Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus

Abstract

Inflammasomes are large cytoplasmic complexes that sense microbial infections/danger molecules and induce caspase-1 activation-dependent cytokine production and macrophage inflammatory death1,2. The inflammasome assembled by the NOD-like receptor (NLR) protein NLRC4 responds to bacterial flagellin and a conserved type III secretion system (TTSS) rod component3,4,5. How the NLRC4 inflammasome detects the two bacterial products and the molecular mechanism of NLRC4 inflammasome activation are not understood. Here we show that NAIP5, a BIR-domain NLR protein required for Legionella pneumophila replication in mouse macrophages6, is a universal component of the flagellin–NLRC4 pathway. NAIP5 directly and specifically interacted with flagellin, which determined the inflammasome-stimulation activities of different bacterial flagellins. NAIP5 engagement by flagellin promoted a physical NAIP5–NLRC4 association, rendering full reconstitution of a flagellin-responsive NLRC4 inflammasome in non-macrophage cells. The related NAIP2 functioned analogously to NAIP5, serving as a specific inflammasome receptor for TTSS rod proteins such as Salmonella PrgJ and Burkholderia BsaK. Genetic analysis of Chromobacterium violaceum infection revealed that the TTSS needle protein CprI can stimulate NLRC4 inflammasome activation in human macrophages. Similarly, CprI is specifically recognized by human NAIP, the sole NAIP family member in human. The finding that NAIP proteins are inflammasome receptors for bacterial flagellin and TTSS apparatus components further predicts that the remaining NAIP family members may recognize other unidentified microbial products to activate NLRC4 inflammasome-mediated innate immunity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A defined biochemical assay reveals a universal role of NAIP5 in flagellin-triggered NLRC4 inflammasome activation in mouse macrophages.
Figure 2: Flagellin interacts specifically with NAIP5 and the interaction correlates with the activity of flagellins from different bacteria.
Figure 3: Flagellin stimulates the NAIP5–NLRC4 association and reconstitution of flagellin activation of the NLRC4 inflammasome in non-macrophage cells.
Figure 4: NAIP2 interacts with the TTSS rod protein and is required for the rod protein to trigger mouse NLRC4 inflammasome activation.
Figure 5: C. violaceum infection studies reveal that the human NLRC4 inflammasome responds to the TTSS needle subunit through specific recognition by human NAIP.

Similar content being viewed by others

References

  1. Lamkanfi, M. & Dixit, V. M. Inflammasomes: guardians of cytosolic sanctity. Immunol. Rev. 227, 95–105 (2009)

    Article  CAS  Google Scholar 

  2. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010)

    Article  CAS  Google Scholar 

  3. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nature Immunol. 7, 576–582 (2006)

    Article  CAS  Google Scholar 

  4. Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nature Immunol. 7, 569–575 (2006)

    Article  CAS  Google Scholar 

  5. Miao, E. A. et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl Acad. Sci. USA 107, 3076–3080 (2010)

    Article  ADS  CAS  Google Scholar 

  6. Lightfield, K. L. et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nature Immunol. 9, 1171–1178 (2008)

    Article  CAS  Google Scholar 

  7. Amer, A. et al. Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J. Biol. Chem. 281, 35217–35223 (2006)

    Article  CAS  Google Scholar 

  8. Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella . J. Exp. Med. 207, 1745–1755 (2010)

    Article  CAS  Google Scholar 

  9. Milne, J. C., Blanke, S. R., Hanna, P. C. & Collier, R. J. Protective antigen-binding domain of anthrax lethal factor mediates translocation of a heterologous protein fused to its amino- or carboxy-terminus. Mol. Microbiol. 15, 661–666 (1995)

    Article  CAS  Google Scholar 

  10. Broz, P., von Moltke, J., Jones, J. W., Vance, R. E. & Monack, D. M. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8, 471–483 (2010)

    Article  CAS  Google Scholar 

  11. Diez, E. et al. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila . Nature Genet. 33, 55–60 (2003)

    Article  CAS  Google Scholar 

  12. Wright, E. K. et al. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila . Curr. Biol. 13, 27–36 (2003)

    Article  CAS  Google Scholar 

  13. Molofsky, A. B. et al. Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J. Exp. Med. 203, 1093–1104 (2006)

    Article  CAS  Google Scholar 

  14. Ren, T., Zamboni, D. S., Roy, C. R., Dietrich, W. F. & Vance, R. E. Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog. 2, e18 (2006)

    Article  Google Scholar 

  15. Zamboni, D. S. et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nature Immunol. 7, 318–325 (2006)

    Article  CAS  Google Scholar 

  16. Fortier, A., de Chastellier, C., Balor, S. & Gros, P. Birc1e/Naip5 rapidly antagonizes modulation of phagosome maturation by Legionella pneumophila . Cell. Microbiol. 9, 910–923 (2007)

    Article  CAS  Google Scholar 

  17. Lightfield, K. L. et al. Differential requirements for NAIP5 in activation of the NLRC4 inflammasome. Infect. Immun. 79, 1606–1614 (2011)

    Article  CAS  Google Scholar 

  18. Lamkanfi, M. et al. The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation. J. Immunol. 178, 8022–8027 (2007)

    Article  CAS  Google Scholar 

  19. Akhter, A. et al. Caspase-7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection. PLoS Pathog. 5, e1000361 (2009)

    Article  Google Scholar 

  20. Franchi, L. et al. Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur. J. Immunol. 37, 3030–3039 (2007)

    Article  CAS  Google Scholar 

  21. Sutterwala, F. S. et al. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J. Exp. Med. 204, 3235–3245 (2007)

    Article  CAS  Google Scholar 

  22. Miao, E. A., Ernst, R. K., Dors, M., Mao, D. P. & Aderem, A. Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc. Natl Acad. Sci. USA 105, 2562–2567 (2008)

    Article  ADS  CAS  Google Scholar 

  23. Suzuki, T. et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 3, e111 (2007)

    Article  Google Scholar 

  24. Damiano, J. S., Oliveira, V., Welsh, K. & Reed, J. C. Heterotypic interactions among NACHT domains: implications for regulation of innate immune responses. Biochem. J. 381, 213–219 (2004)

    Article  CAS  Google Scholar 

  25. Miki, T. et al. Chromobacterium pathogenicity island 1 type III secretion system is a major virulence determinant for Chromobacterium violaceum-induced cell death in hepatocytes. Mol. Microbiol. 77, 855–872 (2010)

    CAS  PubMed  Google Scholar 

  26. Worrall, L. J., Lameignere, E. & Strynadka, N. C. Structural overview of the bacterial injectisome. Curr. Opin. Microbiol. 14, 3–8 (2011)

    Article  CAS  Google Scholar 

  27. Poyraz, O. et al. Protein refolding is required for assembly of the type three secretion needle. Nature Struct. Mol. Biol. 17, 788–792 (2010)

    Article  CAS  Google Scholar 

  28. Hsu, L. C. et al. A NOD2–NALP1 complex mediates caspase-1-dependent IL-1β secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc. Natl Acad. Sci. USA 105, 7803–7808 (2008)

    Article  ADS  CAS  Google Scholar 

  29. Poeck, H. et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1β production. Nature Immunol. 11, 63–69 (2010)

    Article  CAS  Google Scholar 

  30. Yao, Q. et al. A bacterial type III effector family uses the papain-like hydrolytic activity to arrest the host cell cycle. Proc. Natl Acad. Sci. USA 106, 3716–3721 (2009)

    Article  ADS  CAS  Google Scholar 

  31. Cui, J. et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science 329, 1215–1218 (2010)

    Article  ADS  CAS  Google Scholar 

  32. Li, P. et al. Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell 80, 401–411 (1995)

    Article  CAS  Google Scholar 

  33. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004)

    Article  ADS  CAS  Google Scholar 

  34. Boyden, E. D. & Dietrich, W. F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nature Genet. 38, 240–244 (2006)

    Article  CAS  Google Scholar 

  35. Vojtek, A. B. & Cooper, J. A. Rho family members: activators of MAP kinase cascades. Cell 82, 527–529 (1995)

    Article  CAS  Google Scholar 

  36. Dong, N., Liu, L. & Shao, F. A bacterial effector targets host DH-PH domain RhoGEFs and antagonizes macrophage phagocytosis. EMBO J. 29, 1363–1376 (2010)

    Article  CAS  Google Scholar 

  37. Barrett, A. R. et al. Genetic tools for allelic replacement in Burkholderia species. Appl. Environ. Microbiol. 74, 4498–4508 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Dixit for providing Nlrc4 and Asc knockout mice, K. Fitzgerald, D. Radzioch and A. Ding for immortalized macrophages, R. Vance for Naip5A/J cDNA, M. Donnenberg and J. Girón for EPEC strains, E. Miao for flagellin-deficient S. typhimurium strain, D. Milton and T. Hoang for bacterial vectors and T. Miki for C. violaceum strains. We are grateful to C. Yao for helping with flow cytometry, and Y. Xu and the NIBS animal facility for handling mouse lines. We thank members of the F.S. laboratory for helpful discussions and technical assistance. This work was supported by the National Basic Research Program of China (973 Programs, 2010CB835400 and 2012CB518700).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and J.Y. performed experiments, assisted by J.S., Y.-N.G., Q.L., H.X. and L.L. Y.Z., J.Y. and F.S. analysed the data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Feng Shao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-20 with legends and Supplementary Tables 1-3. (PDF 2776 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Yang, J., Shi, J. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596–600 (2011). https://doi.org/10.1038/nature10510

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10510

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing