Skip to main content
Log in

Exercise-Induced Bronchoconstriction

  • Therapy in Practice
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Exercise-induced asthma, or more appropriately, exercise-induced bronchoconstriction (EIB), occurs in 80 to 90% of individuals with asthma and in approximately 11% of the general population without asthma. EIB is characterised by post-exercise airways obstruction resulting in reductions in forced expiratory volume in 1 second (FEV1) of greater than 10% compared with pre-exercise values. The mechanism of EIB remains elusive, although both cooling and drying of airways play prominent roles. Cold, dry inhaled air during exercise or voluntary hyperventilation is the most potent stimulus for EIB. Inflammatory mediators play central roles in causing the post-exercise airways obstruction.

Diagnosis of EIB requires the use of an exercise test. The exercise can be a field or laboratory based test, but should be of relatively high intensity (80 to 90% of maximal heart rate) and duration (at lest 5 to 8 minutes). Pre- and post-exercise pulmonary function should be compared, and post exercise pulmonary function determined over 20 to 30 minutes for characterisation of EIB. A pre- to post-exercise drop in FEV1 of greater than 10% is abnormal.

Approaches to treatment of EIB include both nonpharmacological and pharmacological strategies. A light exercise warm up prior to moderate to heavy exercise reduces the severity of EIB. More recently, studies have supported a role for dietary salt as a modifier of the severity of EIB, suggesting that salt restrictive diets should reduce symptoms of EIB. Short acting, inhaled β2-agonists constitute the most used prophylactic treatment for EIB. However, antileukotriene agents are emerging as effective, well tolerated, long-term treatments for EIB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Table I
Table II
Table III
Fig. 4
Table IV

Similar content being viewed by others

References

  1. Brudno D, Wagner J, Rupp NT. Length of postexercise assessment in the determination of exercised-induced bronchospasm. Ann Allergy 1994; 73: 227–31

    PubMed  CAS  Google Scholar 

  2. Godfrey S, Silverman M, Anderson SD. The use of the treadmill for assessing exercise-induced asthma and the effect of varying the severity and duration of exercise. Pediatrics 1975; 56 (5 pt-2 Suppl.): 893–8

    PubMed  CAS  Google Scholar 

  3. Beck KC, Hyatt RE, Mpougas P, et al. Evaluation of pulmonary resistance and maximal expiratory flow measurements during exercise in humans. J Appl Physiol 1999; 86(4): 1388–95

    PubMed  CAS  Google Scholar 

  4. Gotshall RW, Mickleborough TD, Cordain L. Dietary salt restriction improves pulmonary function in exercise-induced asthma. Med Sci Sports Exerc 2000; 32(11): 1815–9

    Article  PubMed  CAS  Google Scholar 

  5. Beck KC, Joyner MJ, Scanion PD. Exercise-induced asthma: diagnosis, treatment, and regulatory issues. Exer Sport Sci Rev 2001; 30: 1–3

    Article  Google Scholar 

  6. Anderson SD. Exercise-induced asthma: the state of the art. Chest 1985; 87 Suppl. 5: 191S–5S

    Article  Google Scholar 

  7. Jones RS, Buston MH, Wharton MJ. The effect of exercise on ventilatory function in the child with asthma. Dis Chest 1962; 56: 78–82

    Article  CAS  Google Scholar 

  8. McFadden Jr ER, Gilbert IA. Exercise-induced asthma. N Engl J Med 1994; 330(19): 1362–7

    Article  PubMed  Google Scholar 

  9. Voy RO. The US Olympic Committee experience with exercise-induced bronchospasm, 1984. Med Sci Sports Exerc 1986; 18(3): 328–30

    Article  PubMed  CAS  Google Scholar 

  10. Wilber RL, Rundell KW, Szmedra L, et al. Incidence of exercise-induced bronchospasm in Olympic winter sport athletes. Med Sci Sports Exerc 2000; 32(4): 732–7

    Article  PubMed  CAS  Google Scholar 

  11. Kukafka DS, Lang DM, Porter S, et al. Exercise-induced bronchospasm in high school athletes via a free running test: incidence and epidemiology. Chest 1998; 114(6): 1613–22

    Article  PubMed  CAS  Google Scholar 

  12. Rupp NT, Brudno DS, Guill MF. The value of screening for risk of exercise-induced asthma in high school athletes. Ann Allergy 1993; 70(4): 339–42

    PubMed  CAS  Google Scholar 

  13. Haby MM, Peat JK, Mellis CM, et al. An exercise challenge for epidemiological studies of childhood asthma: validity and repeatability. Eur Respir J 1995; 8(5): 729–36

    PubMed  CAS  Google Scholar 

  14. Karjalainen EM, Laitinen A, Sue-Chu M, et al. Evidence of airway inflammation and remodeling in ski athletes with and without bronchial hyperresponsiveness to methacholine. Am J Respir Crit Care Med 2000; 161(6): 2086–91

    PubMed  CAS  Google Scholar 

  15. Davis MS, Freed AN. Repeated hyperventilation causes peripheral airways inflammation, hyperreactivity, and impaired bronchodilation in dogs. Am J Respir Crit Care Med 2001; 164(5): 785–9

    PubMed  CAS  Google Scholar 

  16. Gilbert IA, Fouke JM, McFadden Jr ER. Intra-airway thermodynamics during exercise and hyperventilation in asthmatics. J Appl Physiol 1988; 64(5): 2167–74

    PubMed  CAS  Google Scholar 

  17. Hammo AH, Weinberger MM. Exercise-induced hyperventilation: a pseudoasthma syndrome. Ann Allergy Asthma Immunol 1999; 82(6): 574–8

    Article  PubMed  CAS  Google Scholar 

  18. Suman OE, Beck KC, Babcock MA, et al. Airway obstruction during exercise and isocapnic hyperventilation in asthmatic subjects. J Appl Physiol 1999; 87(3): 1107–13

    PubMed  CAS  Google Scholar 

  19. Gilbert IA, Winslow CJ, Lenner KA, et al. Vascular volume expansion and thermally induced asthma. Eur Respir J 1993; 6(2): 189–97

    PubMed  CAS  Google Scholar 

  20. McFadden Jr ER, Ingram Jr RH. Exercise-induced asthma: observations on the initiating stimulus. N Engl J Med 1979; 301(14): 763–9

    Article  PubMed  Google Scholar 

  21. McFadden Jr ER, Denison DM, Waller JF, et al. Direct recordings of the temperatures in the tracheobronchial tree in normal man. J Clin Invest 1982; 69(3): 700–5

    Article  PubMed  Google Scholar 

  22. McFadden Jr ER. Respiratory heat and water exchange: physiological and clinical implications. J Appl Physiol 1983; 54(2): 331–6

    PubMed  Google Scholar 

  23. McFadden Jr ER. Hypothesis: exercise-induced asthma as a vascular phenomenon. Lancet 1990; 335(8694): 880–3

    Article  PubMed  Google Scholar 

  24. McFadden Jr ER. Heat and water exchange in human airways. Am Rev Respir Dis 1992; 146 (5 Pt 2): S8–10

    PubMed  Google Scholar 

  25. McFadden Jr ER, Nelson JA, Skowronski ME, et al. Thermally induced asthma and airway drying. Am J Respir Crit Care Med 1999; 160(1): 221–6

    PubMed  Google Scholar 

  26. Anderson SD, Schoeffel RE, Follet R, et al. Sensitivity to heat and water loss at rest and during exercise in asthmatic patients. Eur J Respir Dis 1982; 63(5): 459–71

    PubMed  CAS  Google Scholar 

  27. Anderson SD. Is there a unifying hypothesis for exercise-induced asthma? J Allergy Clin Immunol 1984; 73 (5 Pt 2): 660–5

    Article  PubMed  CAS  Google Scholar 

  28. Anderson SD, Smith CM. Osmotic challenges in the assessment of bronchial hyperresponsiveness. Am Rev Respir Dis 1991; 143 (3 Pt 2): S43–6

    PubMed  CAS  Google Scholar 

  29. Anderson SD, Daviskas E. The airway microvasculature and exercise induced asthma. Thorax 1992; 47(9): 748–52

    Article  PubMed  CAS  Google Scholar 

  30. Anderson SD, Daviskas E. The mechanism of exercise-induced asthma is ellipsis [In Process Citation]. J Allergy Clin Immunol 2000; 106(3): 453–9

    Article  PubMed  CAS  Google Scholar 

  31. Huang WH, Lin YZ, Huang FY. Effect of ice water ingestion on asthmatic children after exercise challenge. Acta Paediatr Taiwan 2000; 41(4): 184–8

    PubMed  CAS  Google Scholar 

  32. Anderson SD. Exercise-induced asthma and the use of hypertonic saline aerosol as a bronchial challenge. Respirology 1996; 1(3): 175–81

    Article  PubMed  CAS  Google Scholar 

  33. Griffin MP, McFadden Jr ER, Ingram Jr RH, et al. Controlled-analysis of the effects of inhaled lignocaine in exercise-induced asthma. Thorax 1982; 37(10): 741–5

    Article  PubMed  CAS  Google Scholar 

  34. Fanta CH, Ingram Jr RH, McFadden Jr ER. A reassessment of the effects of oropharyngeal anesthesia in exercise-induced asthma. Am Rev Respir Dis 1980; 122(3): 381–6

    PubMed  CAS  Google Scholar 

  35. Tsuda H, Tsuda A, Ito M, et al. Roles of eosinophils and catecholamines in the pathophysiology of exercise-induced asthma. Pediatr Allergy Immunol 1993; 4: 221–5

    Article  PubMed  CAS  Google Scholar 

  36. Finnerty JP, Harvey A, Holgate ST. The relative contribution of histamine and prostinoids to bronchoconstriction provoked by isocapnic hyperventilation in asthma. Eur Respir J 1992; 5: 323–30

    PubMed  CAS  Google Scholar 

  37. Ghosh S, DeVos C, McIlory I, et al. Effect of cetirizine on exercise-induced asthma. Thorax 1991; 46: 242–4

    Article  PubMed  CAS  Google Scholar 

  38. Makker H, Walls A, Goulding D, et al. Airways effects of local challenge with hypertonic saline in exercise-induced asthma. Am J Respir Crit Care Med 1994; 149: 1012–9

    PubMed  CAS  Google Scholar 

  39. O’Byrne PM, Jones G. The effect of indomethicin and on exercise-induced bronchoconstriction and refractoriness after exercise. Am Rev Respir Dis 1986; 134: 69–72

    PubMed  Google Scholar 

  40. Hoshino M, Fukushima Y. Effect of OKY-046 (thromboxane A2 synthetase inhibitor) on exercise-induced asthma. J Asthma 1991; 28: 19–29

    Article  PubMed  CAS  Google Scholar 

  41. Drazen JM. Asthma therapy with agents preventing leukotriene synthesis or action. Proc Assoc Am Physicians 1999; 111(6): 547–59

    Article  PubMed  CAS  Google Scholar 

  42. Bisgaard H. Role of leukotrienes in asthma pathophysiology. Pediatr Pulmonol 2000; 30(2): 166–76

    Article  PubMed  CAS  Google Scholar 

  43. Crowther SD, Rees PJ. Current treatment of asthma: focus on leukotrienes. Expert Opin Pharmacother 2000; 1(5): 1021–40

    Article  PubMed  CAS  Google Scholar 

  44. Garcia-Marcos L, Schuster A. Antileukotrienes in asthma: present situation. Expert Opin Pharmacother 2001; 2(3): 441–66

    Article  PubMed  CAS  Google Scholar 

  45. Gauvreau GM, Ronnen GM, Watson RM, et al. Exercise-induced bronchoconstriction does not cause eosinophilic airway inflammation or airway hyperresponsiveness in subjects with asthma. Am J Respir Crit Care Med 2000; 162 (4 Pt 1): 1302–7

    PubMed  CAS  Google Scholar 

  46. O’Byrne PM. Exercise-induced bronchoconstriction: elucidating the roles of leukotrienes and prostaglandins. Pharmacotherapy 1997; 17 (1 Pt 2): 31S–8S

    PubMed  Google Scholar 

  47. O’Byrne PM. Leukotriene bronchoconstriction induced by allergen and exercise. Am J Respir Crit Care Med 2000; 161 (2 Pt 2): S68–72

    PubMed  Google Scholar 

  48. Lane SJ, Lee TH. Mast cell effector mechanisms. J Allergy Clin Immunol 1996; 98 (5 Pt 2): S67–71

    Article  PubMed  CAS  Google Scholar 

  49. Rundell KW, Wilber RL, Szmedra L, et al. Exercise-induced asthma screening of elite athletes: field versus laboratory exercise challenge. Med Sci Sports Exerc 2000; 32(2): 309–16

    Article  PubMed  CAS  Google Scholar 

  50. American Thoracic Society. Guidelines for methacholine and exercise challenge testing 1999. Am J Respir Crit Care Med 2000; 161: 309–29

    Google Scholar 

  51. Anderson SD, Lambert S, Brannan JD, et al. Laboratory protocol for exercise asthma to evaluate salbutamol given by two devices. Med Sci Sports Exerc 2001; 33(6): 893–900

    Article  PubMed  CAS  Google Scholar 

  52. Dahlen B, O’Byrne PM, Watson RM, et al. The reproducibility and sample size requirements of exercise-induced bronchoconstriction measurements. Eur Respir J 2001; 17(4): 581–8

    Article  PubMed  CAS  Google Scholar 

  53. Gelb AF, Tashkin DP, Epstein JD, et al. Exercise-induced bronchodilation in asthma. Chest 1985; 87(2): 196–201

    Article  PubMed  CAS  Google Scholar 

  54. Bar-Or O, Neuman I, Dotan R. Effects of dry and humid climates on exercise-induced asthma in children and adults. J Allergy Clin Immunol 1977; 60: 163–8

    Article  PubMed  CAS  Google Scholar 

  55. Chen W, Horton D. Heat and water loss from the airways and exercise induced asthma. Respiration 1976; 34: 305–13

    Article  Google Scholar 

  56. Bar-Yishay E, Gur I, Inbar O, et al. Differences between running and swimming as stimuli for exercise induced asthma. Eur J Appl Physiol 1982; 48: 387–97

    Article  CAS  Google Scholar 

  57. Mannix ET, Farber MO, Palange P, et al. Exercise-induced asthma in figure skaters. Chest 1996; 109(2): 312–5

    Article  PubMed  CAS  Google Scholar 

  58. Silverman M, Anderson SD. Standardization of exercise tests in asthmatic children. Arch Dis Child 1972; 47: 882–9

    Article  PubMed  CAS  Google Scholar 

  59. Duffy P, Phillips YY. Caffeine consumption decreases the response to bronchoprovocation challenge with dry gas hyperventilation. Chest 1991; 99(6): 1374–7

    Article  PubMed  CAS  Google Scholar 

  60. Bara AI, Barley EA. Caffeine for asthma. Cochrane Database of Systematic Reviews. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 4. Oxford: Update Software, 2001

  61. Neuman I, Nahum H, Ben Amotz A. Reduction of exercise-induced asthma oxidative stress by lycopene, a natural antioxidant. Allergy 2000; 55(12): 1184–9

    Article  PubMed  CAS  Google Scholar 

  62. Arm JP, Horton CE, Mencia-Huerta JM, et al. Effect of dietary supplementation with fish oil lipids on mild asthma. Thorax 1988; 43(2): 84–92

    Article  PubMed  CAS  Google Scholar 

  63. Burney P. A diet rich in sodium may potentiate asthma: epidemiologic evidence for a new hypothesis. Chest 1987; 91 Suppl. 6: 143–8

    Article  Google Scholar 

  64. Mickleborough TD, Gotshall RW, Rhodes J, et al. Elevating dietary salt exacerbates hyperpnea-induced airway obstruction in guinea pigs. J Appl Physiol 2001; 91(3): 1061–6

    PubMed  CAS  Google Scholar 

  65. Mickleborough TD, Gotshall RW, Kluka EM, et al. Dietary chloride as a possible determinant of the severity of exercise-induced asthma. Eur J Appl Physiol 2001; 85(5): 450–6

    Article  PubMed  CAS  Google Scholar 

  66. Mickleborough TD, Gotshall RW, Cordain L, et al. Dietary salt alters pulmonary function during exercise in exercise-induced asthmatics. J Sports Sci 2001; 19(11): 865–73

    Article  PubMed  CAS  Google Scholar 

  67. Anderson SD. Exercise-induced asthma. In: Middleton E, editor. Allergy: principles and practice. St. Louis: Mosby-Year Boobl, 1993: 1343–64

    Google Scholar 

  68. Kemp JP, Bierman C, Cocchetto D. Dose-response study of inhaled salmeterol in asthmatic patients with 24-hour spirometry and Holter monitoring. Ann Allergy 1993; 70: 316–22

    PubMed  CAS  Google Scholar 

  69. Gronnerod TA, von Berg A, Schwabe G, et al. Formoterol via Turbuhaler gave better protection than terbutaline against repeated exercise challenge for up to 12 hours in children and adolescents. Respir Med 2000; 94(7): 661–7

    Article  PubMed  CAS  Google Scholar 

  70. Lee TH, Brown M, Nagy L, et al. Exercise-induced release of histamine and neutrophil chemotactic factor in atopic asthmatics. J Allergy Clin Immunol 1982; 70: 73–81

    Article  PubMed  CAS  Google Scholar 

  71. Kelly KD, Spooner CH, Rowe BH. Nedocromil sodium vs sodium cromoglycate in treatment of exercise-induced bronchoconstriction: a systematic review. Eur Respir J 2001; 17(1): 39–45

    Article  PubMed  CAS  Google Scholar 

  72. Spooner C, Rowe BH, Saunders LD. Nedocromil sodium in the treatment of exercise-induced asthma: a meta-analysis [In Process Citation]. Eur Respir J 2000; 16(1): 30–7

    Article  PubMed  CAS  Google Scholar 

  73. Munyard P, Chung KF, Bush A. Inhaled frusemide and exercise-induced bronchoconstriction in children with asthma. Thorax 1995; 50(6): 677–9

    Article  PubMed  CAS  Google Scholar 

  74. Novembre E, Frongia G, Lombardi E, et al. The preventive effect of nedocromil or furosemide alone or in combination on exercise-induced asthma in children. J Allergy Clin Immunol 1994; 94 (2 Pt 1): 201–6

    Article  PubMed  CAS  Google Scholar 

  75. Sears MR. Asthma treatment: inhaled beta-agonists. Can Respir J 1998; 5 Suppl. A: 54A–9A

    PubMed  Google Scholar 

  76. Hofstra WB, Neijens HJ, Duiverman EJ, et al. Dose-responses over time to inhaled fluticasone propionate treatment of exercise- and methacholine-induced bronchoconstriction in children with asthma. Pediatr Pulmonol 2000; 29(6): 415–23

    Article  PubMed  CAS  Google Scholar 

  77. Adelman A. Montelukast for mild and exercise-induced asthma. J Fam Pract 1998; 47(5): 335

    PubMed  CAS  Google Scholar 

  78. Edelman JM, Turpin JA, Bronsky EA, et al. Oral montelukast compared with inhaled salmeterol to prevent exercise-induced bronchoconstriction: a randomized, double-blind trial. Exercise Study Group. Ann Intern Med 2000; 132(2): 97–104

    CAS  Google Scholar 

  79. Garcia-Marcos L, Schuster A. New perspectives for asthma treatment: anti-leukotriene drugs. Pediatr Allergy Immunol 1999; 10(2): 77–88

    Article  PubMed  CAS  Google Scholar 

  80. Kemp JP. Role of leukotriene receptor antagonists in pediatric asthma. Pediatr Pulmonol 2000; 30(2): 177–82

    Article  PubMed  CAS  Google Scholar 

  81. Pearlman DS, Ostrom NK, Bronsky EA, et al. The leukotriene D4-receptor antagonist zafirlukast attenuates exercise- induced bronchoconstriction in children. J Pediatr 1999; 134(3): 273–9

    Article  PubMed  CAS  Google Scholar 

  82. Selvadurai H, Mellis C. Antileukotriene drugs in childhood asthma: what is their place in therapy? Paediatr Drugs 2000; 2(5): 367–72

    Article  PubMed  CAS  Google Scholar 

  83. Coreno A, Skowronski M, Kotaru C, et al. Comparative effects of long-acting beta2-agonists, leukotriene receptor antagonists, and a 5-lipoxygenase inhibitor on exercise-induced asthma [In Process Citation]. J Allergy Clin Immunol 2000; 106(3): 500–6

    Article  PubMed  CAS  Google Scholar 

  84. Vidal C, Fernandez-Ovide E, Pineiro J, et al. Comparison of montelukast versus budesonide in the treatment of exercise-induced bronchoconstriction. Ann Allergy Asthma Immunol 2001; 86(6): 655–8

    Article  PubMed  CAS  Google Scholar 

  85. Ram FS, Robinson SM, Black PN. Physical training for asthma. Cochrane Database of Systematic Reviews. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 4. Oxford: Update Software, 2001

Download references

Acknowledgements

Portions of the data presented were collected with the assistance of a grant from the US Olympic Committee and US Swimming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Gotshall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotshall, R.W. Exercise-Induced Bronchoconstriction. Drugs 62, 1725–1739 (2002). https://doi.org/10.2165/00003495-200262120-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200262120-00003

Keywords

Navigation