Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 7, 2015

Glycoprofiling of cancer biomarkers: Label-free electrochemical lectin-based biosensors

  • Dominika Pihíková , Peter Kasák and Jan Tkac
From the journal Open Chemistry

Abstract

Glycosylation of biomolecules is one of the most prevalent post- and co-translational modification in a human body, with more than half of all human proteins being glycosylated. Malignant transformation of cells influences glycosylation machinery resulting in subtle changes of the glycosylation pattern within the cell populations as a result of cancer. Thus, an altered terminal glycan motif on glycoproteins could provide a warning signal about disease development and progression and could be applied as a reliable biomarker in cancer diagnostics. Among all highly effective glycoprofiling tools, label-free electrochemical impedance spectroscopy (EIS)-based biosensors have emerged as especially suitable tool for point-of-care early-stage cancer detection. Herein, we highlight the current challenges in glycoprofiling of various cancer biomarkers by ultrasensitive impedimetric-based biosensors with low sample consumption, low cost fabrication and simple miniaturization. Additionally, this review provides a short introduction to the field of glycomics and lectinomics and gives a brief overview of glycan alterations in different types of cancer.

Graphical Abstract

References

[1] Ghazarian H., Idoni B., Oppenheimer S.B., A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics, Acta Histochem., 2011, 113, 236-247. 10.1016/j.acthis.2010.02.004Search in Google Scholar PubMed PubMed Central

[2] Burton D.R., Poignard P., Stanfield R.L., Wilson I.A., Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses, Science, 2012, 337, 183-186. 10.1126/science.1225416Search in Google Scholar PubMed PubMed Central

[3] Hirabayashi J., Yamada M., Kuno A., Tateno H., Lectin microarrays: concept, principle and applications, Chem. Soc. Rev., 2013, 42, 4443-4458. 10.1039/c3cs35419aSearch in Google Scholar PubMed

[4] Tong L., Baskaran G., Jones M.B., Rhee J.K., Yarema K.J., Glycosylation changes as markers for the diagnosis and treatment of human disease, Biotechnol. Gen. Eng. Rev., 2003, 20, 199-244. 10.1080/02648725.2003.10648044Search in Google Scholar PubMed

[5] Wang B., Boons G.-J. Carbohydrate recognition: Biological problems, methods and applications.: John Wiley & Sons, Inc.; 2011. 10.1002/9781118017586Search in Google Scholar

[6] Tkac J., Bertok T., Nahalka J., Gemeiner P., Perspectives in glycomics and lectin engineering, Methods in Molecular Biology, 2014, 1200, 421-445. 10.1007/978-1-4939-1292-6_37Search in Google Scholar PubMed

[7] Dalziel M., Crispin M., Scanlan C.N., Zitzmann N., Dwek R.A., Emerging principles for the therapeutic exploitation of glycosylation, Science, 2014, 343, 37. DOI: 10.1126/ science.1235681. 10.1126/science.1235681Search in Google Scholar PubMed

[8] Choi E., Hill M.M., Targeted high-throughput glycoproteomics for glyco-biomarker discovery, Integrative Proteomics. InTech, 2012. 10.5772/28722Search in Google Scholar

[9] Varki A., Cummings R.D., Esko J.D., Freeze H.H., Stanley P., Bertozzi C.R., et al. Essential of glycobiology. 2nd ed: Cold Spring Harbor Laboratory Press (NY); 2009. Search in Google Scholar

[10] Nelson D.L., Cox M.M. Carbohydrates and glycobiology, Chapter 7 in Lehninger principles of biochemistry. 4 ed: W.H. Freeman & Company; 2004. Search in Google Scholar

[11] Sharon N., Lis H., Carbohydrates in cell recognition, Sci. Am., 1993, 268, 82-89. 10.1038/scientificamerican0193-82Search in Google Scholar PubMed

[12] Cummings R.D., Pierce J.M., The challenge and promise of glycomics, Chem. Biol., 2014, 21, 1-15. 10.1016/j.chembiol.2013.12.010Search in Google Scholar PubMed PubMed Central

[13] Reuel N.F., Mu B., Zhang J., Hinckley A., Strano M.S., Nanoengineered glycan sensors enabling native glycoprofiling for medicinal applications: towards profiling glycoproteins without labeling or liberation steps, Chem. Soc. Rev., 2012, 41, 5744-5779. 10.1039/c2cs35142kSearch in Google Scholar

[14] Alley W.R., Mann B.F., Novotny M.V., High-sensitivity analytical approaches for the structural characterization of glycoproteins, Chem. Rev., 2013, 113, 2668-2732. 10.1021/cr3003714Search in Google Scholar

[15] Arthur C.M., Cummings R.D., Stowell S.R., Using glycan microarrays to understand immunity, Curr. Opin. Chem. Biol., 2014, 18, 55-61. 10.1016/j.cbpa.2013.12.017Search in Google Scholar

[16] Geissner A., Anish C., Seeberger P.H., Glycan arrays as tools for infectious disease research, Curr. Opin. Chem. Biol., 2014, 18, 38-45. 10.1016/j.cbpa.2013.11.013Search in Google Scholar

[17] Gemeiner P., Mislovicova D., Tkac J., Svitel J., Patoprsty V., Hrabarova E., et al., Lectinomics II. A highway to biomedical/ clinical diagnostics, Biotechnol. Adv., 2009, 27, 1-15. Search in Google Scholar

[18] Katrlik J., Svitel J., Gemeiner P., Kozar T., Tkac J., Glycan and lectin microarrays for glycomics and medicinal applications, Med. Res. Rev., 2010, 30, 394-418. 10.1002/med.20195Search in Google Scholar

[19] Palma A.S., Feizi T., Childs R.A., Chai W., Liu Y., The neoglycolipid (NGL)-based oligosaccharide microarray system poised to decipher the meta-glycome, Curr. Opin. Chem. Biol., 2014, 18, 87-94. 10.1016/j.cbpa.2014.01.007Search in Google Scholar

[20] Park S., Gildersleeve J.C., Blixt O., Shin I., Carbohydrate microarrays, Chem. Soc. Rev., 2013, 42, 4310-4326. 10.1039/C2CS35401BSearch in Google Scholar

[21] Sharon N., Lis H., History of lectins: from hemagglutinins to biological recognition molecules, Glycobiology, 2004, 14, 53R- 62R. 10.1093/glycob/cwh122Search in Google Scholar

[22] Nilsson C.L. Lectins: Analytical technologies. Oxford: Elsevier; 2007. Search in Google Scholar

[23] Boyd W.C., The protein of the immune reactions, The Proteins, 1954, 2, 756-844. 10.1016/B978-0-12-395721-4.50008-1Search in Google Scholar

[24] Lis H., Sharon N., Lectin-carbohydrate interactions, Curr. Opin. Struct. Biol., 1991, 1, 741-749. 10.1016/0959-440X(91)90173-QSearch in Google Scholar

[25] Mody R., Joshi S., Chaney W., Use of lectins as diagnostic and therapeutic tools for cancer, J. Pharmacol. Toxicol. Methods, 1995, 33, 1-10. 10.1016/1056-8719(94)00052-6Search in Google Scholar

[26] Arnaud J., Audfray A., Imberty A., Binding sugars: from natural lectins to synthetic receptors and engineered neolectins, Chem. Soc. Rev., 2013, 42, 4798-4813. 10.1039/c2cs35435gSearch in Google Scholar

[27] Minko T., Drug targeting to the colon with lectins and neoglycoconjugates, Adv. Drug Deliv. Rev., 2004, 56, 491-509. 10.1016/j.addr.2003.10.017Search in Google Scholar

[28] Varrot A., Blanchard B., Imberty A. Lectin binding and its structural basic. In: Wang B, Boons G-J, editors. Carbohydrate Recognition: Biological Problems, Methods and Applications: Wiley; 2011. 10.1002/9781118017586.ch13Search in Google Scholar

[29] Goldstein I.J., Poretz R.D. Isolation, physicochemical characterization, and carbohydrate-binding specificity. The Lectins: Properties, Functions, and Applications in Biology and Medicine: Orlando: Academic Press Inc.; 1986. p. 33-243. 10.1016/B978-0-12-449945-4.50007-5Search in Google Scholar

[30] Ieth C., Lütteke T., Frank M. Bioinformatics for glycobioogy and glycomics: an introduction: Wiley-Blackwell; 2009. Search in Google Scholar

[31] Drake P.M., Cho W., Li B., Prakobphol A., Johansen E., Anderson N.L., et al., Sweetening the pot: adding glycosylation to the biomarker discovery equation, Clin. Chem., 2010, 56, 223-236. 10.1373/clinchem.2009.136333Search in Google Scholar

[32] Yamazaki N., Kojima S., Bovin N.V., Andre S., Gabius S., Gabius H.J., Endogenous lectins as targets for drug delivery, Adv. Drug Deliv. Rev., 2000, 43, 225-244. 10.1016/S0169-409X(00)00071-5Search in Google Scholar

[33] Hsu K.L., Mahal L.K., A lectin microarray approach for the rapid analysis of bacterial glycans, Nat. Protocols, 2006, 1, 543-549. 10.1038/nprot.2006.76Search in Google Scholar PubMed

[34] Hirabayashi J., Glycome ‚fingerprints‘ provide definitive clues to HIV origins, Nat. Chem. Biol., 2009, 5, 198-199. 10.1038/nchembio0409-198Search in Google Scholar PubMed

[35] Mislovičová D., Gemeiner P., Kozarova A., Kožár T., Lectinomics I. Relevance of exogenous plant lectins in biomedical diagnostics, Biologia, 2009, 64, 1-19. 10.2478/s11756-009-0029-3Search in Google Scholar

[36] Bertók T., Šefčovičová J., Gemeiner P., Tkáč J., Lektinomika: Nástroj pre klinickú diagnostiku, Chem. Listy, 2012, 106, 10-26. Search in Google Scholar

[37] Bertók T., Katrlík J., Gemeiner P., Tkac J., Electrochemical lectin based biosensors as a label-free tool in glycomics, Microchim. Acta, 2012, 180, 1-13. 10.1007/s00604-012-0876-4Search in Google Scholar

[38] https://www.vectorlabs.com/, 2012, Vector Laboratories. Search in Google Scholar

[39] Dube D.H., Bertozzi C.R., Glycans in cancer and inflammation- -potential for therapeutics and diagnostics, Nat. Rev. Drug Discov., 2005, 4, 477-488. 10.1038/nrd1751Search in Google Scholar

[40] Svarovsky S.A., Joshi L., Cancer glycan biomarkers and their detection – past, present and future, Anal. Methods, 2014, 6, 3918-3936. 10.1039/C3AY42243GSearch in Google Scholar

[41] Meezan E., Wu H.C., Black P.H., Robbins P.W., Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. II. Separation of glycoproteins and glycopeptides by Sephadex chromatography, Biochemistry, 1969, 8, 2518-2524. 10.1021/bi00834a039Search in Google Scholar

[42] Kim E.H., Misek D.E., Glycoproteomics-based identification of cancer biomarkers, Int. J. Proteom., 2011, 2011, 601937. 10.1155/2011/601937Search in Google Scholar

[43] Kim Y.J., Varki A., Perspectives on the significance of altered glycosylation of glycoproteins in cancer, Glycoconjugate J., 1997, 14, 569-576. 10.1023/A:1018580324971Search in Google Scholar

[44] Fernandes B., Sagman U., Auger M., Demetrio M., Dennis J.W., Beta 1-6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia, Cancer Res., 1991, 51, 718-723. Search in Google Scholar

[45] Seelentag W.K., Li W.P., Schmitz S.F., Metzger U., Aeberhard P., Heitz P.U., et al., Prognostic value of beta1,6-branched oligosaccharides in human colorectal carcinoma, Cancer Res., 1998, 58, 5559-5564. Search in Google Scholar

[46] Burchell J., Poulsom R., Hanby A., Whitehouse C., Cooper L., Clausen H., et al., An alpha2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas, Glycobiology, 1999, 9, 1307-1311. 10.1093/glycob/9.12.1307Search in Google Scholar

[47] Peracaula R., Tabares G., Royle L., Harvey D.J., Dwek R.A., Rudd P.M., et al., Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins, Glycobiology, 2003, 13, 457-470. 10.1093/glycob/cwg041Search in Google Scholar

[48] Thompson S., Dargan E., Turner G.A., Increased fucosylation and other carbohydrate changes in haptoglobin in ovarian cancer, Cancer Lett., 1992, 66, 43-48. 10.1016/0304-3835(92)90278-4Search in Google Scholar

[49] Misonou Y., Shida K., Korekane H., Seki Y., Noura S., Ohue M., et al., Comprehensive clinico-glycomic study of 16 colorectal cancer specimens: Elucidation of aberrant glycosylation and its mechanistic causes in colorectal cancer cells, J. Proteome Res., 2009, 8, 2990-3005. 10.1021/pr900092rSearch in Google Scholar PubMed

[50] Aubert M., Panicot L., Crotte C., Gibier P., Lombardo D., Sadoulet M.O., et al., Restoration of alpha(1,2) fucosyltransferase activity decreases adhesive and metastatic properties of human pancreatic cancer cells, Cancer Res., 2000, 60, 1449-1456. Search in Google Scholar

[51] Nakamori S., Kameyama M., Imaoka S., Furukawa H., Ishikawa O., Sasaki Y., et al., Increased expression of sialyl Lewisx antigen correlates with poor survival in patients with colorectal carcinoma: clinicopathological and immunohistochemical study, Cancer Res., 1993, 53, 3632-3637. Search in Google Scholar

[52] Atkinson A.J., Colburn W.A., DeGruttola V.G., DeMets D.L., Downing G.J., Hoth D.F., et al., Biomarkers and surrogate endpoints: preferred definitions and conceptual framework, Clin. Pharm. Therap., 2001, 69, 89-95. 10.1067/mcp.2001.113989Search in Google Scholar PubMed

[53] Majkić-Singh N., What is a biomarker? From its discovery to clinical application, J. Med. Biochem., 2011, 30. 10.2478/v10011-011-0029-zSearch in Google Scholar

[54] Li J., Li S., Yang C.F., Electrochemical biosensors for cancer biomarker detection, Electroanal., 2012, 24, 2213-2229. 10.1002/elan.201200447Search in Google Scholar

[55] Etzioni R., Urban N., Ramsey S., McIntosh M., Schwartz S., Reid B., et al., The case for early detection, Nat. Rev. Cancer, 2003, 3, 243-252. 10.1038/nrc1041Search in Google Scholar PubMed

[56] Saldova R., Royle L., Radcliffe C.M., Abd Hamid U.M., Evans R., Arnold J.N., et al., Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG, Glycobiology, 2007, 17, 1344-1356. 10.1093/glycob/cwm100Search in Google Scholar PubMed

[57] Turner G.A., Goodarzi M.T., Thompson S., Glycosylation of alpha-1-proteinase inhibitor and haptoglobin in ovarian cancer: evidence for two different mechanisms, Glycoconjugate J., 1995, 12, 211-218. 10.1007/BF00731322Search in Google Scholar PubMed

[58] Chen K., Gentry-Maharaj A., Burnell M., Steentoft C., Marcos- Silva L., Mandel U., et al., Microarray glycoprofiling of CA125 improves differential diagnosis of ovarian cancer, J. Proteome Res., 2013, 12, 1408-1418. 10.1021/pr3010474Search in Google Scholar PubMed

[59] Saldova R., Struwe W., Wynne K., Elia G., Duffy M., Rudd P., Exploring the glycosylation of serum CA125, Int. J. Mol. Sci., 2013, 14, 15636-15654. 10.3390/ijms140815636Search in Google Scholar PubMed PubMed Central

[60] Cazet A., Julien S., Bobowski M., Burchell J., Delannoy P., Tumour-associated carbohydrate antigens in breast cancer, Breast Cancer Res., 2010, 12, 204. 10.1186/bcr2577Search in Google Scholar PubMed PubMed Central

[61] Park S.Y., Yoon S.J., Jeong Y.T., Kim J.M., Kim J.Y., Bernert B., et al., N-glycosylation status of beta-haptoglobin in sera of patients with colon cancer, chronic inflammatory diseases and normal subjects, Int. J. Cancer, 2010, 126, 142-155. 10.1002/ijc.24685Search in Google Scholar PubMed

[62] Vercoutter-Edouart A.S., Slomianny M.C., Dekeyzer-Beseme O., Haeuw J.F., Michalski J.C., Glycoproteomics and glycomics investigation of membrane N-glycosylproteins from human colon carcinoma cells, Proteomics, 2008, 8, 3236-3256. 10.1002/pmic.200800151Search in Google Scholar PubMed

[63] Saeland E., Belo A.I., Mongera S., van Die I., Meijer G.A., van Kooyk Y., Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients, Int. J. Cancer, 2012, 131, 117-128. 10.1002/ijc.26354Search in Google Scholar PubMed

[64] Zhao Y.P., Ruan C.P., Wang H., Hu Z.Q., Fang M., Gu X., et al., Identification and assessment of new biomarkers for colorectal cancer with serum N-glycan profiling, Cancer, 2012, 118, 639- 650. 10.1002/cncr.26342Search in Google Scholar PubMed

[65] Qiu Y., Patwa T.H., Xu L., Shedden K., Misek D.E., Tuck M., et al., Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot, J. Proteome Res., 2008, 7, 1693-1703. 10.1021/pr700706sSearch in Google Scholar PubMed PubMed Central

[66] Li C., Simeone D.M., Brenner D.E., Anderson M.A., Shedden K.A., Ruffin M.T., et al., Pancreatic cancer serum detection using a lectin/glyco-antibody array method, J. Proteome Res., 2009, 8, 483-492. 10.1021/pr8007013Search in Google Scholar PubMed PubMed Central

[67] Zhao J., Patwa T.H., Qiu W., Shedden K., Hinderer R., Misek D.E., et al., Glycoprotein microarrays with multi-lectin detection: unique lectin binding patterns as a tool for classifying normal, chronic pancreatitis and pancreatic cancer sera, J. Proteome Res., 2007, 6, 1864-1874. 10.1021/pr070062pSearch in Google Scholar PubMed

[68] Miyoshi E., Nakano M., Fucosylated haptoglobin is a novel marker for pancreatic cancer: detailed analyses of oligosaccharide structures, Proteomics, 2008, 8, 3257-3262. 10.1002/pmic.200800046Search in Google Scholar PubMed

[69] Fujimura T., Shinohara Y., Tissot B., Pang P.C., Kurogochi M., Saito S., et al., Glycosylation status of haptoglobin in sera of patients with prostate cancer vs. benign prostate disease or normal subjects, Int. J. Cancer, 2008, 122, 39-49. 10.1002/ijc.22958Search in Google Scholar PubMed

[70] Ohyama C., Hosono M., Nitta K., Oh-eda M., Yoshikawa K., Habuchi T., et al., Carbohydrate structure and differential binding of prostate specific antigen to Maackia amurensis lectin between prostate cancer and benign prostate hypertrophy, Glycobiology, 2004, 14, 671-679. 10.1093/glycob/cwh071Search in Google Scholar PubMed

[71] Takeya A., Hosomi O., Nishijima H., Ohe Y., Sugahara K., Sagi M., et al., Presence of beta-linked GalNAc residues on N-glycans of human thyroglobulin, Life Sci., 2007, 80, 538-545. 10.1016/j.lfs.2006.10.004Search in Google Scholar PubMed

[72] Yamamoto K., Tsuji T., Tarutani O., Osawa T., Structural changes of carbohydrate chains of human thyroglobulin accompanying malignant transformations of thyroid glands, Eur. J. Biochem., 1984, 143, 133-144. 10.1111/j.1432-1033.1984.tb08352.xSearch in Google Scholar PubMed

[73] Naitoh A., Aoyagi Y., Asakura H., Highly enhanced fucosylation of serum glycoproteins in patients with hepatocellular carcinoma, J. Gastroenter. Hepatol., 1999, 14, 436-445. 10.1046/j.1440-1746.1999.01882.xSearch in Google Scholar PubMed

[74] Hoagland L.F.t., Campa M.J., Gottlin E.B., Herndon J.E., 2nd, Patz E.F., Jr., Haptoglobin and posttranslational glycan-modified derivatives as serum biomarkers for the diagnosis of nonsmall cell lung cancer, Cancer, 2007, 110, 2260-2268. 10.1002/cncr.23049Search in Google Scholar PubMed

[75] Gutman S., Kessler L.G., The US Food and Drug Administration perspective on cancer biomarker development, Nat. Rev. Cancer, 2006, 6, 565-571. 10.1038/nrc1911Search in Google Scholar PubMed

[76] Badr H.A., Alsadek D.M., Darwish A.A., Elsayed A.I., Bekmanov B.O., Khussainova E.M., et al., Lectin approaches for glycoproteomics in FDA-approved cancer biomarkers, Expert Rev. Proteomics, 2014, 11, 227-236. 10.1586/14789450.2014.897611Search in Google Scholar PubMed

[77] Balog C.I., Stavenhagen K., Fung W.L., Koeleman C.A., McDonnell L.A., Verhoeven A., et al., N-glycosylation of colorectal cancer tissues: a liquid chromatography and mass spectrometry-based investigation, Mol. Cell. Proteomics, 2012, 11, 571-585. 10.1074/mcp.M111.011601Search in Google Scholar PubMed PubMed Central

[78] Schmidt M.M., Thurber G.M., Wittrup K.D., Kinetics of anticarcinoembryonic antigen antibody internalization: effects of affinity, bivalency, and stability, Cancer Immunol. Immunother., 2008, 57, 1879-1890. 10.1007/s00262-008-0518-1Search in Google Scholar PubMed PubMed Central

[79] Ahn Y.H., Ji E.S., Shin P.M., Kim K.H., Kim Y.-S., Ko J.H., et al., A multiplex lectin-channel monitoring method for human serum glycoproteins by quantitative mass spectrometry, Analyst, 2012, 137, 691-703. 10.1039/C1AN15775BSearch in Google Scholar PubMed

[80] Cheng T.M., Lee T.C., Tseng S.H., Chu H.L., Pan J.P., Chang C.C., Human haptoglobin phenotypes and concentration determination by nanogold-enhanced electrochemical impedance spectroscopy, Nanotechnology, 2011, 22, 245105. 10.1088/0957-4484/22/24/245105Search in Google Scholar PubMed

[81] Thompson S., Turner G.A., Elevated levels of abnormallyfucosylated haptoglobins in cancer sera, Br. J. Cancer, 1987, 56, 605-610. 10.1038/bjc.1987.249Search in Google Scholar PubMed PubMed Central

[82] Zhang B., Cai F.F., Zhong X.Y., An overview of biomarkers for the ovarian cancer diagnosis, Eur. J. Obstetrics Gynec. Reprod. Biol., 2011, 158, 119-123. 10.1016/j.ejogrb.2011.04.023Search in Google Scholar PubMed

[83] World Health Organization I.A.f.R.o.C. Globocan 2012. Available from: http://globocan.iarc.fr/Default.aspx. Search in Google Scholar

[84] World Health Organization I.A.f.R.o.C. European Cancer Observatory 2012. Available from: http://eu-cancer.iarc.fr/. Search in Google Scholar

[85] Christiansen M.N., Chik J., Lee L., Anugraham M., Abrahams J.L., Packer N.H., Cell surface protein glycosylation in cancer, Proteomics, 2014, 14, 525-546. 10.1002/pmic.201300387Search in Google Scholar PubMed

[86] Bhoola S., Hoskins W.J., Diagnosis and management of epithelial ovarian cancer, Obstetrics Gynecol., 2006, 107, 1399-1410. 10.1097/01.AOG.0000220516.34053.48Search in Google Scholar PubMed

[87] Eltabbakh G.H., Mount S.L., Beatty B., Simmons-Arnold L., Cooper K., Morgan A., Factors associated with cytoreducibility among women with ovarian carcinoma, Gynecol. Oncol., 2004, 95, 377-383. 10.1016/j.ygyno.2004.07.045Search in Google Scholar PubMed

[88] Biskup K., Braicu E.I., Sehouli J., Fotopoulou C., Tauber R., Berger M., et al., Serum glycome profiling: A biomarker for diagnosis of ovarian cancer, J. Proteome Res., 2013, 12, 4056-4063. 10.1021/pr400405xSearch in Google Scholar PubMed

[89] Park C.W., Jo Y., Jo E.J., Enhancement of ovarian tumor classification by improved reproducibility in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of serum glycans, Anal. Biochem., 2013, 443, 58-65. 10.1016/j.ab.2013.07.048Search in Google Scholar PubMed

[90] Moore R.G., McMeekin D.S., Brown A.K., DiSilvestro P., Miller M.C., Allard W.J., et al., A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass, Gynecol. Oncol., 2009, 112, 40-46. 10.1016/j.ygyno.2008.08.031Search in Google Scholar PubMed PubMed Central

[91] Ghasemi N., Ghobadzadeh S., Zahraei M., Mohammadpour H., Bahrami S., Ganje M.B., et al., HE4 combined with CA125: favorable screening tool for ovarian cancer, Med. Oncol., 2014, 31, 808. 10.1007/s12032-013-0808-0Search in Google Scholar PubMed

[92] La Belle J.T., Fairchild A., Demirok U.K., Verma A., Method for fabrication and verification of conjugated nanoparticle-antibody tuning elements for multiplexed electrochemical biosensors, Methods, 2013, 61, 39-51. 10.1016/j.ymeth.2013.04.015Search in Google Scholar PubMed

[93] Yurkovetsky Z., Skates S., Lomakin A., Nolen B., Pulsipher T., Modugno F., et al., Development of a multimarker assay for early detection of ovarian cancer, J. Clin. Oncol., 2010, 28, 2159-2166. 10.1200/JCO.2008.19.2484Search in Google Scholar PubMed PubMed Central

[94] Vermassen T., Speeckaert M.M., Lumen N., Rottey S., Delanghe J.R., Glycosylation of prostate specific antigen and its potential diagnostic applications, Clin. Chim. Acta, 2012, 413, 1500-1505. 10.1016/j.cca.2012.06.007Search in Google Scholar

[95] Cary K.C., Cooperberg M.R., Biomarkers in prostate cancer surveillance and screening: past, present, and future, Ther. Adv. Urol., 2013, 5, 318-329. 10.1177/1756287213495915Search in Google Scholar

[96] Hori S., Blanchet J.S., McLoughlin J., From prostate-specific antigen (PSA) to precursor PSA (proPSA) isoforms: a review of the emerging role of proPSAs in the detection and management of early prostate cancer, BJU Int., 2013, 112, 717-728. 10.1111/j.1464-410X.2012.11329.xSearch in Google Scholar

[97] Velonas V.M., Woo H.H., Remedios C.G., Assinder S.J., Current status of biomarkers for prostate cancer, Int. J. Mol. Sci., 2013, 14, 11034-11060. 10.3390/ijms140611034Search in Google Scholar

[98] Crawford E.D., Ventii K., Shore N.D., New biomarkers in prostate cancer, Oncology, 2014, 28, 135-142. Search in Google Scholar

[99] Okada T., Sato Y., Kobayashi N., Sumida K., Satomura S., Matsuura S., et al., Structural characteristics of the N-glycans of two isoforms of prostate-specific antigens purified from human seminal fluid, Biochim. Biophys. Acta, 2001, 1525, 149- 160. 10.1016/S0304-4165(00)00182-3Search in Google Scholar

[100] Gilgunn S., Conroy P.J., Saldova R., Rudd P.M., O‘Kennedy R.J., Aberrant PSA glycosylation--a sweet predictor of prostate cancer, Nat. Rev. Urol., 2013, 10, 99-107. 10.1038/nrurol.2012.258Search in Google Scholar PubMed

[101] Kuno A., Kato Y., Matsuda A., Kaneko M.K., Ito H., Amano K., et al., Focused differential glycan analysis with the platform antibody-assisted lectin profiling for glycan-related biomarker verification, Mol. Cell. Proteomics : MCP, 2009, 8, 99-108. 10.1074/mcp.M800308-MCP200Search in Google Scholar PubMed

[102] Duverger E., Lamerant-Fayel N., Frison N., Monsigny M., Carbohydrate-lectin interactions assayed by SPR, Methods Mol. Biol., 2010, 627, 157-178. 10.1007/978-1-60761-670-2_10Search in Google Scholar PubMed

[103] Safina G., Duran Iu B., Alasel M., Danielsson B., Surface plasmon resonance for real-time study of lectin-carbohydrate interactions for the differentiation and identification of glycoproteins, Talanta, 2011, 84, 1284-1290. 10.1016/j.talanta.2011.01.030Search in Google Scholar PubMed

[104] Choi Y.E., Kwak J.W., Park J.W., Nanotechnology for early cancer detection, Sensors, 2010, 10, 428-455. 10.3390/s100100428Search in Google Scholar PubMed PubMed Central

[105] Qian X., Peng X.-H., Ansari D.O., Yin-Goen Q., Chen G.Z., Shin D.M., et al., In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags, Nat. Biotechnol., 2008, 26, 83-90. 10.1038/nbt1377Search in Google Scholar PubMed

[106] Liu X., Dai Q., Austin L., Coutts J., Knowles G., Zou J., et al., A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering, J. Am. Chem. Soc., 2008, 130, 2780-2782. 10.1021/ja711298bSearch in Google Scholar PubMed

[107] Gao X., Cui Y., Levenson R.M., Chung L.W.K., Nie S., In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol., 2004, 22, 969-976. 10.1038/nbt994Search in Google Scholar PubMed

[108] Gao X., Yang L., Petros J.A., Marshall F.F., Simons J.W., Nie S., In vivo molecular and cellular imaging with quantum dots, Curr. Opin. Biotechnol., 2005, 16, 63-72. 10.1016/j.copbio.2004.11.003Search in Google Scholar PubMed

[109] Iijima S., Helical microtubules of graphitic carbon, Nature, 1991, 354, 56-58. 10.1038/354056a0Search in Google Scholar

[110] Iijima S., Ichihashi T., Single-shell carbon nanotubes of 1-nm diameter, Nature, 1993, 363, 603-605. 10.1038/363603a0Search in Google Scholar

[111] Geim A.K., Novoselov K.S., The rise of graphene, Nat. Mater., 2007, 6, 183-191. 10.1038/nmat1849Search in Google Scholar PubMed

[112] Geim A.K., Graphene: status and prospects, Science, 2009, 324, 1530-1534. 10.1126/science.1158877Search in Google Scholar PubMed

[113] Novoselov K.S., Geim A.K., Morozov S., Jiang D., Zhang Y., Dubonos S., et al., Electric field effect in atomically thin carbon films, Science, 2004, 306, 666-669. 10.1126/science.1102896Search in Google Scholar PubMed

[114] Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S., The chemistry of graphene oxide, Chem. Soc. Rev., 2010, 39, 228-240. 10.1039/B917103GSearch in Google Scholar PubMed

[115] Reichardt N.C., Martín-Lomas M., Penadés S., Glyconanotechnology, Chem. Soc. Rev., 2013, 42, 4358-4376. 10.1039/c2cs35427fSearch in Google Scholar PubMed

[116] Park D.W., Kim Y.H., Kim B.S., So H.M., Won K., Lee J.O., et al., Detection of tumor markers using single-walled carbon nanotube field effect transistors, J. Nanosci. Nanotechnol., 2006, 6, 3499-3502. 10.1166/jnn.2006.17969Search in Google Scholar

[117] Kerman K., Saito M., Tamiya E., Yamamura S., Takamura Y., Nanomaterial-based electrochemical biosensors for medical applications, Trends Anal. Chem., 2008, 27, 585-592. 10.1016/j.trac.2008.05.004Search in Google Scholar

[118] Perumal V., Hashum U., Advances in biosensors: Principle, architecture and applications, J. Appl. Biomed., 2014, 12, 1-15. 10.1016/j.jab.2013.02.001Search in Google Scholar

[119] Lee S.Y., Hwang S.Y. Electrical and electrochemical immunosensor for cancer study. Biosensors and Cancer: Science Publishers; 2012. p. 125-145. Search in Google Scholar

[120] Yun Y.-H., Eteshola E., Bhattacharya A., Dong Z., Shim J.-S., Conforti L., et al., Tiny medicine: Nanomaterial-based biosensors, Sensors, 2009, 9, 9275-9299. 10.3390/s91109275Search in Google Scholar PubMed PubMed Central

[121] Xu J.J., Zhao W.W., Song S., Fan C., Chen H.Y., Functional nanoprobes for ultrasensitive detection of biomolecules: an update, Chem. Soc. Rev., 2014, 43, 1601-1611. 10.1039/C3CS60277JSearch in Google Scholar PubMed

[122] Wang Y., Qu K., Tang L., Li Z., Moore E., Zeng X., et al., Nanomaterials in carbohydrate biosensors, Trends Anal. Chem., 2014, 58, 54-70. 10.1016/j.trac.2014.03.005Search in Google Scholar

[123] Mu B., Zhang J., McNicholas T.P., Reuel N.F., Kruss S., Strano M.S., Recent advances in molecular recognition based on nanoengineered platforms, Acc. Chem. Res., 2014, 47, 979-988. 10.1021/ar400162wSearch in Google Scholar PubMed

[124] Kluková Ľ., Bertók T., Kasák P., Tkac J., Nanoscale controlled architecture for development of ultrasensitive lectin biosensors applicable in glycomics, Anal. Methods, 2014, 6, 4922-4931. 10.1039/c4ay00495gSearch in Google Scholar PubMed PubMed Central

[125] Katz E., Willner I., Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA sensors, and enzyme biosensors, Electroanal., 2003, 15, 913- 947. 10.1002/elan.200390114Search in Google Scholar

[126] Thévenot D.R., Toth K., Durst R.A., Wilson G.S., Electrochemical biosensors: recommended definitions and classification, Biosens. Bioelectron., 2001, 16, 121-131. 10.1016/S0956-5663(01)00115-4Search in Google Scholar

[127] Bertok T., Šefčovičová J., Gemeiner P., Tkac J., Vývoj a súčasné trendy pri príprave nanoštrukturovaných biosenzorov, Chem. Listy, 2012, 106, 174-181. Search in Google Scholar

[128] Tkac J., Davis J.J., An optimised electrode pre-treatment for SAM formation on polycrystalline gold, J. Electroanal. Chem., 2008, 621, 117-120. 10.1016/j.jelechem.2008.04.010Search in Google Scholar

[129] Cao G., Wang Y. Nanostructures and nanomaterials: Synthesis, properties, and applications. 2 ed: World Scientific Publishing; 2011. 10.1142/7885Search in Google Scholar

[130] Alvarez T.V. Highly sensitive nanomaterial based electrochemical biosensor: Arizona State University; 2009. Search in Google Scholar

[131] Zhou Y., Xu Z., Wang M., Meng X., Yin H., Electrochemical immunoassay platform for high sensitivity detection of indole- 3-acetic acid, Electrochim. Acta, 2013, 96, 66-73. 10.1016/j.electacta.2013.02.046Search in Google Scholar

[132] Sluyters-Rehbach M., Sluyters J.H., On the impedance of galvanic cells XXVIII. The frequency-dependence of the electrode admittance for systems with first-order homogeneous chemical reactions and reactant adsorption occurring simultaneously, J. Electroanal. Chem. Interf. Electrochem., 1969, 23, 457-474. 10.1016/S0022-0728(69)80241-XSearch in Google Scholar

[133] Ershler B., Investigation of electrode reactions by the method of charging-curves and with the aid of alternating currents, Discuss. Faraday Soc., 1947, 1, 269-277. 10.1039/df9470100269Search in Google Scholar

[134] Hu Y., Zuo P., Ye B.C., Label-free electrochemical impedance spectroscopy biosensor for direct detection of cancer cells based on the interaction between carbohydrate and lectin, Biosens. Bioelectron., 2013, 43, 79-83. 10.1016/j.bios.2012.11.028Search in Google Scholar

[135] Bertok T., Sediva A., Katrlik J., Gemeiner P., Mikula M., Nosko M., et al., Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles, Talanta, 2013, 108, 11-18. 10.1016/j.talanta.2013.02.052Search in Google Scholar

[136] Suni I.I., Impedance methods for electrochemical sensors using nanomaterials, Trends Anal. Chem., 2008, 27, 604-611. 10.1016/j.trac.2008.03.012Search in Google Scholar

[137] Scouten W.H., Luong J.H.T., Stephen Brown R., Enzyme or protein immobilization techniques for applications in biosensor design, Trends Biotechnol., 1995, 13, 178-185. 10.1016/S0167-7799(00)88935-0Search in Google Scholar

[138] Li S., Singh J., Li H., Banerjee I.A. Biosensor Nanomaterials: Wiley-VCH Verlag GmbH&Co. ; 2011. 10.1002/9783527635160Search in Google Scholar

[139] Putzbach W., Ronkainen N., Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review, Sensors, 2013, 13, 4811-4840. 10.3390/s130404811Search in Google Scholar PubMed PubMed Central

[140] Davis J.J., Tkac J., Humphreys R., Buxton A.T., Lee T.A., Ko Ferrigno P., Peptide aptamers in label-free protein detection: 2. Chemical optimization and detection of distinct protein isoforms, Anal. Chem., 2009, 81, 3314-3320. 10.1021/ac802513nSearch in Google Scholar PubMed

[141] Davis J.J., Tkac J., Laurenson S., Ferrigno P.K., Peptide aptamers in label-free protein detection: 1. Characterization of the immobilized scaffold, Anal. Chem., 2007, 79, 1089-1096. 10.1021/ac061863zSearch in Google Scholar PubMed

[142] Ericsson E. Biosensor surface chemistry for oriented protein immobilization and biochip patterning: Linköping University; 2013. Search in Google Scholar

[143] Love J.C., Estroff L.A., Kriebel J.K., Nuzzo R.G., Whitesides G.M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev., 2005, 105, 1103-1170. 10.1021/cr0300789Search in Google Scholar PubMed

[144] Gooding J.J., Mearns F., Yang W., Liu J., Self-assembled monolayers into the 21st century: Recent advances and applications, Electroanal., 2003, 15, 81-96. 10.1002/elan.200390017Search in Google Scholar

[145] Hushegyi A., Tkac J., Are glycan biosensors an alternative to glycan microarrays?, Anal. Methods, 2014, 6, 6610-6620. 10.1039/C4AY00692ESearch in Google Scholar PubMed PubMed Central

[146] Ron H., Matlis S., Rubinstein I., Self-assembled monolayers on oxidized metals. 2. gold surface oxidative pretreatment, monolayer properties, and depression formation, Langmuir, 1998, 14, 1116-1121. 10.1021/la970785vSearch in Google Scholar

[147] Bertok T., Gemeiner P., Mikula M., Gemeiner P., Tkac J., Ultrasensitive impedimetric lectin based biosensor for glycoproteins containing sialic acid, Microchim. Acta, 2013, 180, 151-159. 10.1007/s00604-012-0902-6Search in Google Scholar PubMed PubMed Central

[148] Fischer L.M., Tenje M., Heiskanen A.R., Masuda N., Castillo J., Bentien A., et al., Gold cleaning methods for electrochemical detection applications, Microelectronic Eng., 2009, 86, 1282- 1285. 10.1016/j.mee.2008.11.045Search in Google Scholar

[149] Chen S., LaRoche T., Hamelinck D., Bergsma D., Brenner D., Simeone D., et al., Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays, Nat. Methods, 2007, 4, 437-444. 10.1038/nmeth1035Search in Google Scholar PubMed

[150] Haab B.B., Antibody-lectin sandwich arrays for biomarker and glycobiology studies, Expert Rev. Proteomics, 2010, 7, 9-11. 10.1586/epr.09.102Search in Google Scholar PubMed PubMed Central

[151] Chen H., Jiang C., Yu C., Zhang S., Liu B., Kong J., Protein chips and nanomaterials for application in tumor marker immunoassays, Biosens. Bioelectron., 2009, 24, 3399-3411. 10.1016/j.bios.2009.03.020Search in Google Scholar PubMed

[152] La Belle J.T., Gerlach J.Q., Svarovsky S., Joshi L., Label-free impedimetric detection of glycan−lectin interactions, Anal. Chem., 2007, 79, 6959-6964. 10.1021/ac070651eSearch in Google Scholar PubMed

[153] Yang H., Li Z., Wei X., Huang R., Qi H., Gao Q., et al., Detection and discrimination of alpha-fetoprotein with a label-free electrochemical impedance spectroscopy biosensor array based on lectin functionalized carbon nanotubes, Talanta, 2013, 111, 62-68. 10.1016/j.talanta.2013.01.060Search in Google Scholar PubMed

[154] Oliveira M.D.L., Correia M.T.S., Diniz F.B., A novel approach to classify serum glycoproteins from patients infected by dengue using electrochemical impedance spectroscopy analysis, Synth. Met., 2009, 159, 2162-2164. 10.1016/j.synthmet.2009.09.022Search in Google Scholar

[155] Nagaraj V.J., Aithal S., Eaton S., Bothara M., Wiktor P., Prasad S., NanoMonitor: a miniature electronic biosensor for glycan biomarker detection, Nanomedicine, 2010, 5, 369-378. 10.2217/nnm.10.11Search in Google Scholar PubMed

[156] Bertok T., Klukova L., Sediva A., Kasak P., Semak V., Micusik M., et al., Ultrasensitive impedimetric lectin biosensors with efficient antifouling properties applied in glycoprofiling of human serum samples, Anal. Chem., 2013, 85, 7324-7332. 10.1021/ac401281tSearch in Google Scholar PubMed PubMed Central

[157] Silva M.L.S., Gutiérrez E., Rodríguez J.A., Gomes C., David L., Construction and validation of a Sambucus nigra biosensor for cancer-associated STn antigen, Biosens. Bioelectron., 2014, 57, 254-261. 10.1016/j.bios.2014.02.006Search in Google Scholar PubMed

[158] Kongsuphol P., Ng H.H., Pursey J.P., Arya S.K., Wong C.C., Stulz E., et al., EIS-based biosensor for ultra-sensitive detection of TNF-α from non-diluted human serum, Biosens. Bioelectron., 2014, 61, 274-279. 10.1016/j.bios.2014.05.017Search in Google Scholar PubMed

[159] Luo X., Xu Q., James T., Davis J.J., Redox and label-free array detection of protein markers in human serum, Anal. Chem., 2014, 86, 5553-5558. 10.1021/ac5010037Search in Google Scholar PubMed

[160] Xia N., Deng D., Zhang L., Yuan B., Jing M., Du J., et al., Sandwichtype electrochemical biosensor for glycoproteins detection based on dual-amplification of boronic acid-gold nanoparticles and dopamine-gold nanoparticles, Biosens. Bioelectron., 2013, 43, 155-159. 10.1016/j.bios.2012.12.020Search in Google Scholar PubMed

[161] Cao J.T., Hao X.Y., Zhu Y.D., Sun K., Zhu J.J., Microfluidic platform for the evaluation of multi-glycan expressions on living cells using electrochemical impedance spectroscopy and optical microscope, Anal. Chem., 2012, 84, 6775-6782. 10.1021/ac3013048Search in Google Scholar PubMed

Received: 2014-5-23
Accepted: 2014-9-26
Published Online: 2015-1-7

© 2015 Dominika Pihíková et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/chem-2015-0082/html
Scroll to top button