Skip to main content
Log in

Chronic Obstructive Pulmonary Disease

Role of Bacteria and Updated Guide to Antibacterial Selection in the Older Patient

  • Therapy In Practice
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease (COPD) remains a major cause of morbidity and mortality worldwide. COPD is especially prevalent in the elderly, affecting 25% of those aged ≥75 years. The course of the disease in the elderly is often complicated by co-morbid conditions, and its management is complicated by drug-drug interactions. Exacerbations of COPD increase rates of hospitalization and mortality and decrease quality of life. Exacerbations are marked by an increase from baseline in dyspnoea, sputum volume and sputum purulence. Approximately 50% of acute exacerbations of symptoms in COPD are caused by non-typeable Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pneumoniae and Pseudomonas aeruginosa.

Stratification of exacerbations based on severity of symptoms and signs, and severity of underlying COPD, is useful in selecting patients likely to benefit from antibacterial therapy. Patients who are hospitalized with exacerbations, those who have all three symptoms (increased dyspnoea, sputum volume and sputum purulence), and those with severe underlying COPD and exacerbations benefit most from antibacterials. Antibacterial susceptibility patterns among the bacterial pathogens are evolving, and knowledge of local susceptibility patterns is useful in antibacterial selection. Penicillin, amoxicillin, cotrimoxazole (trimethoprim/sulfamethoxazole) and doxycycline should not be used as an initial antibacterial because of resistance patterns. We recommend second-/third-generation cephalosporins, amoxicillin/clavulanic acid, azithromycin and respiratory fluoroquinolones as initial choices. In patients at risk of colonization by, and infection as a result of, P. aeruginosa, ciprofloxacin, levofloxacin or an advanced penicillin/penicillinase combination effective against this species should be used. Drug-drug interactions should be considered in antibacterial choice. The goals of antibacterial therapy for exacerbations of COPD are the prevention of complications such as respiratory failure and death, and the reduction of treatment failures.

The role of pathogenic bacteria in progression of stable COPD and the use of prophylactic antibacterials in stable COPD are under investigation. Currently available evidence does not support routine clinical use of prophylactic antibacterials in stable COPD.

In conclusion, pathogenic bacteria cause a significant proportion of acute exacerbations of COPD. Use of antibacterials, based on current susceptibility patterns, is beneficial in patients with severe COPD experiencing exacerbations and in patients with severe exacerbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2

Similar content being viewed by others

References

  1. Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 2004 Jun; 23(6): 932–46

    Article  PubMed  CAS  Google Scholar 

  2. Brown DW, Croft JB, Greenlund KJ, et al. Deaths from chronic obstructive pulmonary disease: United States, 2000–2005. MMWR Morb Mortal Wkly Rep 2008 Nov 14; 57(45): 1229–32

    Google Scholar 

  3. Liu S, Zhou Y, Wang X, et al. Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. Thorax 2007 Oct; 62(10): 889–97

    Article  PubMed  Google Scholar 

  4. Sullivan SD, Ramsey SD, Lee TA. The economic burden of COPD. Chest 2000 Feb; 117(2 Suppl.): 5S–9S

    Article  PubMed  CAS  Google Scholar 

  5. Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med 2008 Nov 27; 359(22): 2355–65

    Article  PubMed  CAS  Google Scholar 

  6. Mannino DM, Homa DM, Akinbami LJ, et al. Chronic obstructive pulmonary disease surveillance: United States, 1971–2000. MMWR Surveill Summ 2002 Aug 2; 51(6): 1–16

    Google Scholar 

  7. Isoaho R, Puolijoki H, Huhti E, et al. Prevalence of chronic obstructive pulmonary disease in elderly Finns. Respir Med 1994 Sep; 88(8): 571–80

    Article  PubMed  CAS  Google Scholar 

  8. Yohannes AM, Roomi J, Waters K, et al. Quality of life in elderly patients with COPD: measurement and predictive factors. Respir Med 1998 Oct; 92(10): 1231–6

    Article  PubMed  CAS  Google Scholar 

  9. Peruzza S, Sergi G, Vianello A, et al. Chronic obstructive pulmonary disease (COPD) in elderly subjects: impact on functional status and quality of life. Respir Med 2003 Jun; 97(6): 612–7

    Article  PubMed  CAS  Google Scholar 

  10. Cydulka RK, McFadden Jr ER, Emerman CL, et al. Patterns of hospitalization in elderly patients with asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1997 Dec; 156(6): 1807–12

    PubMed  CAS  Google Scholar 

  11. Seneff MG, Wagner DP, Wagner RP, et al. Hospital and 1-year survival of patients admitted to intensive care units with acute exacerbation of chronic obstructive pulmonary disease. JAMA 1995 Dec 20; 274(23): 1852–7

    Article  PubMed  CAS  Google Scholar 

  12. Ranieri P, Bianchetti A, Margiotta A, et al. Predictors of 6-month mortality in elderly patients with mild chronic obstructive pulmonary disease discharged from a medical ward after acute nonacidotic exacerbation. J Am Geriatr Soc 2008 May; 56(5): 909–13

    Article  PubMed  Google Scholar 

  13. Almagro P, Calbo E, Ochoa de Echaguen A, et al. Mortality after hospitalization for COPD. Chest 2002 May 2002; 121(5): 1441–8

    Article  PubMed  Google Scholar 

  14. Bonomo RA. Multiple antibiotic-resistant bacteria in long-term care facilities: an emerging problem in the practice of infectious diseases. Clin Infect Dis 2000; 31(6): 1414–22

    Article  PubMed  CAS  Google Scholar 

  15. Muder RR, Brennen C, Drenning SD, et al. Multiply antibiotic-resistant Gram-negative bacilli in a long-term-care facility: a case-control study of patient risk factors and prior antibiotic use. Infect Control Hosp Epidemiol 1997 Dec; 18(12): 809–13

    Article  PubMed  CAS  Google Scholar 

  16. Papi A, Bellettato CM, Braccioni F, et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med 2006 May 15; 173(10): 1114–21

    Article  PubMed  Google Scholar 

  17. Greenberg SB, Allen M, Wilson J, et al. Respiratory viral infections in adults with and without chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2000 Jul; 162(1): 167–73

    PubMed  CAS  Google Scholar 

  18. Seemungal TA, Wedzicha JA. Viral infections in obstructive airway diseases. Curr Opin Pulm Med 2003 Mar; 9(2): 111–6

    Article  PubMed  Google Scholar 

  19. Fagon JY, Chastre J, Trouillet JL, et al. Characterization of distal bronchial microflora during acute exacerbation of chronic bronchitis: use of the protected specimen brush technique in 54 mechanically ventilated patients. Am Rev Respir Dis 1990 Nov; 142(5): 1004–8

    PubMed  CAS  Google Scholar 

  20. Monso E, Ruiz J, Rosell A, et al. Bacterial infection in chronic obstructive pulmonary disease: a study of stable and exacerbated outpatients using the protected specimen brush. Am J Respir Crit Care Med 1995 Oct; 152 (4 Pt 1): 1316–20

    PubMed  CAS  Google Scholar 

  21. Soler N, Torres A, Ewig S, et al. Bronchial microbial patterns in severe exacerbations of chronic obstructive pulmonary disease (COPD) requiring mechanical ventilation. Am J Respir Crit Care Med 1998 May; 157 (5 Pt 1): 1498–505

    PubMed  CAS  Google Scholar 

  22. Rosell A, Monso E, Soler N, et al. Microbiologic determinants of exacerbation in chronic obstructive pulmonary disease. Arch Intern Med 2005 Apr 25; 165(8): 891–7

    Article  PubMed  Google Scholar 

  23. Sethi S, Evans N, Grant BJ, et al. New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med 2002 Aug 15; 347(7): 465–71

    Article  PubMed  Google Scholar 

  24. Hill AT, Campbell EJ, Hill SL, et al. Association between airway bacterial load and markers of airway inflammation in patients with stable chronic bronchitis. Am J Med 2000 Sep; 109(4): 288–95

    Article  PubMed  CAS  Google Scholar 

  25. Stockley RA, O’Brien C, Pye A, et al. Relationship of sputum color to nature and outpatient management of acute exacerbations of COPD. Chest 2000 Jun; 117(6): 1638–45

    Article  PubMed  CAS  Google Scholar 

  26. White AJ, Gompertz S, Bayley DL, et al. Resolution of bronchial inflammation is related to bacterial eradication following treatment of exacerbations of chronic bronchitis. Thorax 2003 Aug; 58(8): 680–5

    Article  PubMed  CAS  Google Scholar 

  27. Yi K, Sethi S, Murphy TF. Human immune response to nontypeable Haemophilus influenzae in chronic bronchitis. J Infect Dis 1997 Nov; 176(5): 1247–52

    Article  PubMed  CAS  Google Scholar 

  28. Bakri F, Brauer AL, Sethi S, et al. Systemic and mucosal antibody response to Moraxella catarrhalis after exacerbations of chronic obstructive pulmonary disease. J Infect Dis 2002 Mar 1; 185(5): 632–40

    Article  PubMed  CAS  Google Scholar 

  29. Sethi S, Wrona C, Eschberger K, et al. Inflammatory profile of new bacterial strain exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008 Mar 1; 177(5): 491–7

    Article  PubMed  Google Scholar 

  30. Anthonisen NR, Manfreda J, Warren CP, et al. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann Intern Med 1987 Feb; 106(2): 196–204

    PubMed  CAS  Google Scholar 

  31. Sachs AP, Koeter GH, Groenier KH, et al. Changes in symptoms, peak expiratory flow, and sputum flora during treatment with antibiotics of exacerbations in patients with chronic obstructive pulmonary disease in general practice. Thorax 1995 Jul 1; 50(7): 758–63

    Article  PubMed  CAS  Google Scholar 

  32. Ram FS, Rodriguez-Roisin R, Granados-Navarrete A, et al. Antibiotics for exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2006; (2): CD004403

    Google Scholar 

  33. Quon BS, Gan WQ, Sin DD. Contemporary management of acute exacerbations of COPD: a systematic review and metaanalysis. Chest 2008 Mar; 133(3): 756–66

    Article  PubMed  Google Scholar 

  34. Roede BM, Bresser P, Prins JM, et al. Reduced risk of next exacerbation and mortality associated with antibiotic use in COPD. Eur Respir J 2009 Feb; 33(2): 282–8

    Article  PubMed  CAS  Google Scholar 

  35. Dimopoulos G, Siempos II, Korbila IP, et al. Comparison of first-line with second-line antibiotics for acute exacerbations of chronic bronchitis: a metaanalysis of randomized controlled trials. Chest 2007 Aug; 132(2): 447–55

    Article  PubMed  CAS  Google Scholar 

  36. Soler N, Agusti C, Angrill J, et al. Bronchoscopic validation of the significance of sputum purulence in severe exacerbations of chronic obstructive pulmonary disease. Thorax 2007 Jan; 62(1): 29–35

    Article  PubMed  Google Scholar 

  37. Johnson DM, Sader HS, Fritsche TR, et al. Susceptibility trends of Haemophilus influenzae and Moraxella catarrhalis against orally administered antimicrobial agents: five-year report from the SENTRY Antimicrobial Surveillance Program. Diagn Microbiol Infect Dis 2003 Sep; 47(1): 373–6

    Article  PubMed  CAS  Google Scholar 

  38. Sahm DF, Brown NP, Thornsberry C, et al. Antimicrobial susceptibility profiles among common respiratory tract pathogens: a GLOBAL perspective. Postgrad Med 2008 Sep; 120 (3 Suppl. 1): 16–24

    Article  PubMed  Google Scholar 

  39. Deshpande LM, Sader HS, Fritsche TR, et al. Contemporary prevalence of BRO β-lactamases in Moraxella catarrhalis: report from the SENTRY Antimicrobial Surveillance Program (North America, 1997 to 2004). J Clin Microbiol 2006 Oct 1; 44(10): 3775–7

    Article  PubMed  CAS  Google Scholar 

  40. Musher DM. Streptococcus pneumoniae. In: Mandell GL, Douglas RG, Bennett JE, et al., editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 6th ed. Philadelphia (PA): Elsevier Churchill Livingstone, 2005: 2392–411

    Google Scholar 

  41. Stolz D, Christ-Crain M, Bingisser R, et al. Antibiotic treatment of exacerbations of COPD: a randomized, controlled trial comparing procalcitonin-guidance with standard therapy. Chest 2007 Jan; 131(1): 9–19

    Article  PubMed  CAS  Google Scholar 

  42. Woodhead M, Blasi F, Ewig S, et al. Guidelines for the management of adult lower respiratory tract infections. Eur Respir J 2005 Dec 1; 26(6): 1138–80

    Article  PubMed  CAS  Google Scholar 

  43. Eller J, Ede A, Schaberg T, et al. Infective exacerbations of chronic bronchitis. Chest 1998 June 1998; 113(6): 1542–8

    Article  PubMed  CAS  Google Scholar 

  44. Blasi F, Tarsia P, Pappalettera M, et al. Antibiotic therapy and prophylaxis in COPD. Respir Med COPD Update 2007; 2(4): 124–32

    Article  Google Scholar 

  45. Falagas ME, Avgeri SG, Matthaiou DK, et al. Short- versus long-duration antimicrobial treatment for exacerbations of chronic bronchitis: a meta-analysis. J Antimicrob Chemother 2008 Sep; 62(3): 442–50

    Article  PubMed  CAS  Google Scholar 

  46. Fletcher CM. Chronic bronchitis: its prevalence, nature, and pathogenesis. Am Rev Respir Dis 1959 Oct; 80: 483–94

    PubMed  CAS  Google Scholar 

  47. Banerjee D, Khair OA, Honeybourne D. Impact of sputum bacteria on airway inflammation and health status in clinical stable COPD. Eur Respir J 2004 May; 23(5): 685–91

    Article  PubMed  CAS  Google Scholar 

  48. Black P, Staykova T, Chacko E, et al. Prophylactic antibiotic therapy for chronic bronchitis. Cochrane Database Syst Rev 2003; (1): CD004105

    Google Scholar 

  49. Seemungal TAR, Wilkinson TMA, Hurst JR, et al. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med 2008 Dec 1; 178(11): 1139–47

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this article. Timothy Murphy has acted as a consultant to GlaxoSmithKline, Merck and Mpex Pharmaceuticals. Iyer Parameswaran has no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy F. Murphy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parameswaran, G.I., Murphy, T.F. Chronic Obstructive Pulmonary Disease. Drugs Aging 26, 985–995 (2009). https://doi.org/10.2165/11315700-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11315700-000000000-00000

Keywords

Navigation