucci WS, Givertz MM. Secondary pulmonary hypertension in chronic heart failure. The role of endothelium in pathophysiology and management. Circulation. 2000;102:1718–23.

    Article  PubMed  CAS  Google Scholar 

  40. Hoeper MM, Barberà JA, Channick RN, et al. Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S85–96.

    Article  PubMed  Google Scholar 

  41. •• Naeije R, Vachiery J, Yerly P, Vanderpool R. The transpulmonary pressure gradient for the diagnosis of pulmonary vascular disease. Eur Respir J. 2013;41:217–23. Refreshed view on how to interprete pulmonary vascular pressure gradients in the differential diagnosis of pulmonary hypertension associated with left heart conditions.

    Article  PubMed  Google Scholar 

  42. Harvey RM, Enson Y, Ferrer MI. A reconsideration of the origins of pulmonary hypertension. Chest. 1971;59:82–94.

    Article  PubMed  CAS  Google Scholar 

  43. Gerges C, Gerges M, Lang MB, et al. Diastolic pulmonary vascular pressure gradient: a predictor of prognosis in "out-of-proportion" pulmonary hypertension. Chest. 2013;143:758–66.

    Article  PubMed  Google Scholar 

  44. Reeves JT, Dempsey JA, Grover RF. Pulmonary circulation during exercise. In: Weir EK, Reeves JT, editors. Pulmonary vascular physiology and physiopathology. Chap 4. New York: Marcel Dekker; 1989. p. 107–33.

    Google Scholar 

  45. Kovacs G, Olschewski A, Berhold A, Oschewski H. Pulmonary vascular resistance during exercise in normal subjects: a systematic review. Eur Respir J. 2012;39:319–28.

    Article  PubMed  CAS  Google Scholar 

  46. Stickland MK, Welsh RC, Petersen SR, et al. Does fitness level modulate the cardiovascular hemodynamic response to exercise? J Appl Physiol. 2006;100:1895–901.

    Article  PubMed  CAS  Google Scholar 

  47. Bergel DH, Milnor WR. Pulmonary vascular impedance in the dog. Circ Res. 1966;16:401–15.

    Article  Google Scholar 

  48. Milnor WR, Bergel DH, Bargainer JD. Hydraulic power associated with pulmonary blood flow and its relation to heart rate. Circ Res. 1966;19:467–80.

    Article  PubMed  CAS  Google Scholar 

  49. Lankhaar JW, Westerhof N, Faes TJ, et al. Quantification of right ventricular afterload in patients with and without pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2006;291:H1731–7.

    Article  PubMed  CAS  Google Scholar 

  50. Lankhaar JW, Westerhof N, Faes TJ, et al. Pulmonary vascular resistance and compliance stay inversely related during treatment of pulmonary hypertension. Eur Heart J. 2008;29:1688–95.

    Article  PubMed  Google Scholar 

  51. Saouti N, Westerhof N, Helderman F, et al. RC time constant of single lung equals that of both lungs together: a study in chronic thromboembolic pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2009;297:H2154–60.

    Article  PubMed  CAS  Google Scholar 

  52. Reuben SR. Compliance of the pulmonary arterial system in disease. Circ Res. 1971;29:40–50.

    Article  PubMed  CAS  Google Scholar 

  53. Bonderman D, Martischnig AM, Vonbank K, et al. Right ventricular load at exercise is a cause of persistent exercise limitation in patients with normal resting pulmonary vascular resistance after pulmonary endarterectomy. Chest. 2011;139:122–7.

    Article  PubMed  Google Scholar 

  54. Saouti N, Westerhof N, Helderman F, et al. Right ventricular oscillatory power is a constant fraction of total power irrespective of pulmonary artery pressure. Am J Respir Crit Care Med. 2010;182:1315–20.

    Article  PubMed  Google Scholar 

  55. • Tedford RJ, Hassoun PM, Mathai SC, et al. Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation. 2012;125:289–97. Study on a large patient population reporting on the time constant in the pulmonary versus systemic circulations and the effects of heart failure.

    Article  PubMed  Google Scholar 

  56. Pagnamenta A, Vanderpool R, Brimioulle S, Naeije R. Proximal pulmonary arterial obstruction decreases the time constant of the pulmonary circulation and increases right ventricular afterload. J Appl Physiol. 2013;114:1586–92.

    Article  PubMed  Google Scholar 

  57. • MacKenzie Ross RV, Toshner MR, Soon E, Naeije R, Pepke-Zaba J. Decreased time constant of the pulmonary circulation in chronic thromboembolic pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2013;305:H259–64. Clinical study showing that proximal CTEPH is associated with a decreased time constant of the pulmonary circulation.

    Article  PubMed  Google Scholar 

  58. Chemla D, Castelain V, Provencher S, Humbert M, Simonneau G, Hervé P. Evaluation of various empirical formulas for estimating mean pulmonary artery pressure by using systolic pulmonary artery pressure in adults. Chest. 2009;135:760–8.

    Article  PubMed  Google Scholar 

  59. Yock P, Popp R. Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation. 1984;70:657–62.

    Article  PubMed  CAS  Google Scholar 

  60. Champion HC, Michelakis ED, Hassoun PM. Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation. 2009;120:992–1007.

    Article  PubMed  Google Scholar 

  61. Sagawa K, Maughan L, Suga H, Sunagawa K. Cardiac contraction and the pressure–volume relationship. New York: Oxford University Press; 1988.

    Google Scholar 

  62. •• Vonk Noordegraaf A, Westerhof N. Describing right ventricular function. Eur Respir J. 2013;41:1419–23. Concise piece essential to the modern understanding of right ventricular function.

    Article  PubMed  Google Scholar 

  63. Maughan WL, Shoukas AA, Sagawa K, Weisfeldt ML. Instantaneous pressure-volume relationship of the canine right ventricle. Circ Res. 1979;44:309–15.

    Article  PubMed  CAS  Google Scholar 

  64. Brimioulle S, Wauthy P, Ewalenko P, et al. Single-beat estimation of right ventricular end-systolic pressure-volume relationship. Am J Physiol Heart Circ Physiol. 2003;284:H1625–30.

    PubMed  CAS  Google Scholar 

  65. Kerbaul F, Brimioulle S, Rondelet B, Dewachter C, Hubloue I, Naeije R. How prostacyclin improves cardiac output in right heart failure in conjunction with pulmonary hypertension. Am J Respir Crit Care Med. 2007;175:846–50.

    Article  PubMed  CAS  Google Scholar 

  66. De Man FS, Handoko ML, van Ballegoij LL, et al. Bisoprolol delays progression towards right heart failure in experimental pulmonary hypertension. Circ Heart Fail. 2012;5:97–105.

    Article  PubMed  Google Scholar 

  67. Kuehne T, Yilmaz S, Steendijk P, et al. Magnetic resonance imaging analysis of right ventricular pressure-volume loops: in vivo validation and clinical application in patients with pulmonary hypertension. Circulation. 2004;110:2010–6.

    Article  PubMed  Google Scholar 

  68. • Tedford RJ, Mudd JO, Girgis RE, et al. Right ventricular dysfunction in systemic sclerosis associated pulmonary arterial hypertension. Circ Heart Fail. 2013. Important paper on RV-arterial coupling in idiopathic versus scleroderma-associated pulmonary hypertension.

  69. Overbeek MJ, Lankhaar JW, Westerhof N, et al. Right ventricular contractility in systemic sclerosis-associated and idiopathic pulmonary arterial hypertension. Eur Respir J. 2008;31:1160–6.

    Article  PubMed  CAS  Google Scholar 

  70. Sanz J, García-Alvarez A, Fernández-Friera L, et al. Right ventriculo-arterial coupling in pulmonary hypertension: a magnetic resonance study. Heart. 2012;98:238–43.

    Article  PubMed  Google Scholar 

  71. •• Grunig E, Tiede H, Enyiamayew EO, et al. patients with pulmonary arterial hypertension. Circulation. 2013. Timely paper drawing attention on the importance of right ventricular contractile reserve in severe pulmonary hypertension.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Robert Naeije declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Naeije.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naeije, R. Physiology of the Pulmonary Circulation and the Right Heart. Curr Hypertens Rep 15, 623–631 (2013). https://doi.org/10.1007/s11906-013-0396-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-013-0396-6

Keywords

Navigation