Skip to main content

Automated Genotyping Using the DNA MassArray™ Technology

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 187))

Abstract

The ongoing progress in establishing a reference sequence as part of the Human Genome Project (1) has revealed a new challenge: the large-scale identification and detection of intraspecies sequence variations, either between individuals or populations. The information drawn from those studies will lead to a detailed understanding of genetic and environmental contributions to the etiology of complex diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Collins, F. S., Patrinos, A., Jordan, E., Chakravarti, A., Gesteland, R., Walters, L., and the members of DOE and NIH planning groups. (1998) New goals for the U.S. human genome project: 1998–2003. Science 282, 682–689.

    Article  PubMed  CAS  Google Scholar 

  2. Botstein, D., White, D. L., Skolnick, M., and Davis, R. W. (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331.

    PubMed  CAS  Google Scholar 

  3. Weber, J. L. and May, P. E. (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44, 388–396.

    PubMed  CAS  Google Scholar 

  4. Collins, F. S., Guyer, M. S., and Chakravarti, A. (1997) Variations on a theme: Cataloging human DNA sequence variation. Science 278, 1580–1581.

    Article  PubMed  CAS  Google Scholar 

  5. Kruglyak, L. (1997) The use of a genetic map of biallelic markers in linkage studies. Nat. Genet. 17, 21–24.

    Article  PubMed  CAS  Google Scholar 

  6. Nickerson, D. A., Taylor, S. L., Weiss, K. M., Clark, A. G., Hutchinson, R. G., Stengard, J., Salomaa, V., Vartiainen, E., Boerwinkle, E., Sing, C.F. (1998) DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nature Genet. 19, 233–240.

    Article  PubMed  CAS  Google Scholar 

  7. Sun, G. L., Diaz, O., Salomon, B., von Bothme, R. (1999) Genetic diversity in Elymus caninus as revealed by isozyme, RAPD, and microsatellite markers. Genome 42, 420–431.

    Article  PubMed  CAS  Google Scholar 

  8. Gusella, J. F., Wexler, N. S., Conneally, P. M., Naylor, S. L., Anderson, M. A., Tanzi, R. E., Watkins, P. C., Ottina, K., Wallace, M. R., and Sakaguchi, A. Y. (1983) A polymorphic DNA marker genetically linked to Huntigton’s disease. Nature 306, 234–238.

    Article  PubMed  CAS  Google Scholar 

  9. Risch, N. and Merikangas, K. (1996) The future of genetic studies of complex human diseases. Science 273, 1516–1517.

    Article  PubMed  CAS  Google Scholar 

  10. Risch, N. and Teng, J. (1998) The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases. Genome Res. 8, 1273–1288.

    PubMed  CAS  Google Scholar 

  11. Larrey, D., Berson, A., Habersetzer, F., Tinel, M., Castot, A., Babany, G., Letteron, P., Freneaux, E., Loeper, J., and Dansette, P. (1989) Genetic predisposition to drug hepatotoxicity: role in hepatitis caused by amineptine, a tricyclic antidepressant. Hepatology 10, 168–173.

    Article  PubMed  CAS  Google Scholar 

  12. Collins, F. S., Brooks, L. D., and Chakravarti, A. (1998) A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 8, 1229–1231.

    PubMed  CAS  Google Scholar 

  13. Christopoulos, T. K. (1999) Nucleic acid analysis. Anal. Chem. 71, 425R–438R.

    Article  CAS  Google Scholar 

  14. Hacia, J. G. (1999) Resequencing and mutational analysis using oligonucleotide microarrays. Nat. Genetics Suppl. 21, 42–47.

    Article  CAS  Google Scholar 

  15. Karas, M. and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301.

    Article  PubMed  CAS  Google Scholar 

  16. Wu, K. J., Steding, A., and Becker, C. H. (1993) Matrix-assisted laser desorption time-of-flight mass spectrometry of oligonucleotides using 3-Hydroxypicolinic acid as an ultraviolet-sensitive matrix. Rapid Commun. Mass Spectrom. 7, 142–146.

    Article  PubMed  CAS  Google Scholar 

  17. Tang, K., Fu, D., Kötter, S., Cotter, R. J., Cantor, C. R., and Köster, H. (1995) Matrix-assisted laser desorption/ionization mass spectrometry of immobilized duplex DNA probes. Nucleic Acids Res. 23, 3126–3131.

    Article  PubMed  CAS  Google Scholar 

  18. Jurinke, C., van den Boom, D., Jacob, A., Tang, K., Wörl, R., and Köster, H. (1996) Analysis of ligase chain reaction products via matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem. 237, 174–181.

    Article  PubMed  CAS  Google Scholar 

  19. Jurinke, C., Zöllner, B., Feucht, H.-H., Jacob, A., Kirchhübel, J., Lüchow, A., van den Boom, D., Laufs, R., and Köster, H. (1996) Detection of Hepatitis B virus DNA in serum samples via nested PCR and MALDI-TOF mass spectrometry. Genet. Anal. 13, 67–71.

    PubMed  CAS  Google Scholar 

  20. Pieles, U., Zurcher, W., Schar, M., and Moser, H. E. (1993) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides. Nucl. Acids Res. 21, 3191–3196.

    Article  PubMed  CAS  Google Scholar 

  21. Köster, H., Tang, K., Fu, D. J., Braun, A., van den Boom, D., Smith, C. L., Cotter, R. J., and Cantor, C. R. (1996) A strategy for rapid and efficient DNA sequencing by mass spectrometry. Nat. Biotechnol. 14, 1123–1129.

    Article  PubMed  Google Scholar 

  22. Fu, D. J., Tang, K., Braun, A., Reuter, D., Darnhofer-Demar, B., Little, D. P., O’Donnell, M. J., Cantor, C. R., and Köster, H. (1998) sequencing exons 5 to 8 of the p53 gene by MALDI-TOF mass spectrometry. Nature Biotechnol. 16, 381–384.

    Article  CAS  Google Scholar 

  23. Berkenkamp, S., Kirpekar, F., and Hillenkamp, F. (1998) Infrared MALDI mass spectrometry of large nucleic acids. Science 281, 260–262.

    Article  PubMed  CAS  Google Scholar 

  24. Braun, A., Little, D. P., and Köster, H. (1997) Detecting CFTR gene mutations by using primer oligo base extension and mass spectrometry. Clin. Chem. 43, 1151–1158.

    PubMed  CAS  Google Scholar 

  25. Braun, A., Little, D. P., Reuter, D., Muller-Mysock, B., and Köster, H. (1997) Improved analysis of microsatellites using mass spectrometry. Genomics 46, 18–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Jurinke, C., van den Boom, D., R. Cantor, C., Köster, H. (2002). Automated Genotyping Using the DNA MassArray™ Technology. In: Theophilus, B.D.M., Rapley, R. (eds) PCR Mutation Detection Protocols. Methods in Molecular Biology, vol 187. Humana Press. https://doi.org/10.1385/1-59259-273-2:179

Download citation

  • DOI: https://doi.org/10.1385/1-59259-273-2:179

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-617-8

  • Online ISBN: 978-1-59259-273-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics