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ABSTRACT
Background: Bronchial thermoplasty is a nonpharmacological, device-based treatment option for a
specific population of severe asthmatic subjects, but the underlying mechanisms are largely unknown. The
purpose of this study is to identify potential altered pathways by bronchial thermoplasty using a
transcriptomic approach.
Methods: Patients undergoing bronchial thermoplasty were recruited to the study, and a bronchial
brushing sample was obtained before each bronchial thermoplasty session and sent for RNA sequencing.
A variance component score test was performed to identify those genes whose expression varied after
bronchial thermoplasty sessions. Differential gene expression meta-analysis of severe asthmatic subjects
versus controls was performed using public repositories. Overlapping genes were included for downstream
pathway and network analyses.
Results: 12 patients were enrolled in our study. A total of 133 severe asthma cases and 107 healthy
controls from the public repositories were included in the meta-analysis. Comparison of differentially
expressed genes from our study patients with the public repositories identified eight overlapping genes:
AMIGO2, CBX7, NR3C2, SETBP1, SHANK2, SNTB1, STXBP1 and ZNF853. Network analysis of these
overlapping genes identified pathways associated with neurophysiological processes.
Conclusion: We have shown that bronchial thermoplasty treatment alters several gene networks that are
important in asthma pathogenesis. These results potentially elucidate the disease-modifying mechanisms
of bronchial thermoplasty and provide several targets for further investigation.
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Introduction
In recent years, considerable debate has arisen over how to best phenotype and treat patients with severe
asthma. While biological therapies are increasingly used to treat such patients, bronchial thermoplasty is
an effective [1], nonpharmacological treatment option for a subset of severe asthmatic subjects whose
symptoms are not controlled [2].

The overall modest effectiveness of bronchial thermoplasty for patients with moderate to severe asthma
has been shown in multiple randomised clinical trials [3–9]. The end-points in these studies include
improvement in asthma control, fewer asthma exacerbations, fewer hospital and emergency department
visits, and a reduction in inhaled steroid dose for patients treated with bronchial thermoplasty. The high
degree of heterogeneity in the response to bronchial thermoplasty suggests this therapy may be highly
beneficial in specific asthma subsets. A better understanding of the mechanisms responsible for response
to bronchial thermoplasty will provide better targeting of this therapy for the patients most likely to have a
robust clinical response.

There are several proposed mechanisms that partly explain the effectiveness of bronchial thermoplasty [2].
It is known to reduce smooth muscle mass in bronchial biopsy samples as measured by morphometric
analysis of α-actin staining. Importantly, this effect was observed in the contralateral or untreated airways,
suggesting bronchial thermoplasty treatment has a global effect on the lung [10–12]. For example,
bronchial thermoplasty may reduce global airway innervation that disrupts pathological neurophysiological
processes in the lung. A recent study evaluated bronchial biopsy specimens from 15 severe asthmatic
subjects before and 3 months after completion of three bronchial thermoplasty treatments [13]. The
authors found that bronchial thermoplasty treatment decreased airway smooth muscle area, subepithelial
basement membrane thickness, the number of neuroendocrine epithelial cells and the number of bronchial
nerve fibres [13]. A similar study demonstrated that eosinophils and the concentration of inflammatory
mediators, such as tumour necrosis factor-β and the chemokine ligand CCL5, were reduced in parallel
with reduced smooth muscle mass after bronchial thermoplasty [11]. Another proposed mechanism is the
reduction of smooth muscle contractile properties after exposure to high temperatures in airways treated
with bronchial thermoplasty [14]. Collectively, these studies begin to identify a series of global effects on
the lung following site-specific bronchial thermoplasty treatments.

Our hypothesis was that bronchial thermoplasty induces global effects on airway smooth muscle that
disrupt airway smooth muscle/epithelial cell cross-talk. This disruption results in decreased inflammatory
chemokine and cytokine expression measured at the airway epithelium. We further hypothesised that
decreased signalling by the airway epithelium would decrease inflammatory cell influx into the airway,
mitigating asthma pathogenesis. In support of our hypothesis, several studies have shown that cross-talk
between epithelial cells and other cells can modulate inflammatory processes related to type 2 immune
signalling [15] and IgE-mediated signalling through periostin [16].

The purpose of this study was to advance our understanding of the pathways and networks affected during
bronchial thermoplasty through a transcriptomic approach by combining a meta-analysis of public
repositories with a time-course longitudinal analysis of our bronchial thermoplasty dataset.

Methods
Study population
A total of 12 participants with severe asthma who underwent bronchial thermoplasty at the University of
California Davis (Sacramento, CA, USA) were recruited for the study. The study was conducted between
April 2013 and November 2015. Eligible subjects were adults (18–65 years of age) diagnosed with severe
asthma with indications for bronchial thermoplasty defined by the US Food and Drug Administration. All
of our subjects were using inhaled corticosteroids, an oral corticosteroid or both at the time of enrolment.

Airway cell sampling
Subjects recruited to the study consented to sampling of their airway using a disposable cytology brush
with direct visualisation prior to their bronchial thermoplasty procedure. A standard 5 mm cytology brush
(Olympus, Center Valley, PA, USA) was used to acquire brush samples targeting the tracheal wall prior to
each bronchial thermoplasty session. The sample was placed in a 15 mL conical tube with 3 mL of
RNAlater (ThermoFisher Scientific, Waltham, MA, USA) storage solution for gene expression analyses.
Samples obtained with this technique are highly enriched for airway epithelial cells (>95% of all cells
collected; data not shown).

RNA processing and sequencing from airway brush samples
RNA was isolated from the cytology brushes using the Qiagen RNeasy Micro Kit (Qiagen, Germantown,
MD, USA). cDNA Libraries were prepared with the KAPA Stranded RNA-Seq Kit with the RiboErase Kit
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(Roche, Pleasanton, CA, USA) according to the manufacturer’s protocol. Generation of cDNA libraries
and sequencing was carried out by the DNA Technologies and Expression Analysis Core Laboratories at
the University of California Davis Genome Center. Genes with <0.5 counts per million reads in all
samples were filtered prior to the analysis. Data were transformed using a variance-stabilising
transformation and then LOESS (locally estimated scatterplot smoothing) normalised. Gene annotation
was based on Gencode genome assembly version GRCh38 (www.gencodegenes.org).

Systemic search for severe asthmatic subjects versus healthy controls datasets
Two public gene expression microarray repositories (Gene Expression Omnibus database (www.ncbi.nlm.nih.
gov/geo) and ArrayExpress (www.ebi.ac.uk/arrayexpress)) were utilised for our study, which included all
available datasets published prior to November 1, 2017. We included only those studies derived from adult
human bronchial epithelium gene expression datasets that contained both severe asthmatic subjects and
healthy controls. For datasets that contained a mixed cohort of asthmatic subjects, we selected subjects that
met the criteria for severe asthma. We excluded datasets that met our initial inclusion criteria if asthma
severity for each individual could not be determined. We reserved one dataset for validation purposes.

Statistical analyses
The schematic of our analysis work is shown in figure 1.

Modelling gene expression changes over sequential bronchial thermoplasty sessions
The longitudinal gene expression change over sequential bronchial thermoplasty sessions was tested with
the variance component score test using the R package Time-Course Gene Set Analysis for RNA-Seq Data
(tcgsaseq) [17]. This method is a linear mixed effect model to account for repeat measurements from the
same participants and a time variable is included. The model was adjusted for age, sex and smoking status.
We tested which genes demonstrated a change in gene abundance after bronchial thermoplasty, with the
null hypothesis that there were no longitudinal changes in normalised gene expression over time.
Compared with traditional two-time-point gene expression comparisons (e.g. time 2 versus time 1 and
time 3 versus time 1), this method takes longitudinal trajectories into consideration with full usage of all
gene expression information. With time-course modelling, we are able to analyse changes in gene
expression patterns over time rather than differences between two discrete time-points. Due to the small
sample size, 1000 permutations were performed to calculate the p-value and a Benjamini–Hochberg false
discovery rate (FDR) correction was used for multiple comparisons. The threshold for a significant change
in gene expression after serial bronchial thermoplasty sessions was set as an adjusted p-value <0.001.

Differential expression meta-analysis
Gene expression datasets were downloaded from public repositories for differential expression
meta-analysis to be compared with our patient cohort. Datasets were then split into discovery and
validation sets. Meta-analysis was run on the discovery dataset using the R package MetaIntegrator, as
described previously [18]. In brief, the meta-analysis computes a Hedges’ g effect size for each gene in
each dataset. The summary effect size is computed using a random effects model. The interdataset
variation was estimated by the DerSimonian–Laird method. We only included genes that remained
significant across the leave-one-dataset-out analyses. The reported p-value of each gene was adjusted by
Benjamini–Hochberg FDR correction for multiple comparisons. We choose adjusted p-values <0.05 as our
threshold for significance. The differentially expressed genes identified as significant in the discovery
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FIGURE 1 Schematic of the analysis workflow. DEG: differentially expressed genes; BT: bronchial
thermoplasty.
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datasets were then validated in the validation dataset. Performance of the model to distinguish severe
asthmatic subjects versus healthy controls was evaluated by area under the curve (AUC) analysis.

Pathway and network analyses
The differentially expressed gene lists from the meta-analysis and our bronchial thermoplasty dataset were
compared. Pathway and network analyses were performed using MetaCore (Clarivate Analytics,
Philadelphia, PA, USA). The significant common pathways were defined as pathways with FDR adjusted
p-values <0.05. The network was built from the overlapping genes using the algorithm of shortest paths
with two maximal steps.

Results
Table 1 summarises the age and sex of the study population in our bronchial thermoplasty dataset and the
data source of the studies included in the meta-analysis. There were 12 subjects with a total of 25
bronchial thermoplasty sessions in our bronchial thermoplasty dataset. 50% of the subjects were males.
The mean±SD age was 55±13 years. Among the 12 subjects, eight subjects were ex-smokers and four
subjects were never-smokers. Also, two subjects had peripheral eosinophilia with counts >500 μL−1. Seven
subjects received omalizumab at the time of the thermoplasty. The mean±SD exhaled nitric oxide fraction
(FENO) was 26±19 ppb. One subject had FENO >50 ppb and six subjects had FENO <25 ppb. 11 of the 12
subjects completed all three bronchial thermoplasty sessions. Five subjects had three full sets of gene
expression data, three subjects had two sets of gene expression data and the remaining four subjects had
one set of gene expression data. The CONSORT flow diagram is shown in figure 2. In total, 133 severe
asthma cases and 107 healthy controls were included in the meta-analysis datasets. From the meta-analysis
datasets, 28 severe asthma cases and 42 healthy controls were reserved for the validation cohort.

In our longitudinal bronchial thermoplasty dataset, 116 genes demonstrated significant change in
expression levels in response to bronchial thermoplasty sessions (FDR adjusted p-value <0.001) using a
variance component score test (supplementary table S1).

For the meta-analysis, we identified four available public datasets with a total of 240 subjects that met our
inclusion criteria. Among them, GSE43696 [19], GSE63142 [20] and GSE89809 [21] were used for the
discovery dataset, while GSE64913 [22] was used for the validation dataset. 421 genes were differentially
expressed in severe asthmatic subjects compared with healthy controls (FDR adjusted p-value <0.05). From
the model obtained using the validation dataset, we determined that the 421 genes we identified correctly
distinguished severe asthmatic subjects from healthy controls with an AUC value of 0.85 (95% CI
0.75–0.95) (supplementary table S2).

Comparing the longitudinal bronchial thermoplasty and meta-analysis gene lists, there were eight
overlapping genes (genes associated with severe asthma and changed by bronchial thermoplasty):
AMIGO2, CBX7, NR3C2, SETBP1, SHANK2, SNTB1, STXBP1 and ZNF853 (figure 3). All these

TABLE 1 Characteristics of study subjects

Study

BT dataset GSE43696 GSE63142 GSE89809 GSE64913

Use Longitudinal gene
expression change

Meta-analysis
(discovery)

Meta-analysis
(discovery)

Meta-analysis
(discovery)

Meta-analysis
(validation)

PubMed ID [ref.] 24518246 [19] 25338189 [20] 28933920 [21] 28045928 [22]
Data type RNA sequencing Microarray Microarray Microarray Microarray
Severe asthmatic subjects n 12 38 56 11 28
Males in severe asthmatic
subjects %

50.00 26.32 NP 45.45 57.14

Mean±SD age in severe
asthmatic subjects years

55.17±13.07 44.40±10.06 NP 53.00±12.04 40.57±13.96

Median (interquartile range)
FEV1 % pred#

59 (54–68) 56 (40–71) 56±20
(mean±SEM)

63 (52–75) 64 (26–123)
(mean (range))

Maintenance oral
corticosteroids# %

41.67 NP NP 28.57 23.53

Healthy controls n 0 20 27 18 42

BT: bronchial thermoplasty; FEV1: forced expiratory volume in 1 s; NP: not provided in the data. #: value extracted from the original paper, not
the published RNA microarray data.
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overlapping genes were downregulated in severe asthmatic subjects compared with healthy controls in the
differential expression meta-analysis. Two identified genes did not overlap between datasets, but were
members of the same Rho GTPase family: RAC3 was differentially expressed in the meta-analysis and
RHOBTB2 was differentially expressed in our bronchial thermoplasty dataset (table 2).

The differentially expressed, overlapping genes we identified from the meta-analysis and our longitudinal
bronchial thermoplasty dataset were then subjected to downstream pathway and network analysis; 10 significant
common pathways were identified as shown in table 3. Multiple pathways were found to be associated with
neurophysiological processes and the cystic fibrosis transmembrane conductance regulator (CFTR). An
additional pathway associated with gene expression changes from bronchial thermoplasty alone (SREBP1

Assessed for eligibility (n=14)

Excluded (n=2)

Interval between the first BT

   session and the subsequent BT was

   >6 months

Completed one BT session due to acute

exacerbation with the first BT session (n=1)

Completed all three BT sessions (n=11):

n=5 patients had RNA samples from each of the

   three BT sessions

n=3 patients had RNA samples from 

BT sessions 1 and 2

n=3 patients had a single RNA sample from 

BT session 3

Analysed (n=12) with a total of 25 RNA samples:

First BT (9 samples)

Second BT (8 samples)

Third BT (8 samples)

FIGURE 2 CONSORT flow diagram. BT: bronchial thermoplasty.

FIGURE 3 Number of unique and
common genes in each analysis.
BT: bronchial thermoplasty.
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and PDK2) is associated with a development role of interleukin (IL)-8 during angiogenesis (adjusted
p-value 0.014). A network was built by using the shortest path with a maximum of two steps from the
eight overlapping genes and Rho GTPase (figure 4). The key hub genes in this network were Rho GTPase
family members RAC2 and RHOBTB2. Other key genes included AR (connects Rho GTPase and
AMIGO2), PKD2 (connects Rho GTPase and STXBP1) and SGK1 (connects NR3C2 and SHANK2), which
were differentially expressed in the meta-analysis (table 2).

Discussion
To the best of our knowledge, this is the first study exploring the potential mechanisms of bronchial
thermoplasty using a transcriptomic approach to gene expression profiles in bronchial epithelial cells. Our
method is robust and novel by combining the meta-analysis of public repositories and time-course
longitudinal analysis of our patient cohort to identify the severe asthma-associated genes that were
expressed differentially after serial bronchial thermoplasty treatments. Our methods utilise a longitudinal
study design to test the trajectory of gene expression rather than simply comparing discrete time-points.
By comparing our gene list with the results from the meta-analysis to identify overlapping genes, we focus
on the possible disease-modifying mechanisms of bronchial thermoplasty rather than simply the overall
pathways changed by bronchial thermoplasty. Our findings suggest that neurophysiological processes,
CFTR activity and Rho GTPase are altered during bronchial thermoplasty sessions and represent possible
important mechanisms in severe asthma.

Our study used airway epithelial cell samples instead of peripheral blood, which we suggest is a more
robust representation of the changes that are occurring in the airway. We chose to sample airway cells that
are untreated by the thermal energy of bronchial thermoplasty. The fact that we observed longitudinal
gene expression changes over the course of bronchial thermoplasty sessions strongly suggests that we are
observing fundamental changes to the entire lung that are induced by this therapy rather than a localised
response to injury and repair. This finding is consistent with previous observations that bronchial
thermoplasty influences important changes in adjacent untreated airways [10–12], which are likely to be,
or reflect, the biological changes responsible for positive outcomes in severe asthma patients.

For example, NR3C2, identified in our study, encodes for a mineralocorticoid receptor and is bound by
cortisol with high affinity. Single nucleotide polymorphisms residing in NR3C2 are found to be associated
with asthma-related cytokines and chemokines, including interferon-γ, IL-13 and eotaxin [23]. Reduction

TABLE 2 Differentially expressed genes from meta-analyses and the clinical cohort of patients undergoing bronchial
thermoplasty (BT)

Gene symbol Description Differential expression
meta-analysis

Genes changed over BT
sessions: FDR adjusted

p-value¶Effect
size#

FDR adjusted
p-value¶

Overlapping genes
SNTB1 β1-syntrophin −1.07 1.55×10−17 <0.001
CBX7 Chromobox protein homologue 7 −0.82 1.13×10−8 <0.001
ZNF853 Zinc finger protein 853 −0.72 1.56×10−7 <0.001
NR3C2 Mineralocorticoid receptor −0.97 1.09×10−6 <0.001
STXBP1 Syntaxin-binding protein 1 −0.70 1.54×10−6 <0.001
SETBP1 SET-binding protein −0.64 3.47×10−6 <0.001
AMIGO2 Amphoterin-induced protein 2 −0.92 3.84×10−6 <0.001
SHANK2 SH3 and multiple ankyrin repeat domains

protein 2
−0.46 1.36×10−4 <0.001

Rho GTPase
RAC3 Ras-related C3 botulinum toxin substrate 3 0.85 2.40×10−5 0.247
RHOBTB2 Rho-related BTB domain-containing protein 2 0.17 2.64×10−1 <0.001

Unique genes in the
network
AR Androgen receptor −0.81 3.23×10−7 0.090
PKD2 Protein kinase D2 −0.83 7.47×10−9 0.157
SGK1 Serum/glucocorticoid regulated kinase 1 0.92 4.80×10−6 1.000

FDR: false discovery rate. #: standardised mean difference (log2 scale);
¶: p-value adjusted by the Benjamini–Hochberg procedure.
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in NR3C2 after bronchial thermoplasty is a potential mechanism for the observed decreased concentration
of eosinophils in bronchoalveolar lavage of treated individuals [11]. Similarly, STXBP1 encodes for a
syntaxin-binding protein and plays an important role in the release of neurotransmitters via regulation of
syntaxin. This gene is involved in multiple neurophysiological processes as shown by our pathway analysis.
Alteration of this gene after bronchial thermoplasty is consistent with the findings from previous studies
that bronchial thermoplasty decreases the number of submucosal and airway smooth muscle-associated
nerve fibres, as well as epithelial neuroendocrine cells [13]. Interestingly, both STXBP1 and SHANK2 have
been found to independently regulate CFTR activity [24, 25]. Syntaxin 1A has been reported to regulate
ion channels, possibly through direct inhibition of CFTR with direct protein–protein interaction [24].
SHANK2 physically and functionally is linked with cyclic nucleotide phosphodiesterase 4, an important
target for novel therapies in asthma given its role in bronchoconstriction [25]. Although CFTR activity has
been reported to be associated with chronic pulmonary diseases [26], its role in asthma is unclear.
However, salt and water balance are critical components of airway calibre, and our findings suggest a novel
pathway for future study.

Our network analysis demonstrates that the Rho GTPase family is a key hub connecting multiple gene
networks. The Rho family of GTPases is a family of small signalling G proteins. The Rho GTPase pathway
was found to impact calcium sensitisation of smooth muscle and regulate the contraction of the bronchial
smooth muscle [27, 28]. Its downstream target, Rho kinase, has been investigated as a therapeutic target in
the treatment of asthma [29, 30]. Based on our findings, bronchial thermoplasty may modify the function
of members in the Rho GTPase family and therefore impact bronchial constriction in addition to reducing
smooth muscle area.

As we obtained airway brush samples prior to each treatment session, our study is limited by the absence
of an airway cell brush sample after subjects completed the final of the three bronchial thermoplasty
sessions. The three samples we included for analysis were baseline (before any bronchial thermoplasty
treatment), after the first session of bronchial thermoplasty ( just prior to the second treatment) and after
the second session of bronchial thermoplasty ( just prior to the third treatment). Therefore, we are able to
detect the processes altered from baseline through two treatment sessions, but not after completion of all
three bronchial thermoplasty sessions.

Another limitation is the lack of robust clinical characterisation of the patients undergoing bronchial
thermoplasty beyond that presented in table 1. Most of our patients were referrals from outside
institutions. Therefore, we have no established baseline characteristics, particularly each patient’s severe
asthma phenotype (e.g. uncontrolled airway inflammation versus airway hyperresponsiveness). For similar
reasons, we are unable to confirm a link between gene expression changes and related clinical outcomes in
patients undergoing bronchial thermoplasty. Future studies linking changes in gene expression with

TABLE 3 Significant pathways (false discovery rate (FDR) adjusted p-value <0.05) associated with overlapping genes between
differentially expressed genes from meta-analyses and genes that changed over serial bronchial thermoplasty sessions

MetaCore pathway name Genes
n

p-value FDR adjusted
p-value#

Genes from
data

Regulation of CFTR activity 62 3.601×10−4 3.601×10−3 STXBP1,
SHANK2

Cytoskeleton remodelling neurofilaments 25 1.221×10−2 2.438×10−2 STXBP1
Neurophysiological process role of CDK5 in pre-synaptic signalling 28 1.367×10−2 2.438×10−2 STXBP1
Neurophysiological process GABA-B receptor signalling in pre-synaptic
nerve terminals

28 1.367×10−2 2.438×10−2 STXBP1

Muscle contraction nNOS signalling in skeletal muscle 28 1.367×10−2 2.438×10−2 SNTB1
Transport aldosterone-mediated regulation of ENaC sodium transport 30 1.464×10−2 2.438×10−2 NR3C2
Neurophysiological process Ephrin-B receptors in dendritic spine
morphogenesis and synaptogenesis

35 1.706×10−2 2.438×10−2 SHANK2

wtCFTR and ΔF508 traffic/membrane expression 47 2.286×10−2 2.807×10−2 STXBP1
Neurophysiological process synaptic vesicle fusion and recycling in
nerve terminals

52 2.527×10−2 2.807×10−2 STXBP1

Neurophysiological process constitutive and activity-dependent synaptic
AMPA receptor delivery

59 2.863×10−2 2.863×10−2 SHANK2

CFTR: cystic fibrosis transmembrane conductance regulator; CDK: cyclin-dependent kinase; GABA: γ-aminobutyric acid; nNOS: neuronal
nitric oxide synthase; ENaC: epithelial sodium channel; wt: wild-type; AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid. #:
p-value adjusted by the Benjamini–Hochberg procedure.

https://doi.org/10.1183/23120541.00123-2018 7

ASTHMA | S-Y LIAO ET AL.



specific clinical outcomes (i.e. changes in airway hyperresponsiveness) or specific severe asthma
phenotypes (neutrophilic versus eosinophilic inflammation) are needed to better characterise those patients
that will most likely benefit from bronchial thermoplasty.

Utilising a transcriptomic approach, we have identified potential mechanisms to explain the effectiveness
of bronchial thermoplasty. We provided evidence that bronchial thermoplasty impacts neurophysiological
processes, which is highly consistent with our current understanding of severe asthma pathobiology. We
additionally identified novel targets, including CFTR and Rho GTPase family members. Future studies will
need to focus on the relationship between these identified pathways and clinical response to therapy, and if
differential expression of these pathways in severe asthmatic subjects identifies those patients most likely to
respond to bronchial thermoplasty as a therapeutic option.
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