Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma

Abstract

Multiple myeloma (MM) is a B-cell neoplasia caused by the proliferation of clonal plasma cells, primarily in the bone marrow (BM). The role of the BM microenvironment in the pathogenesis of the disease has been demonstrated, especially for the survival and growth of the myeloma plasma cells. Functional characterization of the major component of the BM microenvironment, namely the recently characterized mesenchymal stem cells (MSCs), was never performed in MM. Based on a series of 61 consecutive patients, we evaluated the ability of MSCs derived from myeloma patients to differentiate into adipocytes and osteocytes, inhibit T-cell functions, and support normal hematopoiesis. MSCs phenotypic characterization and quantification of interleukin-6 (IL-6) secretion were also performed. As compared to normal MSCs, MSCs from MM patients exhibited normal phenotype, differentiation capacity and long-term hematopoietic support, but showed reduced efficiency to inhibit T-cell proliferation and produced abnormally high amounts of IL-6. Importantly, these characteristics were observed in the absence of any detectable tumor plasma cell. Chromosomal analysis revealed that MM patients MSCs were devoid of chromosomal clonal markers identified in plasma cells. MM MSCs present abnormal features that may participate in the pathogenesis of MM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC . Advances in biology of multiple myeloma: clinical applications. Blood 2004; 104: 607–618.

    Article  CAS  PubMed  Google Scholar 

  2. Lauta VM . A review of the cytokine network in multiple myeloma: diagnostic, prognostic, and therapeutic implications. Cancer 2003; 97: 2440–2452.

    Article  CAS  PubMed  Google Scholar 

  3. Hallek M, Bergsagel PL, Anderson KC . Multiple myeloma: increasing evidence for a multistep transformation process. Blood 1998; 91: 3–21.

    CAS  PubMed  Google Scholar 

  4. Dalton WS . The tumor microenvironment: focus on myeloma. Cancer Treat Rev 2003; 29 (Suppl 1): 11–19.

    Article  CAS  PubMed  Google Scholar 

  5. Gunn WG, Conley A, Deininger L, Olson SD, Prockop DJ, Gregory CA . A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and Interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 2006; 24: 986–991.

    Article  CAS  PubMed  Google Scholar 

  6. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  7. Prockop DJ . Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71–74.

    Article  CAS  PubMed  Google Scholar 

  8. Silva Jr WA, Covas DT, Panepucci RA, Proto-Siqueira R, Siufi JL, Zanette DL et al. The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells 2003; 21: 661–669.

    Article  CAS  PubMed  Google Scholar 

  9. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838–3843.

    Article  CAS  PubMed  Google Scholar 

  10. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D . Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004; 103: 4619–4621.

    Article  CAS  PubMed  Google Scholar 

  11. Rasmusson I, Ringden O, Sundberg B, Le Blanc K . Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res 2005; 305: 33–41.

    Article  CAS  PubMed  Google Scholar 

  12. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107: 367–372.

    Article  CAS  PubMed  Google Scholar 

  13. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105: 4120–4126.

    Article  CAS  PubMed  Google Scholar 

  14. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M . Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 2006; 24: 74–85.

    Article  PubMed  Google Scholar 

  15. Tricot G . New insights into role of microenvironment in multiple myeloma. Lancet 2000; 355: 248–250.

    Article  CAS  PubMed  Google Scholar 

  16. Epstein J, Yaccoby S . Consequences of interactions between the bone marrow stroma and myeloma. Hematol J 2003; 4: 310–314.

    Article  PubMed  Google Scholar 

  17. Chesi M, Nardini E, Lim RS, Smith KD, Kuehl WM, Bergsagel PL . The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 1998; 92: 3025–3034.

    CAS  PubMed  Google Scholar 

  18. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O . Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003; 57: 11–20.

    Article  CAS  PubMed  Google Scholar 

  19. Yeh SP, Chang JG, Lo WJ, Liaw YC, Lin CL, Lee CC et al. Induction of CD45 expression on bone marrow-derived mesenchymal stem cells. Leukemia 2006; 20: 894–896.

    Article  CAS  PubMed  Google Scholar 

  20. Uchiyama H, Barut BA, Mohrbacher AF, Chauhan D, Anderson KC . Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion. Blood 1993; 82: 3712–3720.

    CAS  PubMed  Google Scholar 

  21. Klein B, Zhang XG, Lu ZY, Bataille R . Interleukin-6 in human multiple myeloma. Blood 1995; 85: 917–924.

    PubMed  Google Scholar 

  22. Caligaris-Cappio F, Bergui L, Gregoretti MG, Gaidano G, Gaboli M, Schena M et al. Role of bone marrow stromal cells in the growth of human multiple myeloma. Blood 1991; 77: 2688–2693.

    CAS  PubMed  Google Scholar 

  23. Wallace SR, Oken MM, Lunetta KL, Panoskaltsis-Mortari A, Masellis AM . Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer 2001; 91: 1219–1230.

    Article  CAS  PubMed  Google Scholar 

  24. Potter M . Neoplastic development in plasma cells. Immunol Rev 2003; 194: 177–195.

    Article  CAS  PubMed  Google Scholar 

  25. Arnulf B, Bengoufa D, Sarfati E, Toubert ME, Meignin V, Brouet JC et al. Prevalence of monoclonal gammopathy in patients with primary hyperparathyroidism: a prospective study. Arch Intern Med 2002; 162: 464–467.

    Article  PubMed  Google Scholar 

  26. Streubel B, Chott A, Huber D, Exner M, Jager U, Wagner O et al. Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 2004; 351: 250–259.

    Article  CAS  PubMed  Google Scholar 

  27. Rigolin GM, Fraulini C, Ciccone M, Mauro E, Bugli AM, De Angeli C et al. Neoplastic circulating endothelial cells in multiple myeloma with 13q14 deletion. Blood 2006; 107: 2531–2535.

    Article  CAS  PubMed  Google Scholar 

  28. Hendrix MJ, Seftor EA, Hess AR, Seftor RE . Vasculogenic mimicry and tumor-cell plasticity: lessons from melanoma. Nat Rev Cancer 2003; 3: 411–421.

    Article  CAS  PubMed  Google Scholar 

  29. Aggarwal S, Pittenger MF . Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Séverine Lecourt was supported by research grant from Genostem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Larghero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnulf, B., Lecourt, S., Soulier, J. et al. Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia 21, 158–163 (2007). https://doi.org/10.1038/sj.leu.2404466

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404466

Keywords

This article is cited by

Search

Quick links