Early View

Research letter

COVID-19 in two severe asthmatics receiving benralizumab: busting the eosinophilia myth

Andreas Renner, Katharina Marth, Karin Patocka, Marco Idzko, Wolfgang Pohl


This manuscript has recently been accepted for publication in the ERJ Open Research. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJOR online.

Copyright ©ERS 2020. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0.
COVID-19 in two severe asthmatics receiving benralizumab: busting the eosinophilia myth.

Andreas Renner, MD a, 1, Katharina Marth, MD a, Karin Patocka, MSc a, Marco Idzko, MD b, Wolfgang Pohl, MD a

aKarl Landsteiner Institute for Clinical and Experimental Pneumology, Hietzing Hospital, Wolkersbergenstraße 1, 1130 Vienna, Austria.

bDepartment of Pulmonology, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria.

Corresponding author: Andreas Renner, Karl Landsteiner Institute for Clinical and Experimental Pneumology, Hietzing Hospital, Wolkersbergenstraße 1, 1130 Vienna, Austria. Andreas.renner@helsinki.fi +436601666310

“Take home” message: Our experience with very mild COVID-19 disease courses in two severe eosinophilic asthmatics with complete eosinophil depletion due to benralizumab treatment counters the recent theories that eosinophilia is protective in COVID-19 infections.

1 Present address: Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
To the Editor,

Amidst the current pandemic there is only little clinical evidence regarding COVID-19 infections in asthma patients. Chinese data [1,2] suggests that asthma patients might not be of an elevated risk of severe infections. A recent article by Carli et al [3] hypothesises that asthma might even have a protective effect in COVID-19 infections. It is important to point out, that this is purely theoretical. Eosinophils from healthy probands have an antiviral activity against respiratory syncytial virus and influenza virus, but not eosinophils collected from asthma patients [4]. Eosinopenia, alongside lymphopenia has been seen in COVID-19 patients [2]. Both eosinopenia and lymphopenia are more common in in patients with COVID-19 pneumonitis compared to patients with non-COVID-19 viral pneumonitis [5]. Azkur et al attribute this to an overwhelming type 1 response [6].

Peters et al showed that angiotensin converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2), two molecules previously identified to facilitate severe acute respiratory syndrome coronavirus 2 infection of host cells [7], have a higher expression in the sputum of certain asthmatics (African Americans, males, and diabetics) and a lower expression in the sputum of asthma patients receiving inhaled corticosteroids, even when controlled for disease severity [8]. This provides rational for both potentially identifying at-risk populations and a protective effect of inhaled corticosteroids in asthma patients for COVID-19 infections that goes beyond improved asthma control. Kimura et al showed that IL-13, a mediator of T2 high asthma and a target of the monoclonal antibody (mAB) dupilumab, decreases ACE2 and increases TMPRSS2, possibly resulting in a zero-sum effect [9].

The current evidence on asthma, eosinophilia, T2 inflammation, and COVID-19 from preclinical and epidemiological data paints contradicting pictures. The work of Sabogal
Piñeros et al suggests that eosinophils in asthmatics and non-asthmatics are not comparable in the context of viral infections [4]. While the evidence for COVID-19 infections in severe asthmatics receiving mABs is only anecdotal, we believe that some important observations can be made.

In their recent publication, Förster-Ruhrmann et al [10] presented the case of a mild COVID-19 infection in a patient receiving dupilumab for severe chronic rhinosinusitis with nasal polyps (CRSwNP). Based on the information provided in the case report it can be assumed that the patient suffers from aspirin-exacerbated respiratory disease, a distinct subtype of eosinophilic asthma. The authors hypothesised, that an increase in blood eosinophils, a well-known effect of dupilumab treatment, might have had a protective effect during the COVID-19 infection. This misconception, based on a paper by Liu et al [11] has led some to argue for the discontinuation of anti-IL-5/5R mABs in severe eosinophilic asthmatics. This has been strongly discouraged in a recent position paper by Shaker et al [12].

Two severe eosinophilic asthmatics receiving benralizumab at our severe asthma clinic have had COVID-19 infections. Both patients experienced a very mild disease course with minimal to no deterioration in asthma control. The case-report of a 41-year old male patient has recently been published by Renner et al [13]. A 66-year old male patient with severe eosinophilic asthma and CRSwNP has received benralizumab since December 2018. Baseline blood eosinophilia before initiation of benralizumab was 380 cells/μL. Similar to our recently published case-report, blood eosinophils were depleted immediately (20 cells/μL 24 hours after treatment initiation, no detectable eosinophils thereafter) and asthma control improved rapidly (asthma control test 11 before treatment, >20 after treatment).

On March 28th 2020 the patient developed fever, anosmia and fatigue. Two SARS-CoV-2 PCR tests were taken on two different days, both were positive. The fever improved after few
days, anosmia and fatigue lasted two weeks. The patient did not experience any pulmonary symptoms, asthma control test and asthma control questionnaire 6-item scale were unchanged to before the infection (25 and 0, respectively). No increase in asthma medication was necessary.

In our opinion, two assumptions can be made from viewing these three cases together.

The first concerns the potential protective effect of mAB treatment in these patients. While there is little evidence that asthmatics are at an elevated risk of more severe COVID-19 infections, both the patient presented here, as well as the patient in Renner et al [13] regularly suffered from viral exacerbations before the initiation of benralizumab. Case-reports, and even case-series, only provide anecdotal evidence, but with a growing number of similar cases, also the strength of this evidence increases. We believe that this potential protective effect might be rather based on good asthma control rather than immunological mechanisms, which are different in benralizumab and dupilumab.

Secondly, both our patients had no detectable blood eosinophils due to benralizumab treatment at the time of COVID-19 infection. As pointed out in a recent review by Lindsley et al [14] a protective effect of eosinophilia in COVID-19 infections seems unlikely. Thus, we believe that there is no protective effect of elevated blood eosinophils, at least in eosinophilic asthmatics, and that this did not contribute to the mild disease in the patient presented by Förster-Ruhrmann et al [10].

More case studies, and if possible prospective data collections and formal analyses of severe eosinophilic asthmatics receiving mAB treatment with COVID-19 infections, are necessary to confirm the assumptions laid out above.

Acknowledgements: none
Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflicts of Interest: The authors declare no relevant conflicts of interest

References


