Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes

Abstract

Epidemics of drug-resistant bacteria emerge worldwide, even as resistant strains frequently have reduced fitness compared to their drug-susceptible counterparts1. Data from model systems suggest that the fitness cost of antimicrobial resistance can be reduced by compensatory mutations2; however, there is limited evidence that compensatory evolution has any significant role in the success of drug-resistant bacteria in human populations3,4,5,6. Here we describe a set of compensatory mutations in the RNA polymerase genes of rifampicin-resistant M. tuberculosis, the etiologic agent of human tuberculosis (TB). M. tuberculosis strains harboring these compensatory mutations showed a high competitive fitness in vitro. Moreover, these mutations were associated with high fitness in vivo, as determined by examining their relative clinical frequency across patient populations. Of note, in countries with the world's highest incidence of multidrug-resistant (MDR) TB7, more than 30% of MDR clinical isolates had this form of mutation. Our findings support a role for compensatory evolution in the global epidemics of MDR TB8.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Putative compensatory mutations in rpoA and rpoC of M. tuberculosis.
Figure 2: Putative compensatory mutations in rpoA and rpoC fall in regions encoding the interface of the RNA polymerase subunits.
Figure 3: Experimental and clinical relevance of putative compensatory mutations.

Similar content being viewed by others

Accession codes

Accessions

Sequence Read Archive

References

  1. Andersson, D.I. & Levin, B.R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Andersson, D.I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Björkholm, B. et al. Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc. Natl. Acad. Sci. USA 98, 14607–14612 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Böttger, E.C., Springer, B., Pletschette, M. & Sander, P. Fitness of antibiotic-resistant microorganisms and compensatory mutations. Nat. Med. 4, 1343–1344 (1998).

    Article  PubMed  Google Scholar 

  5. Borrell, S. & Gagneux, S. Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 13, 1456–1466 (2009).

    CAS  PubMed  Google Scholar 

  6. Nagaev, I., Bjorkman, J., Andersson, D.I. & Hughes, D. Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol. Microbiol. 40, 433–439 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. World Health Organization. Global Tuberculosis Control—Surveillance, Planning, Financing. (WHO, Geneva, Switzerland, 2010).

  8. Gandhi, N.R. et al. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375, 1830–1843 (2010).

    Article  PubMed  Google Scholar 

  9. Blower, S.M. & Chou, T. Modeling the emergence of the 'hot zones': tuberculosis and the amplification dynamics of drug resistance. Nat. Med. 10, 1111–1116 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Cohen, T. & Murray, M. Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness. Nat. Med. 10, 1117–1121 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mariam, D.H., Mengistu, Y., Hoffner, S.E. & Andersson, D.I. Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 48, 1289–1294 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gagneux, S. et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312, 1944–1946 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Billington, O.J., McHugh, T.D. & Gillespie, S.H. Physiological cost of rifampin resistance induced in vitro in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 43, 1866–1869 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reynolds, M.G. Compensatory evolution in rifampin-resistant Escherichia coli. Genetics 156, 1471–1481 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sander, P. et al. Fitness cost of chromosomal drug resistance–conferring mutations. Antimicrob. Agents Chemother. 46, 1204–1211 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sherman, D.R. et al. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272, 1641–1643 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Shcherbakov, D. et al. Directed mutagenesis of Mycobacterium smegmatis 16S rRNA to reconstruct the in vivo evolution of aminoglycoside resistance in Mycobacterium tuberculosis. Mol. Microbiol. 77, 830–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Ramaswamy, S. & Musser, J.M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber. Lung Dis. 79, 3–29 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Levin, B.R., Perrot, V. & Walker, N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 154, 985–997 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Opalka, N. et al. Complete structural model of Escherichia coli RNA polymerase from a hybrid approach. PLoS Biol. 8, e1000483 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Achtman, M. Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu. Rev. Microbiol. 62, 53–70 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Hirsh, A.E., Tsolaki, A.G., DeRiemer, K., Feldman, M.W. & Small, P.M. Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc. Natl. Acad. Sci. USA 101, 4871–4876 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Supply, P. et al. Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. Mol. Microbiol. 47, 529–538 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Comas, I., Homolka, S., Niemann, S. & Gagneux, S. Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS ONE 4, e7815 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hershberg, R. et al. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol. 6, e311 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hazbón, M.H. et al. Convergent evolutionary analysis identifies significant mutations in drug resistance targets of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 52, 3369–3376 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Comas, I. et al. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat. Genet. 42, 498–503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gagneux, S. & Small, P.M. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect. Dis. 7, 328–337 (2007).

    Article  PubMed  Google Scholar 

  29. Gagneux, S. et al. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103, 2869–2873 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wirth, T. et al. Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog. 4, e1000160 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kubica, T. et al. The Beijing genotype is a major cause of drug-resistant tuberculosis in Kazakhstan. Int. J. Tuberc. Lung Dis. 9, 646–653 (2005).

    CAS  PubMed  Google Scholar 

  32. Cox, H.S. et al. The Beijing genotype and drug resistant tuberculosis in the Aral Sea region of Central Asia. Respir. Res. 6, 134 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pardini, M. et al. Characteristics of drug-resistant tuberculosis in Abkhazia (Georgia), a high-prevalence area in Eastern Europe. Tuberculosis (Edinb.) 89, 317–324 (2009).

    Article  CAS  Google Scholar 

  34. Ng, P.C. & Henikoff, S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Szklarczyk, D. et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561–D568 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Guerois, R., Nielsen, J.E. & Serrano, L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320, 369–387 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Bonfield, J.K., Smith, K. & Staden, R. A new DNA sequence assembly program. Nucleic Acids Res. 23, 4992–4999 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Small and C. Davis Long for stimulating discussions at the onset of this project, D. Young and M. Coscolla for reviewing the manuscript, A. Candel for advice in the interpretation of the RNA polymerase molecular structure and T. Van for technical support. We acknowledge the Wellcome Trust Sanger Institute for making available unpublished DNA sequence data (see URLs). We would like to thank T. Ubben, I. Razio and the other members of the German National Reference Center for Mycobateria for technical assistance and all partners that have contributed to previous studies in regions of high MDR TB incidence and collected some of the strains analyzed here. This project was funded wholly or in part by the US National Institute of Allergy and Infectious Disease, US National Institutes of Health and US Department of Health and Human Services (contract HHSN266200400001C, grants AI090928 and AI034238). This work was also supported by the Medical Research Council, UK (MRC_U117588500), the Swiss National Science Foundation (PP00A-119205) and the European Community LONG-DRUG (QLK-CT-2002-01612) and TB PAN-NET (FP7-223681) projects.

Author information

Authors and Affiliations

Authors

Contributions

I.C., S.B. and S.G. planned the experiments. I.C., S.B., A.R., B.M., G.R., M.K.-M., J.G. and S.G. performed the experiments. I.C., S.B., A.R., G.R., S.N. and S.G. analyzed the data. I.C., S.B. and S.G. wrote the manuscript. All authors critically reviewed the manuscript.

Corresponding author

Correspondence to Sebastien Gagneux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–8. (PDF 286 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comas, I., Borrell, S., Roetzer, A. et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44, 106–110 (2012). https://doi.org/10.1038/ng.1038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1038

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing