Early View Original article # Pulmonary function tests in type-2 diabetes. A meta-analysis Jesús Díez-Manglano, Uxua Asìn Samper Please cite this article as: Díez-Manglano Jús, Samper UAìn. Pulmonary function tests in type-2 diabetes. A meta-analysis. *ERJ Open Res* 2020; in press (https://doi.org/10.1183/23120541.00371-2020). This manuscript has recently been accepted for publication in the *ERJ Open Research*. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJOR online. Copyright ©ERS 2020. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. #### **CLEAN COPY** # Pulmonary function tests in type-2 diabetes. A meta-analysis #### **Authors** Jesús Díez-Manglano M.D., Ph.D.a, Uxua Asìn Samper M.D.b ^aDepartment of Internal Medicine, Hospital Royo Villanova, Zaragoza, Spain. ^bDepartment of Internal Medicine, University Hospital Miguel Servet, Zaragoza, Spain. # Corresponding author Jesús Díez-Manglano Duquesa Villahermosa 163, 8° D 50009 Zaragoza, Spain Email: idiez@aragon.es Phone +34976466910 ORCID: 0000-0002-3132-2171 # Contributor statement Jesús Díez-Manglano and Uxua Asìn Samper participated in study design, literature search, data collection, data analysis, and data interpretation. Jesús Díez-Manglano drafted the manuscript, and Uxua Asìn Samper contributed and approved the final version of the manuscript. # Funding: None The corresponding author has full access to all the data in the study and has final responsibility for the decision to submit for publication. ### **Disclosure** The authors declare no conflict of interest. # PULMONARY FUNCTION TESTS IN TYPE-2 DIABETES. A META-ANALYSIS #### **ABSTRACT** **Objectives**: To determine the association between type 2 diabetes (T2D) and pulmonary function tests. **Methods**: After conducting an exhaustive literature search, we performed a meta-analysis. We employed the inverse variance method with a random effects model to calculate the effect estimate as the mean difference (MD) and 95% confidence interval (CI). We calculated the heterogeneity with the I² statistic and performed a meta-regression analysis by sex, body mass index (BMI), smoking and geographical region. We also conducted a sensitivity analysis according to the studies' publication date, size of the T2D group and the study quality, excluding the study with the greatest weight in the effect. **Results**: The meta-analysis included 66 studies, one longitudinal, 2 case-control and 63 cross-sectional ones, with 11,134 patients with T2D and 48,377 control participants. The pooled MD (95%CI) for the predicted percentage of FEV₁, FVC, FEF_{25-75%}, PEF and DL_{CO} were -7.15 (95%CI -8.27, -6.03; p<0.001), -9.21 (95%CI -11.15, -7.26; p<0.001), -9.89 (95%CI -14.42, -5.36; p<0.001), -9.79 (95%CI -13.42, -6.15; p<0.001) and -7.13 (95%CI -10.62, -3.64; p<0.001), respectively. There was no difference in the ratio of FEV₁/FVC (95%CI -0.27; -1.63, 1.08; p=0.69). In all cases, there was considerable heterogeneity. The meta-regression analysis showed that between studies heterogeneity was not explained by patient sex, BMI, smoking or geographical region. The findings were consistent in the sensitivity analysis. **Conclusions**: T2D is associated with impaired pulmonary function, independently of sex, smoking, BMI, and geographical region. Longitudinal studies are needed to investigate outcomes for patients with T2D and impaired pulmonary function. **Keywords**: Type-2 diabetes; Pulmonary function test; meta-analysis. #### INTRODUCTION Diabetes is a chronic disease that affects 463 million people worldwide over the age of 20 years and is expected to affect more than 570 million by 2030 [1]. Diabetes is a leading cause of cardiovascular disease, blindness, kidney failure and lower limb amputation [2]. It is estimated that 4.2 million deaths worldwide were due to type-2 diabetes (T2D) and its complications in 2019 [1]. T2D affects all organs in the human body. It usually develops relatively slowly, and it is frequent the existence of target organ damage when T2D is diagnosed. A number of studies have shown fibrotic changes in the lungs [3] and pulmonary microcirculation disorders in patients with diabetes [4]. There have been persistent attempts investigating abnormal respiratory conditions in general diabetic patients [5-6]. However, pulmonary function impairment has not been well studied in patients with T2D. Although interest in this condition has increased in recent years, the findings of studies reflect high variability. A 2010 meta-analysis by van den Borst et al showed an association between T2D and a restrictive pattern [7]. Recently, Saini et al have conducted a new systematic review including exclusively English language studies published in PubMed between 2010 and 2018 [8]. Both meta-analysis reported data about forced expiratory volume in one second (FEV₁), forced vital capacity (FVC) and FEV₁/FVC ratio, and van den Borst et al also data about diffusing capacity of the lungs for carbon monoxide (DL_{CO}). We hypothesize that lung may be a target organ of T2D. To contribute to advance the knowledge in this field, we decided to perform a new meta-analysis including literature published in all languages and analyzing the influence of publication date, study quality and number of individuals included. Furthermore, as novelty, we determined the influence of sex, tobacco use, geographical area and body mass index. The aim of this meta-analysis was to investigate the abnormal pulmonary function test results for patients with T2D incorporating the most recent studies. In addition to the parameters reported in the two previous systematic reviews, we included forced expiratory flow between 25% and 75% of total lung capacity (FEF_{25-75%}) and peak expiratory flow (PEF). # **METHODS** We designed this meta-analysis to determine the influence of T2D on the following parameters of pulmonary function tests: FEV_1 , FVC, FEV_1 /FVC ratio, $FEF_{25-75\%}$, PEF and DL_{CO} . The protocol for this meta-analysis was recorded in the PROSPERO registry (number CRD42020145456) and was conducted according to the guidelines of the Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. # Data sources and search strategy We performed a systematic search in PubMed, EMBASE, The Cochrane Library and Virtual Health Library databases from their inception to August 1st, 2019. The search strategy was "(*pulmonary function test* OR FEV_1 OR FVC OR DL_{CO} OR PEF OR FEF_{25-75}) AND *diabetes*". We performed an additional search in Google and ResearchGate. The reference lists of the selected studies were screened manually to find more studies. ### Study selection To be included in this review, the studies had to meet the following inclusion criteria: - (i) Presence of a T2D group and a control group without diabetes. - (ii) Provide values either of FEV₁, FVC, PEF, FEF_{25-75%}, DL_{CO} and/or FEV₁/FVC ratio for both patient groups. The exclusion criteria were studies on cystic fibrosis-related diabetes, type-1 diabetes, studies that did not differentiate between type-1 and type-2 diabetes, studies that included patients with respiratory diseases as asthma or chronic obstructive pulmonary disease, studies that did not report data on mean and standard deviation, studies published in predatory journals, conference abstracts, theses and articles published in Chinese language. We considered predatory all journals that appeared in the List of Predatory Journals (https://predatoryjournals.com/journals/). When two studies referred to the same population, in the same period and showed overlapping data, we selected the most recent study for inclusion. We independently screened the articles by reviewing the titles and abstracts. We recovered the studies that met the inclusion criteria and those with abstracts that lacked crucial information to evaluate the full text. Any discrepancy was resolved by consensus. When a study's full text was not accessible online or supplemental data were required, we made an attempt to contact the authors by email; unfortunately, these attempts were not successful. ### **Quality assessment** We independently assessed the risk of bias of all the studies included using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies (National Heart, Lung, and Blood Institute at the National Institutes of Health, USA), available from https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. It includes 14 items about objective, population, rate of eligible persons, sample size, exposure, outcomes, blinded assessors, follow-up and confounding varables. The two authors classified the studies as good, fair or poor. Any discrepancy was resolved by consensus. We considered a study as poor when T2D patients and controls were not selected from the same population or in a different time or place, and fair when we cannot determine this and there were doubts about a selection bias. All studies were included in the meta-analysis; however, we conducted a sensitivity study only on those studies of good quality. ### **Data extraction** From each included study, we extracted the following information: first author, year of publication, country, sample size, patient age, sex, body mass index, tobacco use, T2D duration, fasting blood glucose, glycated hemoglobin and microangiopathy. The extracted results were FEV₁ (liters, L), percentage of predicted (%) FEV₁, FVC (L), %FVC, FEV₁/FVC ratio(%), FEF_{25-75%} (L/s), %FEF_{25-75%}, PEF (L/s), %PEF, DL_{CO} (mL/min/mm Hg) and %DL_{CO}. Whenever the T2D or control group was divided into subgroups, a pooled mean and standard
deviation for these combined subgroups was calculated. # Data synthesis and statistical analysis We performed the statistical analysis using Review Manager version 5.3 (Cochrane Collaboration, Baltimore, MD, USA). The results are expressed as mean differences with 95% confidence intervals. Throughout the analysis, we applied the inverse variance method with a random effects model. To assess the heterogeneity and inconsistency between the studies, we employed the tau squared and I squared (I²) statistics. Data with p≥0.10 and I²≤50% were defined as low heterogeneity. We evaluated the publication bias with a funnel plot. We planned a meta-regression analysis by subgroup according to sex, geographical area, tobacco use and body mass index. We performed a sensitivity analysis by applying a fixed effects model and calculating the effect estimates according to publication date, size of T2D group and study quality and by eliminating the study with the greatest weight on the effect. We established three categories of publication year, before 2000, 2000-2009 and 2010-2019, and two categories of T2D group size, < 50 and ≥ 50 patients. For the sensitivity analysis according study quality, we calculated the effect estimates in two ways, including only the good quality studies and including all studies adding predatory journals and grey literature. # Results # Study selection We identified 17,662 records. Figure 1 shows the study selection flowchart. Our initial search strategy produced 17,549 articles. With the manual search of the reference lists and the additional search in Google and ResearchGate, we added 115 articles. After eliminating the duplicated and irrelevant articles, we were left with 263 articles. We excluded 191 articles for the following reasons: 62 had no control group, 49 included patients with types 1 and 2 diabetes without differentiating them, 30 provided insufficient numerical data to be included in the meta-analysis, 26 originated from predatory journals, 10 presented overlapping data, six came from grey literature (theses and proceedings), four were in Chinese language, one included patients with respiratory diseases, two were meta-analyses and one was an editorial. There was no inter-rater agreement in study selection and consensus was necessary for eight studies. Furthermore, the full-text of six papers was not found (supplementary material). Ultimately, we included 66 studies in the metaanalysis [9-74], one longitudinal, 2 case control and 63 cross-sectional ones. From the longitudinal study, we extracted only the baseline pulmonary function test data. # Study characteristics Table 1 lists the characteristics of the included studies, which were published between 1991 and 2018. Three studies were conducted in Africa, 11 in America, 33 in Asia, 18 in Europe and one in Oceania. Fifty-eight studies were written in English, 4 in Turkish, 2 in Spanish, one in German and one in Japanese. After the quality assessment, we classified 60 studies as good, six as fair and four as poor. The inter-rater agreement was full. A total of 59,511 participants were included, 11,134 in the T2D group and 48,377 in the control group. The age range of T2D patients was 39.8-79 years, and 35.1% were women. # **Pulmonary function tests** We provide here data on predicted percentages of pulmonary function tests. Data about absolute values are reported in supplementary material. # FEV₁ A total of 41 studies included data on %FEV₁, and 34 included data on FEV₁(L). Figures 2A and S1 (supplementary material) show the comparison forest plot. The pooled effect estimates for the patients with T2D were -7.15 (95%CI -8.27 to -6.03; p<0.0001) for %FEV₁ and -0.34 (95%CI -0.42 to -0.27; p<0.0001) for FEV₁(L). ### **FVC** A total of 35 studies included data on %FVC, and 23 included data on FVC(L). Figures 2B and S2 (supplementary material) show the effect estimates. The pooled estimates for the patients with T2D were -9.21 (95%Cl -11.15 to -7.26; p<0.0001) for %FVC and -0.36 (95%Cl -0.43 to -0.29; p<0.0001) for FVC(L). # FEV₁/FVC ratio A total of 45 studies included data on the FEV_1/FVC ratio (%). Figure 3 shows the comparison forest plot. The pooled effect estimate for the patients with T2D was -0.27 (95%CI -1.63 to 1.08; p<0.69). ### FEF_{25-75%} A total of 13 studies included data on %FEF_{25-75%}, and 12 included data on FEF_{25-75%} (L/s). Figures 4A and S3 (supplementary material) show the forest plots of the effect estimates. For the patients with T2D, the pooled estimates for %FEF_{25-75%} and FEF_{25-75%}(L/s) were -9.89 (95%CI -14.42 to -5.36; p<0.0001) and -0.48 (95%CI -0.71 to -0.24; p<0.0001), respectively. ### PEF A total of 15 studies included data on %PEF, and 19 included data on PEF(L/s). Figures 4B and S4 (supplementary material) show the comparison forest plot. The pooled effect estimates for the patients with T2D were -9.79 (95%CI -13.42 to -6.15; p<0.0001) for %PEF and -1.07 (95%CI -1.43 to -0.71; p<0.0001) for PEF(L/s). #### DLco A total of 12 studies included data on %DL_{CO}, and ten included data on DL_{CO}(mL/min/mm Hg). Figures 4C and S5 (supplementary material) show the comparison forest plot. The pooled effect estimates for the patients with T2D were -7.13 (95%CI -10.62 to -3.64; p<0.0001) for %DL_{CO} and -3.42 (95%CI -5.14 to -1.70; p<0.0001) for DL_{CO} (mL/min/mmHg). There was significant heterogeneity for all parameters of the pulmonary function tests (I², 80–100%). ### Subgroup analysis Tables 2 and S1 (supplementary material) present the meta-regression analysis prespecified by subgroup. #### Sex Fifteen studies reported data differentiated by sex. A comparison could be established for %FEV₁, FEV₁(L), %FVC, FVC(L), FEV₁/FVC ratio and PEF (L/s). There were no differences by sex (p>0.25 for all cases). #### Tobacco use Fourteen studies included patients who smoked and those who did not, and 43 studies included exclusively nonsmokers. Another nine studies did not report data on tobacco use. There was heterogeneity between the groups; the effect estimate for the patients with T2D who did not smoke presented a reduction in %FEV₁, %FVC, FVC(L) (p≤0.01 for all) and PEF(L/s) (p<0.001), which was higher than in the other studies that included smokers and nonsmokers. # Geographical region The same abnormal pulmonary function test results were observed in the patients with T2D in all continents. However, we observed heterogeneity between the various continents in %FEV₁, %FVC, FEV₁/FVC ratio, FEF_{25-75%}(L/s), %PEF, DL_{CO}(mL/min/mm Hg) (all p<0.001) and PEF(L/s) (p=0.004). # Sensitivity analysis When we applied the fixed effects model, we observed the same abnormal pulmonary function test results. The same result occurred when we performed an analysis separated by publication year, size of the T2D group, study quality and even when we included the articles from predatory journals and from the proceedings of congresses (Tables 3 and S2 supplementary material). The magnitude of the effect estimates was higher for %FEV₁, %FVC, %FEF_{25-75%}, %PEF and %DL_{CO} when only good quality studies were included in the meta-analysis. The removal of the study with greatest weight in each pulmonary function test did not change the results. #### **Publication bias** The funnel plots showed asymmetry, indicating the presence of potential publication biases (figures 5 and S6 supplementary material). # DISCUSSION The results of our meta-analysis show that all of the pulmonary function test results, except the FEV₁/FVC ratio, were decreased for the patients with T2D. This pulmonary function impairment in T2D is observed worldwide, also in nonsmokers and is independent of sex. Various qualitative reviews have been published on the influence of diabetes on pulmonary function [75-80], all of which have reported the presence of a reduction in FEV₁ and FVC in patients with diabetes. In 2010, van den Borst et al published a meta-analysis on pulmonary function in patients with diabetes [7], which included 16 studies with 1695 patients with T2D and 10,260 controls. The pooled difference in the %FEV₁, %FVC and %DL_{CO} was -4.86, -6.67 and -9.30, respectively, with no difference in the FEV₁/FVC ratio. Their results are consistent with those observed in our meta-analysis. Recently, Saini et al reported another meta-analysis with 22 studies that included 7526 patients with T2D and 43,641 controls [8]. The pooled difference in the %FEV₁ and %FVC was -6.37 and -6.56 respectively, with no difference in the FEV₁/FVC ratio. The meta-analysis also presented data on FEV₁(L), FVC(L), with differences of -0.27 and -0.31 L, respectively, which were consistent with those observed in our meta-analysis. However, our meta-analysis and that of Saini et al. differ in the included studies. In our meta-analysis there are 20 studies that Saini et at did not include–[38,40,43,44,47-50,53,57,59-68]. Moreover, we did not include 9 of the studies in the Saini et al meta-analysis because we considered that the studies did not clearly state that they only included patients with T2D [supplementary material, references S86-S88, S96, S98, S103, S104, S106, S108]. Unlike the studies by van den Borst et al and Saini et al, our meta-analysis included data on PEF and FEF_{25-75%}. The patients with T2D have a reduction of almost 10% in both of these tests, which indicates that there was impairment both in the large and small airways. The functional impairment observed in patients with T2D for FEV₁ and FVC appear modest but is approximately 300 mL. Much lower differences (100–150 mL) have been considered significant in clinical trials with bronchodilators in patients with chronic obstructive pulmonary disease [81,82]. Therefore, pulmonary function impairment in T2D is relevant, although prospective longitudinal studies are still necessary to elucidate the progression of patients with diabetes and pulmonary impairment. It is widely known that patients with T2D have
more diseases and pulmonary infections, including pneumonia and tuberculosis [83,84]. The prevalence of T2D varies according to geographical region and is higher in North America, Southeast Asia and the Middle East [1]. Age, sex, weight, height, body position and ethnicity are factors that affect pulmonary function [85]. We therefore proposed a prespecified analysis of pulmonary function tests for patients with T2D from various continents. Patients with T2D from all geographical regions presented reduced FEV₁, FVC, PEF, FEF_{25-75%} and DL_{CO}. We also found that impairment of T2D in the pulmonary function tests was observed in both sexes and did not change when we included only those studies with nonsmoker patients. In fact, the decrease of pulmonary function tests was higher in studies that included only nonsmokers than in the studies with a mixture of smokers and nonsmokers. We don't have an explanation for this finding, but we have observed that most of studies including smokers were conducted in Europe and America. It is possible that patients included in studies from Asia and Africa were nonsmokers but had more environmental exposure to biomass fuel, air pollution or other noxious particles or gases. Overweight and obesity are associated with a detriment of lung function [86,87]. Therefore, we could consider that BMI is a confounder. Interestingly, we have observed that the reduction in pulmonary function tests, specifically FEV₁, FVC, FEF_{25-75%} and DL_{CO}, is present in normal, overweight and obese patients with T2D. FEV₁ reflects the airway resistance, and FVC the total compliance from both the chest wall and the lungs. The fat accumulation on the chest wall and in abdomen substantially alters the movement of thoracic cage and diaphragm and impairs the lung compliance [88]. Including PEF and FEF $_{25-75\%}$ is one of novel findings in this meta-analysis. The decrease of %PEF and %FEV $_1$ in patients with T2D was -9.79% y -7.15% respectively. It is known that there is high correlation between both parameters. However, while FEV $_1$ is a good indicator of peripheral and proximal airway resistance, PEF reflects the status of proximal airway and is more effort dependant. FEF $_{25-75\%}$ is a function of the small airway obstruction. The structural changes of airway and the destruction of the lung parenchyma can modify FEF $_{25-75\%}$. Thus, other mechanisms, and not only obesity or tobacco use, must be involved in the decrease of lung function in patients with T2D and normal or overweight. There are structural abnormalities in the lungs of patients with diabetes that could help explain the abnormal pulmonary function test results. Studies on the lungs of obese diabetic rats have observed thickening of alveolar basal lamina [88]. Autopsies of human patients with diabetes have also observed thickening of the capillary and epithelial basement membrane [89,90]. This thickening is due to inflammatory and fibrotic changes [91]. Fibrosis causes reduced pulmonary elasticity and can decrease lung volumes in T2D. The deterioration of alveolar integrity has also been shown through lung scans following radionuclide inhalation [92]. Alteration of the capillary microcirculation structure can impair pulmonary perfusion and change the ventilation/perfusion ratio [93], which would explain the reduction in DL_{CO} in patients with T2D. Various biochemical mechanisms have been proposed to explain the pulmonary damage observed in T2D [94]. Sustained hyperglycemia causes reduced superoxide dismutase activity and increased oxidative stress. The oxidative stress increases nonenzymatic glycosylation, contributing to pulmonary fibrosis. Abnormalities in the polyol pathways have also been involved, as well as abnormalities in the protein kinase B and nuclear factor KB signaling pathways and in transforming growth factor beta [91,94]. Heterogeneity is an important finding in our meta-analysis. There are several possible reasons for it. Firstly, there are differences in participants of studies. The mean age of T2D patients ranged from 39.8 to 79 years, the T2D duration from 0.35 to 12.9 years, the mean glycated hemoglobin from 6.1 to 9.5% and 0-92% patients had microangiopathy. Even in each continent, there are differences among patients from various geographical regions, for example between Japanese and Iranian in Asia, or Canadian and Venezuelan in America, or German and Greek people in Europe. Secondly, it is possible a publication bias. Probably there are small studies with negative results that have not been published. One of our study's strengths is the exhaustive literature comprehensive literature search that only excluded Chinese articles. Our additional search provided a large number of articles not collected in the main databases. However, there was a notably high number of articles published in predatory journals, which leads us to think that there are a significant number of studies on pulmonary function in patients with T2D that have not been published, probably due to their low methodological quality. We also performed a sensitivity analysis, observing that the abnormalities in the pulmonary function test results were maintained when we changed statistical analysis method, both with a fixed and a random effects model. The results also did not change when we differentiated them by study publication date, by including only the good quality studies and even when we excluded the study with the greatest weight, all of which reinforces the results of the meta-analysis. However, our study also has a number of limitations. Firstly, we resolved the discrepancies in study selection and quality assessment by consensus, and did not calculate the Cohen's kappa. However, the level of inter-rater agreement was high in study selection and total in quality assessment. Secondly, we observed considerable heterogeneity between the studies, even between those performed in the same geographical region. Although the implementation of a pulmonary function test is standardized, we cannot rule out that the heterogeneity is due to differing methods for measuring the pulmonary parameters. Thirdly, of the 66 studies included in the meta-analysis, only half included 50 or more cases in the T2D group, which leads us to think that many more studies might have been conducted with small groups that have not been published. The funnel plots also seem to indicate this idea. However, the results were consistent when we included only the studies with more patients. Finally, only a small number of the studies provided data separated by sex. The results of the analysis by sex should therefore be taken with caution and should be validated in future studies with a large number of patients. In conclusion, T2D is associated with pulmonary function impairment; however, further studies with large numbers of patients from all geographical areas are needed to corroborate these data and to provide insight into the still pending issues on pulmonary impairment in patients with T2D, specifically progression and possible therapies. #### REFERENCES - International Diabetes Federation. IDF diabetes atlas 9th ed, 2019. Available at https://www.diabetesatlas.org/en/resources/https://www.diabetesatlas.org/en/resources/. Last accessed: May 05, 2020. - 2. Organisation for Economic Co-Operation and Development. Health at a glance 2019. OECD indicators. Available on: https://www.oecd-ilibrary.org/social-issues-migration-health/health-at-a-glance-2019 4dd50c09-en. Last accessed: January 22, 2020. - 3. Ban CR, Twigg S. M. Fibrosis in diabetes complications: pathogenic mechanisms and circulating and urinary markers. Vasc Health Risk Manag 2008; 4: 575-96. - 4. Roberts TJ, Burns AT, MacIsaac RJ, MacIsaac AI, Prior DL, La Gerche A. Diagnosis and significance of pulmonary microvascular disease in diabetes. Diabetes Care 2018; 41: 854-61. - 5. Lange P, Parner J, Schnohr P, Jensen G. Copenhagen City Heart Study: longitudinal analysis of ventilator capacity in diabetic and nondiabetic adults. Eur Respir J 2002; 20: 1406-12. - 6. Kuziemski K, Slominski W, Jassem E. Impact of diabetes mellitus on functional exercise capacity and pulmonary functions in patients with diabetes and healthy persons. BMC Endocr Disord 2019; 19: 2. - 7. Van den Borst B, Gosker HR, Zeegers MP, Schols MWJ. Pulmonary function in diabetes. A metaanalysis. Chest 2010; 138: 393-406. - 8. Saini M, Kulandaivelan S, Bansal VK, Saini V, Sharma S, Kaur J, et al. Pulmonary pathology among patients with type 2 diabetes mellitus: an updated systematic review and meta-analysis. Curr Diabetes Rev 2020; 16: 759-69. - 9. Matsubara T, Hara F. The pulmonary function and histopathological studies of the lung in diabetes mellitus. Nippon Ika Daigaku Zashi 1991; 528-36. - 10. Lara-Rodríguez DA, Varela González JH, Verlezza S, Medrano Rojas G. Disfunción pulmonar en pacientes diabéticos no insulinodependientes. Med Interna (Caracas) 1995; 11: 17-28. - 11. Barret-Connor E, Frette C. NIDDM, impaired glucose tolerance, and pulmonary function in older adults. Diabetes Care 1996; 19; 1441-4. - 12. Katoh J, Hara Y, Kurusu M, Miyaji J, Narutaki K. Cardiorespiratory function as assessed by exercise testing in patients with non-insulin-dependent diabetes mellitus. J Int Med Res 1996; 24: 209-13. - 13. Isotani H, Nakamura Y, Kameoka K, Tanaka K, Furukawa K, Kitaoka H, et al. Pulmonary diffusing capacity, serum angiotensin-converting enzyme activity and the angiotensin-converting enzyme gene in Japanese non-insulin-dependent diabetes mellitus patients. Diab Res Clin Pract 1999; 43: 173-7. - 14. Benbassat CA, Stern E, Kramer M, Lebzelter J, Blum I, Fink G. Pulmonary function in patients with diabetes mellitus. Am J Med Sci 2001; 322: 127-32. - 15. Zamarrón C, del Campo F, Paredes C, Rodríguez Suárez JR. Estudio de la difusión pulmonar de monóxido de carbono en dos situaciones clínicas: asma bronquial y diabetes mellitus. An Med Intern
(Madrid) 2001; 18: 237-42. - 16. Ari G, Itil O, Çömlekçi A, Özdogan O, Degirmenci B, Yesil S, et al. Pulmonary function tests and inhalation perfusion scintigraphy findings in patients with type 2 diabetes mellitus. Turk Thorac J 2002; 3: 257-65. - 17. Guazzi M, Brambilla R, De Vita S, Guazzi MD. Diabetes worsens pulmonary diffusion in heart failure, and insulin counteracts this effect. Am J Respir Crit Care Med 2002; 166: 978-82. - 18. Maiolo C, Mohamed EI, Di Daniele N, Pepe M, Perriello G, De Lorenzo A. Body composition and pulmonary function in obese type 2 diabetic women. Diab Nutr Metab 2002; 15: 20-5. - 19. Boulbou MS, Gourgoulianis K, Petinaki EA, Klisiaris VK, Maniatis AN, Molyvdas PA. Pulmonary function and circulating adhesion molecules in patients with diabetes mellitus. Can Respir J 2003; 10: 259-64. - 20. Guvener N, Tutuncu NB, Ackay S, Eyuboglu F, Gokcel A. Alveolar gas exchange in patients with type-2 diabetes mellitus. Endocrine J 2033; 50: 663-7. - 21.Melo E, Vianna EO, Gallo Jr L, Foss MC, Terra-Filho J. Pulmonary function, cholinergic bronchomotor tone, and cardiac autonomic abnormalities in type 2 diabetic patients. Braz J Med Biol Res 2003; 36: 291-9. - 22. Lau AC, Lo MK, Leung GT, Choi FP, Yam LY, Wasserman K. Altered exercise gas exchange as related to microalbuminuria in type 2 diabetic patients. Chest 2004; 125: 1292-8. - 23. Sinha S, Guleria R, Misra A, Pandey RM, Yadav R, Tiwari S. Pulmonary functions in patients with type 2 diabetes mellitus & correlation with microvascular complications. Indian J Med Res 2004; 119: 66-71. - 24. Weisbrod CJ, Eastwood PR, O'Driscoll GO, Green DJ. Abnormal ventilatory responses to hypoxia in type 2 diabetes. Diabetic Medicine 2005; 22: 563-8. - 25. Meo SA, Al-Drees AM, Arif M, Al-Rubean K. Lung function in type 2 Saudi diabetic patients. Saudi Med J 2006; 27: 338-43. - 26. Ortiz-Aguirre AR, Vargas MH, Torres-Cruz A, Quijano-Torres M. Cambios espirométricos relacionados con la edad en pacientes diabéticos. Rev Invetig Clin 2006; 58: 109-18. - 27. Özsahin K, Tugrul Ä, Mert S, Yüksel M, Tugrul G. Evaluation of pulmonary alveolo-capillary permeability in type 2 diabetes mellitus using technetium 99mTc-DTPA aerosol scintigraphy and carbon monoxide diffusion capacity. J Diab Complications 2006; 20: 205-9. - 28. Chance WW, Rhee C, Yilmaz C, Dane DM, Pruneda ML, Raskin P, et al. Diminished alveolar microvascular reserves in type 2 diabetes reflect systemic microangiopathy. Diabetes Care 2008; 31: 1596-601. - 29. Dennis RJ, Maldonado D, Rojas MX, Aschner P, Rondón M, Charry L, et al. [Diabetes mellitus tipo 2 y deterioro de la función pulmonar]. Acta Med Colomb 2008; 33: 105-10. - 30. Kabitz HJ, Sonntag F, Walker D, Schwoerer A, Walterspacher S, Kaufmann S, et al. Diabetic polyneuropathy is associated with respiratory muscle impairment in type 2 diabetes. Diabetologia 2008; 51: 191-7. - 31. Yeh HC, Punjabi NM, Wang NY, Pankow JS, Duncan BB, Cox CE, et al. Cross-sectional and prospective study of lung function in adults with type 2 diabetes. Diabetes Care 2008; 31: 741-6. - 32. Ali O, Begum S, Begum N, Ali T, Ferdousi S, Begum A. FVC, FEV1 and FEV1/FVC% in type 2 diabetes and their relationships with duration of the disease. J Bangladesh Soc Physiol 2009; 4: 81-7. - 33. Saler T, Cakmak G, Saglam ZA, Ataoglu E, Erdem TY, Yenigun M. The assessment of pulmonary diffusing capacity in diabetes mellitus with regard to microalbuminuria. Intern Med 2009; 48: 1939-43. - 34. Verma S, Goni M, Kudyar RP. Assessment of pulmonary functions in patients with diabetes mellitus. JK Science 2009; 11: 71-4. - 35. Agarwal AS, Fuladi AB, Mishra G, Tayade BO. Spirometry and diffusion studies in patients with type-2 diabetes mellitus and their association with microvascular complications. Indian J Chest Dis Allied Sci 2010; 52: 213-6. - 36. Ali O, Begum S, Begum N, Ali T, Ferdousi S. PEFR and FEF_{25-75%} in type 2 diabetes mellitus and their relationships with its duration. J Bangladesh Soc Physiol 2010; 5: 14-9. - 37. Lecube A, Sampol G, Muñoz X, Hernández C, Mesa J, Simó R. Type 2 diabetes impairs pulmonary function in morbidly obese women: a case—control study. Diabetologia 2010; 53: 1210-6. - 38. Ozoh OB, Okubabejo NU, Bandele EO, Chukwu CC. Ventilatory function in Nigerians with type 2 diabetes. African J Respir Med 2010 March; 18-22 - 39. Büyükhatipoglu H, Çelik K, Eren MA, Dag OF, Gence M, Çelik H, Aksoy N. [The association between microalbuminuria and carbon monoxide diffusion capacity in patients with type-II diabetes mellitus]. Duzce Med J 2011; 13: 30-5. - 40. Ceylan E, Turan MN, Günak F. Relationship between diabetes control and pulmonary functions with type ii diabetes mellitus patients. Üzmir G.Û.s Hastanesi Dergisi 2011; 25: 101-6. - 41. Dharwadkar AR, Dharwadkar AA, Banu G, Bagali S. Reduction in lung functions in type-2 diabetes in Indian population: correlation with glycemic status. Indian J Physiol Pharmacol 2011; 55: 170-5. - 42. Kim HK, Kim CM, Jung YJ, Bae SJ, Choe J, Park JY, et al. Association of restrictive ventilatory dysfunction with insulin resistance and type 2 diabetes in Koreans. Exp Clin Endocrinol Diabetes 2011; 19: 47-52. - 43. Klein OL, Meltzer D, Carnethon M, Khrisnan JA. Type II diabetes mellitus is associated with decreased measures of lung function in a clinical setting. Respir Med 2011; 105: 1095-8. - 44. Al-Habbo DJS, Al-Ameen AM. Diabetes mellitus and lung function tests. Ann Coll Med Mosul 2012; 38: 27-32. - 45. Klein OL, Jones M, LeeJ, Collard HR, Smith LJ. Reduced lung diffusion capacity in type 2 diabetes is independent of heart failure. Diabetes Res Clin Pract 2012; 96: e73-5. - 46. Klein OL, Kalhan R, Williams MV, Tippig M, Lee J, Peng J,et al. Lung spirometry parameters and diffusion capacity are decreased in patients with type 2 diabetes. Diabet Med 2012; 29: 212-9. - 47. Nandhini R, Syed afina SS, Saikumar P. Respiratory myopathy in type II diabetes mellitus. J Clin Diag Res 2012; 6: 354-7. - 48. Abd-El-Azeem A, Hamdy G, Amin M, Rasahd A. Pulmonary function changes in diabetic lung. Egypt J Chest Dis Tuberc 2013; 62: 513-17. - 49. Akber ZA, Al-Edani NI, Khalid LO. Pulmonary Function in Type 2 Diabetic Patients in Basrah. N Iraqi J Med 2013; 9: 76-81. - 50. Alkinany ASG. Pulmonary function tests in male patients with type II diabetes mellitus. J Basrah Res Sci 2013; 39: 182-7. - 51. Anandhalakshmi S, Manikandan S, Ganeshkumar P, Ramachandran C. Alveolar gas exchange and pulmonary functions in patients with type II diabetes mellitus. J Clin Diagn Res 2013; 7: 1874-7. - 52. Aparna A. Pulmonary function tests in type 2 diabetics and non-diabetic people A comparative study. J Clin Diagn Res 2013; 7: 1606-8. - 53. Rajani M, Manoj DK, Rajeev R, Achuthan V. Study of pulmonary function tests in type-2 diabetes mellitus. Pulmon 2013; 15: 19-24. - 54. Shafiee G, Khamseh ME, Rezaei N, Aghili R, Malek M. Alteration of pulmonary function in diabetic nephropathy. J Diab Metab Disord 2013; 12: 15. - 55. Shah SH, Sonawane P, Nahar P, Vaidya S, Salvi S. Pulmonary function tests in type 2 diabetes mellitus and their association with glycemic control and duration of the disease. Lung India 2013; 30: 108-12. - 56. Huang H, Guo Q, Li L, Lin S, Lin Y, Gong X, et al. Effect of type 2 diabetes mellitus on pulmonary function. Exp Clin Endocrinol Diabetes 2014; 122: 322-6. - 57. Jamatia SNN, Wangkheimayum K, Singh WA, Yumnam G. Effect of glycemic status on lung function tests in type 2 diabetes mellitus. J Med Soc 2014; 2: 69-72. - 58. Uz-Zaman S, Banerjee J, Singhamahapatra, A, Dey PK, Roy A, Roy K, et al. Assessment of lung function by spirometry and diffusion study and effect of glycemic control on pulmonary Function in type 2 diabetes mellitus patients of the eastern India. J Clin Diag Res 2014; 8: BC01-4. - 59. Zineldin MAF, Hasan KAG, Al-Adl AS. Respiratory function in type II diabetes mellitus. Egypt J Chest Dis Tuberc 2015; 64: 219-23. - 60. Buchmann N, Norman K, Steinhagen-Thiessen E, Demuth I, Eckart R. Lungenfunktion bei älteren Probanden mit metabolischem Syndrom und Typ-2-Diabetes. Ergebnisse der Berliner Altersstudie II. Z Gerontol Geriat 2016; 49: 405-15. - 61. Kaur S, Agarwal N. Pulmonary function tests in type 2 diabetes mellitus. Arch Med Health Sci 2016; 4: 35-9. - 62. Kumar A, Bade G, Trivedi A, Jyotsna VP, Talwar A. Postural variation of pulmonary diffusing capacity as a marker of lung microangiopathy in Indian patients with type 2 diabetes mellitus. Indian J Endocrinol Metab 2016; 20: 238-44. - 63. Caron J, DuManoir GR, Labrecque L, Chouinard A, Ferland A, Poirier P, et al. Impact of type 2 diabetes on cardiorespiratory function and exercise performance. Physiol Rep 2017; 5: e13145. - 64. Khafaie MA, Salvi SS, Yajnik CS, Ojha A, Khafaie B, Gore SD. Air pollution and respiratory health among diabetic and non-diabetic subjects in Pune, India—results from the Wellcome Trust Genetic Study. Environ Sci Pollt Res 2017; 24: 15538-46. - 65. Kim HY, Sohn TS, Seok H, Yeo CD, Kim YS, Song JY, et al. Prevalence and risk factors for reduced pulmonary function in diabetic patients: The Korea National Health and Nutrition Examination Survey. Korean J Intern Med 2017; 32: 682-9. - 66. López-Cano C, Lecube A, García-Ramírez M, Muñoz X, Sánchez E, Seminario A, et al. Serum surfactant protein D as a biomarker for measuring lung involvement in obese patients with type 2 diabetes. J Clin Endocrinol Metab 2017; 102: 4109-16. - 67. Nidhianand, Nayyer PS, Rana V, Verma S. Changes in pulmonary functions in type 2 diabetes mellitus. Indian J Med Spec 2017; 8: 3-6. - 68. Shergill N, Kumar A. A study of pulmonary functions in Punjabi type-2 diabetics and non-diabetics. J Exerc Sci Physiother 2017; 13: 60-4. - 69. Tai H, Wang M, Zhao Y, Li L, Jiang X, Dong Z, et al. Pulmonary function and retrobulbar hemodynamics in subjects with type 2 diabetes mellitus. Respir Care 2017; 62: 602-14. - 70. Wilms B, Ernst B, Thurnheer M, Spengler CM, Schultes B. Type 2 diabetes is
associated with lower cardiorespiratory fitness independent of pulmonary function in severe obesity. Exp Clin Endocrinol Diabetes 2017; 125: 301-6. - 71. Okur I, Taspinar B, Atalay OT, Kilit TP, Erbay UT, Okur EO. The effects of type 2 diabetes mellitus and its complications on physical and pulmonary functions: A case–control study. Physiother Theory Pract 2018; DOI: 10.1080/09593985.2018.1517198. - 72. Rohling M, Pesta D, Markgraf DF, Strassburger K, Knebel B, Burkart V, et al. Metabolic determinants of impaired pulmonary function in patients with newly diagnosed type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2018; 126: 584-9. - 73. Tayarami A, Moazamian D, Farsi M, Salimi M. Assessment of spirometric indices in patients with type 2 diabetes in Imam Hussein Hospital, Shahroud, Iran (2016-2017). Int J Health Stud 2018; 4: 17-20. - 74. Van Eetvelde BLM, Cambier D, Vanden Wyngaert K, Celie B, Calders P. The influence of clinically diagnosed neuropathy on respiratory muscle strength in type 2 diabetes mellitus. J Diab Res 2018; 8065938. - 75. Goldman MD, Lung dysfunction in diabetes. Diabetes Care 2003; 26: 195-8. - 76. Kaparianos A, Argyropoulou E, Sampsonas F, Karkoulias K, Tsiamita M, Spiropoulos K. Pulmonary complications in diabetes mellitus. Chron Respir Dis 2008; 5: 2101-8. - 77. Tiengo A, Fadini GP, Avogaro A. The metabolic syndrome, diabetes and lung dysfunction. Diab Metab 2008; 34: 447-54. - 78. Klein OL, Krishnan JA, Glick S, Smith LJ. Systematic review of the association between lung function and type 2 diabetes mellitus. Diabet Med 2010; 27: 977-87. - 79. Pitocco D, Fuso L, Conte EG, Zaccardi F, Condoluci A, Scavone G, et al. The diabetic lung A new target organ? Rev Diabet Stud 2012; 9: 23-35. - 80. Lecube A, Simó R, Pallayoba M, Punjabi NM, López-Cano C, Turino C, et al. Pulmonary function and sleep breathing: two new targets for type 2 diabetes care. Endocrin Rev 2017; 38: 550-73. - 81.Tashkin DP, Celli B, Senn S, Burkhart D, Kesten S, Mengoje J, et al; UPLIFT Study investigators. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med 2008; 359: 1543-54. - 82. Hanania NA, Feldman G, Zachgo W, Shim JJ, Crim C, Sandford L, et al. The efficacy and safety of the novel long-acting β2 agonist vilanterol in patients with COPD: a randomized placebo-controlled trial. Chest 2012; 142: 119-27. - 83. Ehrlich SF, Quesenberry CP Jr, Van den Eeden SK, Shan J, Ferrara A. Patients diagnosed with diabetes are at increased risk for asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and pneumonia but not lung cancer. Diabetes Care 2010; 33 55-60. - 84. Al-Rifai RH, Pearson F, Critchley JA, Abu-Raddad LJ. Association between diabetes mellitus and active tuberculosis: A systematic review and meta-analysis. PLoS ONE 2017; 12: e0187967. - 85. Talaminos Barroso A, Márquez Martín A, Roa Romero LA, Ortega Ruiz F. Factors affecting lung function: a review of the literature. Arch Bronconeumol 2018; 54: 327-32. - 86. Forno E, Hang YY, Mullen J, Celedón JC. Overweight, obesity, and lung function in children and adults a meta-analysis. J Allergy Clin Immunol Pract 2018; 6: 570-81. - 87. Wang S, Sun X, Tsia TH, Lin X, Li M. The effect of body mass index on spirometry tests among adults in Xi´an, China. Medicine 2017; 96: e6596. - 88. Peters U, Dixon AE. The effect of obesity on lung function. Expert rev Respir Med 2018: 12: 755-67. - 89. Foster DJ, Ravikumar P, Bellotto DJ, Unger RH, Hsia CC. Fatty diabetic lung: altered alveolar structure and surfactant protein expression. Am J Physiol Lung Cell Mol Physiol 2010; 298: L392-403. - 90. Vracko R, Thorning D, Huang TW. Basal lamina of alveolar epithelium and capillaries: quantitative changes with aging and in diabetes mellitus. Am Rev Respir Dis 1979; 120: 973-83. - 91. Weynand B, Jonckheere A, Frans A, Rahier J. Diabetes mellitus induces a thickening of the pulmonary basal lamina. Respiration 1999; 66: 14-9. - 92. Talakatta G, Sarikhani M, Muhamed J, Dhanya K, Somashekar BS, Mahesh PA, et al. Diabetes induces fibrotic changes in the lung through the activation of TGF-β signaling pathways. Scient Rep 2018; 8: 11920. - 93.Lin CC, Chang CT, Li TC, Kao A. Objective evidence of impairment of alveolar integrity in patients with non-insulin dependent diabetes mellitus using radionuclide inhalation lung scan. Lung 2002; 180: 181-6 - 94. Kuziemski K, Pienkowska J, Slominski W, Jassem E, Studniarek M. Pulmonary capillary permeability and pulmonary microangiopathy in diabetes mellitus. Diabetes Res Clin Pract 2015; 108: e56-9. - 95. Zheng H, Wu J, Jin Z, Yan LJ. Potential biochemical mechanisms of lung injury in diabetes. Aging Dis 2017; 8: 7-16. | Table | 1. Characteristics of the | ne included studies | and patients with t | ype 2 diab | etes | | | | | | | | |-------|---------------------------|------------------------|------------------------------|-----------------------|---------------|----------------|--|--------------------|---------------------------|------------------------------------|--|------------------| | Ref | Study, author, year | Country
(continent) | DM group size
(men/women) | Mean
age,
years | Smokers,
% | BMI
(kg/m²) | Fasting
blood
glucose,
mmol/L | Glycated
Hb (%) | T2D
duration,
years | Patients with microangiopath y (%) | Pulmonary function tests | Study
quality | | 9 | Matsubara, 1991 | Japan (As) | 53 (29/23) | 58.0 | NR | NR | NR | 9.5 | 7.4 | NR | FEV ₁ , DL _{CO} | Fair | | 10 | Lara-Rodríguez,
1995 | Venezuela (Am) | 12 (7/5) | 47.0 | 0 | NR | NR | NR | NR | 83 | FEV ₁ , FVC, FEV ₁ /FVC, FEF _{25-75%} , DL _{CO} | Fair | | 11 | Barrett-Connor,
1996 | USA (Am) | 139 (71/68) | 75.9 | 5.7 | 26.3 | 6.94 | NR | NR | NR | FEV ₁ , FVC | Good | | 12 | Katoh, 1996 | Japan (As) | 19 (10/9) | 50.5 | NR | 27.8 | 7.49 | 7.5 | NR | NR | FEV ₁ | Fair | | 13 | Isotani, 1999 | Japan (As) | 54 (23/31) | 54.9 | 0 | 22.2 | 9.77 | 9 | 11.0 | 68.5 | FEV ₁ , DL _{CO} | Good | | 14 | Benbassat, 2001 | Israel (As) | 12 (8/4) | 60 | 0 | 29.6 | NR | 9.0 | 12.8 | 33 | FEV ₁ , FVC, FEF _{25-75%} , DL _{CO} | Good | | 15 | Zamarrón, 2001 | Spain (Eu) | 31 (5/26) | 71.1 | 0 | NR | NR | NR | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC, FEF _{25-75%} , DL _{CO} | Good | | 16 | Ari, 2002 | Turkey (Eu) | 25 (5/20) | 55.6 | 0 | 25.8 | NR | 7.5 | 9.4 | 25 | FEV ₁ , FVC, FEV ₁ /FVC, FEF ₂₅₋₇₅ %, PEF, DL _{CO} | Good | | 17 | Guazzi, 2002 | Italy (Eu) | 15 (8/7) | 62.3 | 0 | NR | 7.6 | 6.1 | NR | NR | FEV ₁ , DL _{CO} | Good | | 18 | Maiolo, 2002 | Italy (Eu) | 12 (0/12) | 50.3 | 0 | 32.6 | 11.43 | NR | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC, PEF | Good | | 19 | Boulbou, 2003 | Greece (Eu) | 33 | NR | 0 | 27.3 | NR | NR | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC, DL _{CO} | Good | | 20 | Guvener, 2003 | Turkey (Eu) | 25 (9/16) | 56.3 | 0 | 29.9 | NR | 7.4 | 5.8 | 63.6 | FEV ₁ , FVC, PEF, DL _{CO} | Good | | 21 | Melo, 2003 | Brazil (Am) | 17 (8/9) | 47.0 | 0 | NR | NR | NR | 7.5 | 47 | FEV ₁ , FVC, FEV ₁ /FVC, FEF25-75 | Good | | 22 | Lau, 2004 | China (As) | 40 (26/14) | 49.8 | 10 | 25.9 | NR | 7.9 | 7.8 | 50 | FEV ₁ , FVC, FEV ₁ /FVC, DL _{CO} | Poor | | 23 | Sinha, 2004 | India (as) | 29 (21/8) | 46.7 | 0 | 24.9 | 14.54 | 8.6 | 4.4 | 41.4 | FEV ₁ , FVC, PEF, DL _{CO} | Good | | 24 | Weisbrod, 2005 | Australia (Oc) | 8 (5/3) | 56.2 | 0 | 29.9 | 9.1 | 7.9 | 5.1 | 0 | FEV ₁ , FVC, FEV ₁ /FVC | Good | | 25 | Meo, 2006 | Saudi Arabia
(As) | 32 (32/0) | 52.6 | 0 | NR | NR | NR | 10 | NR | FEV ₁ , FVC, FEV ₁ /FVC, FEF _{25-75%} , PEF | Good | | 26 | Ortiz-Aguirre, 2006 | Mexico (Am) | 144 (54/90) | 57.7 | 36.8 | 28.8 | 9.16 | NR | 9.2 | NR | FEV ₁ , FVC, FEV ₁ /FVC, PEF | Poor | | 27 | Ozsahin, 2006 | Turkey (Eu) | 25 (6/19) | 55 | 0 | 24.3 | NR | NR | 9.3 | 92 | DL _{co} | Fair | | 28 | Chance, 2008 | USA (Am) | 69 (38/31) | 46.1 | 0 | 31.1 | NR | 8.3 | 7.8 | 38 | FEV ₁ , FVC, FEV ₁ /FVC | Good | | 29 | Dennis, 2008 | Colombia (Am) | 262 (107/155) | 50.9 | 15.3 | NR | NR | NR | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC | Good | | 30 | Kabitz, 2008 | Germany (Eu) | 21 (21/0) | 63.6 | NR | 28.5 | NR | 7.3 | 12.9 | 52.4 | FEV ₁ , FVC, FEV ₁ /FVC | Good | | 31 | Yeh, 2008 | USA (Am) | 1100 (528/572) | 55 | 19 | 30.9 | NR | NR | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC | Good | | 32 | Ali, 2009 | Bangladesh (As) | 60 (60/0) | 51.8 | 0 | 21.3 | NR | 6.8 | 10.6 | NR | FEV ₁ , FVC, FEV ₁ /FVC | Good | | 33 | Saler, 2009 | Turkey (Eu) | 68 (19/49) | 52.4 | 0 | 27.0 | NR | 7.4 | 7.6 | 44 | DL _{co} | Good | | 34 | Verma, 2009 | India (As) | 50 (30/20) | 50.2 | 0 | NR | NR | NR | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC, FEF _{25-75%} , PEF | Good | | 35 | Agarwal, 2010 | India (As) | 30 (17/13) | 44.6 | 0 | 22.0 | NR | 8.7 | 5.4 | 50 | FEV ₁ , FVC, FEF _{25-75%} , PEF, DL _{CO} | Good | | 36 | Ali, 2010, | Bangladesh (As) | 60 (60/0) | 51.8 | 0 | 21.3 | NR | 6.8 | 10.6 | NR | FEF _{25-75%} , PEF | Good | | 37 | Lecube, 2010 | Spain (Eu) | 25 (0/25) | 44.0 | 0 | 49.2 | 8.6 | 7.5 | NR | 16 | FEV ₁ , FVC, FEV ₁ /FVC, FEF _{25-75%} | Good | | 38 | Ozoh, 2010 | Nigeria (Af) | 101 (47/54) | 46.1 | 0 | 28.3 | NR | 7.8 | 1m-18y | NR | FEV ₁ , FVC, FEV ₁ /FVC, PEF | Good | | 39 | Buyukhatipoglu,
2011 | Turkey (Eu) | 80 (40/40) | 47.8 | 0 | 26.7 | 10.77 | 9.3 | 5 | 50 | DL _{co} | Good | | 40 | Ceylan, 2011 | Turkey (Eu) | 37 (16/21) | 39.8 | 0 | NR | NR | 8.2 | 7 | NR | FEV ₁ , FVC, FEV ₁ /FVC, FEF _{25-75%} , PEF, DL _{CO} | Good | | 41 | Dharwadkar, 2011 | India (As) | 40 (25/15) | 52.3 | 0 | 22.7 | 8.2 | NR | 6.4 | NR | FEV1, FVC, PEF | Poor | |----|--------------------|---------------------|----------------|--------|------|------|-------|------|-------|------|--|------| | 42 | Kim, 2011 | South Korea | 2745 | 55 | 29 | 25.1 | NR | NR | NR
| NR | FEV ₁ , FVC, FEV ₁ /FVC | Good | | | | (As) | (2168/577) | | | | | | | | | | | 43 | Klein, 2011 | USA (Am) | 76 (33/43) | 63.1 | 29 | 34.2 | NR | NR | 6.7 | NR | FEV ₁ , FVC | Good | | 44 | Al-Habbo, 2012 | Iraq (As) | 45 (26/19) | 46.7 | NR | NR | NR | NR | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC, FEF _{25-75%} , PEF | Good | | 45 | Klein, 2012 | USA (Am) | 303 (178/125) | 61.7 | 29.4 | 31.4 | NR | NR | NR | NR | DL _{co} | Good | | 46 | Klein, 2012b | USA (Am) | 560 (314/260) | 62.0 | 27 | 31.7 | NR | NR | NR | NR | FEV ₁ , FVC, DL _{CO} | Good | | 47 | Nandhini, 2012 | India (As) | 45 (30/15) | 47.1 | NR | NR | 7.1 | NR | 6.3 | NR | FEV ₁ , FVC, FEV ₁ /FVC, FEF _{25-75%} , PEF | Good | | 48 | Abd-El-Azeem, 2013 | Egypt (Af) | 30 | NR | 0 | NR | NR | NR | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC, FEF _{25-75%} , PEF, DL _{CO} | Good | | 49 | Akber, 2013 | Iraq (As) | 63 (28/35) | 51.0 | 0 | 30.0 | NR | NR | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC | Good | | 50 | Alkinany, 2013 | Iraq (As) | 60 (60/0) | 40-60y | 0 | NR | NR | NR | NR | NR | FEV ₁ , FVC | Poor | | 51 | Anandhalakshmi, | India (As) | 30 | 44.8 | 0 | 26.1 | NR | 6.8 | 7.0 | NR | FEV ₁ , FVC, FEV ₁ /FVC, FEF _{25-75%} , PEF, DL _{CO} | Good | | | 2013 | | | | | | | | | | | | | 52 | Aparna, 2013 | India (As) | 40 (22/18) | 49 | 0 | 25.2 | NR | NR | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC, PEF | Fair | | 53 | Rajani, 2013 | India (As) | 40 (19/21) | 46 | 0 | NR | 10.88 | 7.0 | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC, FEF _{25-75%} , PEF | Good | | 54 | Shafiee, 2013 | Iran (As) | 80 (31/49) | 53.6 | 0 | 28.8 | NR | 8.4 | 9.8 | 50 | FEV ₁ , FVC, FEV ₁ /FVC, PEF | Good | | 55 | Shah, 2013 | India (As) | 60 (60/0) | 53.9 | 0 | NR | NR | 7.1 | 6.6 | NR | FEV ₁ , FVC, FEV ₁ /FVC, FEF _{25-75%} , PEF | Good | | 56 | Huang, 2014 | China (As) | 292 (181/111) | 66.8 | 0 | 23.9 | 8.55 | NR | 5.2 | NR | FEV ₁ , FVC, FEV ₁ /FVC | Good | | 57 | Jamatia, 2014 | India (As) | 30 (19/11) | 57.7 | 0 | 23.5 | 10.71 | 7.93 | >2y | 0 | FEV ₁ , FVC, FEV ₁ /FVC, FEF _{25-75%} , PEF | Good | | 58 | Uz-Zaman, 2014 | India (As) | 60 | 44.6 | 0 | 24.4 | 9.93 | 7.1 | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC, FEF _{25-75%} , PEF, DL _{CO} | Good | | 59 | Zineldin, 2015 | Egypt (Af) | 45 (45/0) | 51.1 | 0 | 24.5 | NR | 7.5 | 7.6 | NR | FEV ₁ , FVC, FEV ₁ /FVC, PEF | Good | | 60 | Buchmann, 2016 | Germany (Eu) | 91 (49/42) | 67.9 | 9.6 | 29.2 | NR | NR | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC | Good | | 61 | Kaur, 2016 | India (As) | 50 | NR | 0 | NR | NR | NR | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC, PEF | Good | | 62 | Kumar, 2016 | India (As) | 40 | 50.7 | 0 | 25.4 | 10.6 | 8.5 | 11.1 | 50 | FEV ₁ , FVC, FEV ₁ /FVC, DL _{CO} | Poor | | 63 | Caron, 2017 | Canada (Am) | 10 (10/0) | 55 | NR | 30.0 | 6,5 | 6.1 | 1.25y | 0 | FEV ₁ , FVC, DL _{CO} | Good | | 64 | Khafaie, 2017 | Iran (As) | 347 (268/79) | 54.6 | 21 | 26.7 | 7.98 | 8.8 | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC | Poor | | 65 | Kim, 2017 | South Korea
(As) | 1431 (814/617) | 59.1 | 20 | 25.4 | 7.54 | 7.3 | 4.7 | NR | FEV ₁ , FVC, FEV ₁ /FVC | Good | | 66 | López-Cano, 2017 | Spain (Eu) | 49 (12/37) | 51.3 | 0 | 42.0 | 9.2 | 8.0 | NR | NR | FEV ₁ , FVC, FEF _{25-75%} | Good | | 67 | Nidhianand, 2017 | India (As) | 100 (57/43) | 46.6 | 0 | NR | NR | NR | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC, PEF | Good | | 68 | Shergill, 2017 | India (As) | 50 (50/0) | 52.6 | NR | 23.7 | NR | NR | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC, PEF | Good | | 69 | Tai, 2017 | China (As) | 63 (34/29) | 53.0 | 0 | 27.7 | 7.9 | 8.0 | 7.8v | NR | FEV ₁ , FVC, FEV ₁ /FVC, DL _{CO} | Good | | 70 | Wilms, 2017 | Switzerland (Eu) | 65 (19/46) | 46.9 | 27.7 | 44.0 | 8.9 | 7.9 | NR | NR | FEV ₁ , FEV ₁ /FVC | Fair | | 71 | Okur, 2018 | Turkey (Eu) | 58 (15/43) | 53.3 | NR | 31.7 | 10.27 | 8.2 | 9.9v | NR | FEV ₁ , FVC, FEV ₁ /FVC, FEF _{25-75%} , PEF | Good | | 72 | Rohling, 2018 | Germany (Eu) | 34 (21/13) | 53.0 | 26.5 | 30.8 | NR | 6.4 | 0.35y | NR | FEV ₁ , FVC | Good | | 73 | Tayarami, 2018 | Iran (As) | 50 | 58.3 | 0 | NR | NR | NR | NR | NR | FEV ₁ , FVC, FEV ₁ /FVC, FEF _{25-75%} , PEF | Good | | 74 | Van Eetvelde, 2018 | Belgium (Eu) | 110 (39/71) | 79 | NR | 295 | NR | 6.7 | 10.3 | 74,5 | PEF | Good | Abbreviations: Af, Africa; Am, America; As, Asia; BMI, body mass index; DL_{co}, diffusion capacity of the lungs for carbon monoxide; DM, diabetes mellitus; Eu, Europe; FEF_{25-75%}, forced expiratory flow between 25-75%; FEV₁, forced expiratory flow in one second; FVC, forced vital capacity; Hb, hemoglobin; m, months; PEF, peak expiratory flow; Oc, Oceania; NR, not reported; T"D, type-2 diabetes; y, years. | Table 2. Meta- | regression | with subgroup a | analysis | | | | | | | | | | | | | |--------------------------|------------|-----------------|-------------------------|----------------|---------|---------|--------------|-------------------------|----------------|-------------------|---------|--------------|--------------------------|----------------|---------| | | | | %FEV ₁ | | | | | %FVC | | | | | FEV ₁ /FVC(%) | | | | | Studies | Participants | Effect estimate | l ² | р | Studies | Participants | Effect estimate | l ² | р | Studies | Participants | Effect estimate | l ² | р | | Male | 5 | 667 | -13.10 (-22.57, -3.64) | 96% | 0.007 | 5 | 667 | -13.71 (-22.02, -5.39) | 95% | 0.001 | 11 | 1099 | 2.69 (0.70, 4.67) | 92% | 0.008 | | Female | 3 | 473 | -9.00 (-19.86, 1.85) | 82% | 0.10 | 3 | 473 | -9.58 (-18.07, -1.09) | 70% | 0.03 | 7 | 737 | 2.84 (-1.89, 7.57) | 96% | 0.24 | | Nonsmokers | 25 | 2,357 | -967 (-13.05, -629) | 94% | <0.001 | 23 | 2,252 | -10.84 (-14.12, -7.57) | 93% | <0.001 | 32 | 3257 | -0.21 (-3.35, 2.93) | 100% | 0.90 | | Continent | | | | | | | | | | | | | | | | | Africa | 1 | 90 | NA | NA | NA | 1 | 90 | NA | NA | NA | 3 | 365 | -2.70 (-9.01, 3.62) | 99% | 0.40 | | America | 5 | 11,966 | -4.99 (-6.72, -3.26) | 98% | <0.001 | 4 | 11,683 | -8.77 (-13.43, -4.11) | 99% | <0.001 | 6 | 12,238 | 2.48 (1.56, 3.40) | 85% | < 0.001 | | Asia | 21 | 36,202 | -7.50 (-9.01, -6.00) | 95% | <0.001 | 18 | 35,992 | -7.91 (-9.40, -6.43) | 95% | <0.001 | 26 | 36,944 | 0.02 -1.80, 1.83) | 100% | 0.99 | | Europe | 13 | 1432 | -8.93 (-13.25, -4.62) | 82% | <0.001 | 11 | 1372 | -11.48 (-17.38, -5.57) | 88% | <0.001 | 9 | 1149 | -1.53 (-4.21, 1.16) | 89% | 0.26 | | Oceania | 1 | 15 | NA | NA | 0.50 | 1 | 15 | NA | NA | NA | 1 | 15 | NA | NA | NA | | BMI (kg/m ²) | | | | | | | | | | | | | | | | | < 25 | 9 | 1809 | -10.95 (-16.58, -5.33) | 96% | <0.001 | 5 | 927 | -12.26 (-23.01, -1.51) | 98% | 0.03 | 7 | 1152 | 1.41 (-3.31, 6.14) | 99% | 0.56 | | 25-29.9 | 14 | 35,064 | -3.46 (-5.54, -2.38) | 94% | <0.001 | 14 | 35,515 | -5.78 (-7.03, -4.53) | 90% | < 0.001 | 16 | 36,003 | -0.28 (-1.61, 1.05) | 99% | 0.68 | | 30-39.9 | 6 | 11,856 | -6.50 (-9.14, -3.86) | 93% | <0.001 | 6 | 11,856 | -9.66 (-13.67, -5.65) | 98% | <0.001 | 5 | 11,649 | 3.25 (0.83, 5,68) | 92% | 0.009 | | ≥ 40 | 3 | 352 | -10.40 (-20.45, -0.35) | 85% | 0.04 | 2 | 222 | -11.44 (-16.63, -6.24) | 0% | <0.001 | 1 | 75 | NA | NA | NA | %FEF ₂₅₋₇₅ | | | | | %PEF | | %DL _{co} | | | | | | | | Studies | Participants | Effect estimate | l ² | р | Studies | Participants | Effect estimate | l ² | р | Studies | Participants | Effect estimate | l ² | р | | Male | 2 | 210 | -17.18 (-138.25, 3.89) | 94% | 0.11 | 3 | 300 | -18.55 (-20.69, -16.40) | 0% | <0.001 | 0 | NA | NA | NA | NA | | Female | 1 | 75 | -25.30 (-42.63, -7.97) | NA | NA | 1 | 24 | -25.51 (-31.37, -19.65) | NA | NA | 0 | NA | NA | NA | NA | | Nonsmokers | 10 | 742 | -11.04 (-16.29, -5.78) | 77% | <0.001 | 10 | 844 | -11.03 (-15.25, -6.82) | 92% | <0.001 | 12 | 851 | -7.13 (-10.62, -3.64) | 80% | <0.001 | | Continent | | | | | | | | | | | | | | | | | Africa | 0 | 90 | NA | NA | NA | 1 | 90 | NA | NA | NA | 0 | 0 | NA | NA | NA | | America | 1 | 21 | NA | NA | NA | 0 | 0 | NA | NA | NA | 0 | 0 | NA | NA | NA | | Asia | 6 | 537 | -11.44 (-17.07, -5.81) | 77% | <0.001 | 10 | 972 | -9.34 (-12.75, -5.93) | 86% | < 0.001 | 5 | 349 | -5.60 (-11.83, -0.62) | 78% | 0.08 | | Europe | 6 | 476 | -9.88 (-18.65, -1.11) | 78% | 0.03 | 4 | 229 | -7.78 (-21.43, 5.88) | 93% | 0.26 | 7 | 502 | -8.07 (-12.34, -3.79) | 68% | < 0.001 | | Oceania | 0 | 0 | NA | NA | NA | 0 | 0 | NA | NA | NA | 0 | 0 | NA | NA | NA | | BMI (kg/m²) | | | | | | | | | | | | | | | | | < 25 | 3 | 255 | -13.36 (-23.15, -3.57) | 88% | 0.007 | 4 | 345 | -13.32 (-19.69, -6.96) | 91% | < 0.001 | 3 | 205 | -11.83 (-16.30, -7.36) | 0% | < 0.001 | | 25-29.9 | 1 | 35 | NA | NA | NA | 3 | 250 | -5.84 (-7.08, -4.60) | 0% | <0.001 | 6 | 507 | -5.20 (-9.72, -0.68) | 59% | 0.002 | | 30-39.9 | 1 | 110 | NA | NA | NA | 2 | 134 | -13.12 (-37.47, 11.22) | 97% | 0.29 | 0 | 0 | NA | NA | NA | | ≥ 40 | 2 | 222 | -26.04 (-34.93, -17.14) | 0% | < 0.001 | 0 | 0 | NA | NA | NA | 0 | 0 | NA | NA | NA | | | | ! | | | | | | | | • | • | FE\/ fausasi | | | | Abbreviations: BMI, body mass index; DL_{CO}, diffusion capacity of the lung for carbon monoxide; FEF_{25-75%}, forced expiratory flow between 25% and 75% of total lung capacity; FEV₁, forced expiratory volume in one second; FVC, forced vital capacity; NA, not applicable; PEF, peak expiratory flow. | | | | | 1 | | | | 1 | | | | |------------------------------|--|---|--
--|---|--|---|---|--|---|--| | | | - | | | | | | | | , , | | | Studies | Participants | Effect estimate | l ² | Studies | Participants | Effect estimate | l ² | Studies | Participants | Effect estimate | l ² | | | | | | | | | | | | | | | /11 | 40.705 | | 00% | 25 | 40 152 | -9.21 (-11.15, -7.26) | 100% | 15 | 50 711 | -0.27 (-1.63, 1.08) | 100% | | 41 | 49,703 | -3.18 (-3.20, -3.16) | 3370 | 33 | 49,132 | -4.82 (-4.85, -4.80) | 100% | 43 | 30,711 | 0.01 (-0.00, 0.02) | 100% | | | | | | | | | | | | | | | 4 | 244 | -1.59 (-3.19, 0.01) | 0% | 2 | 109 | -2.81 (-6.84, 1.21) | 0% | 2 | 109 | -1.94 (-4.92, 1.05) | 0% | | 14 | 12,142 | -8.14 (-10.96, -5.31) | 93% | 11 | 11,789 | -11.96 (-18.66, -5.26) | 95% | 15 | 12,759 | 1.16 (0.27, 2.05) | 86% | | 23 | 37,319 | -8.00 (-9.48, -6.51) | 99% | 22 | 37,254 | -8.67 (-11.04, -6.29) | 100% | 28 | 37,843 | -0.53 (-2.39, 1.33) | 100% | | | | | | | | | | | | | | | 21 | 1207 | -10.29 (-13.88, -6.70) | 86% | 19 | 1155 | -9.45 (-13.67, -5.22) | 89% | 20 | 1168 | -1.69 (-4.86, 1.48) | 99% | | 20 | 48,498 | -5.68 (-7.01, -4.34) | 99% | 16 | 47,997 | -9.16 (-11.80, -6.51) | 100% | 25 | 49,543 | 0.69 (-0.93, 2.30) | 100% | | | | | | | | | | | | | | | 32 | 48,201 | -7.95 (-9.30, -6.60) | 99% | 31 | 48,276 | -9.53 (-11.59, -7.47) | 100% | 38 | 49,359 | -0.52 (-2.13, 1.10) | 100% | | | | | | | | | | | | | | | 57 | 51,845 | -1.27 (-1.83, -0.71) | 100% | 48 | 50,973 | -1.73 (-2.39, -1.08) | 100% | 69 | 53,875 | 0.13 (-0.02,-0.28) | 96% | | | | · | | | | | | | | | | | 40 | 40,921 | -7.37 (-8.53, -6.20) | 96% | 34 | 40,368 | -9.39 (-11.42, -7.36) | 98% | 44 | 26,029 | -0.21 (-1.66, 1.23) | 100% | | | | | | | | | | | | | | | | % | FEF _{25-75%1} | | | | %PEF | | | | %DL _{co} | | | Studies | | | | | | | | | | | | |
Studies | Participants | Effect estimate | l ² | Studies | Participants | Effect estimate | l ² | Studies | Participants | Effect estimate | l ² | | Studies | Participants | Effect estimate | l ² | Studies | Participants | Effect estimate | l ² | Studies | Participants | | l ² | | | | -9.89 (-14.42, -5.36) | 1 ² | | | -9.79 (-13.42, -6.15) | l ² | | · | | | | 13 | Participants 1034 | | 76% | Studies
15 | Participants 1291 | | l ² | Studies
12 | Participants
851 | Effect estimate | l ² | | | | -9.89 (-14.42, -5.36) | 76% | | | -9.79 (-13.42, -6.15) | 92% | | · | Effect estimate -7.13 (-10.62, -3.64) | 93% | | | | -9.89 (-14.42, -5.36) | 76%
NA | | | -9.79 (-13.42, -6.15) | 92%
NA | | · | Effect estimate -7.13 (-10.62, -3.64) | 93% | | 13 | 1034 | -9.89 (-14.42, -5.36)
-9.02 (-10.68, -7.36)
NA | | 15 | 1291 | -9.79 (-13.42, -6.15)
-8.73 (-9.62, -7.85) | | 12 | 851 | -7.13 (-10.62, -3.64)
-3.79 (-4.78, -2.80) | | | 13 | 1034 | -9.89 (-14.42, -5.36)
-9.02 (-10.68, -7.36) | NA | 15 | 1291 | -9.79 (-13.42, -6.15)
-8.73 (-9.62, -7.85)
NA | NA | 12 | 851 | -7.13 (-10.62, -3.64)
-3.79 (-4.78, -2.80) | NA | | 13
1
2 | 1034
21
82 | -9.89 (-14.42, -5.36)
-9.02 (-10.68, -7.36)
NA
-2.80 (-13.85, 8.25) | NA
42% | 15
0
2 | 1291
0
59 | -9.79 (-13.42, -6.15)
-8.73 (-9.62, -7.85)
NA
-15.15 (-36.78, 6.47) | NA
90% | 12
0
6 | 851
0
347 | -7.13 (-10.62, -3.64)
-3.79 (-4.78, -2.80)
NA
-8.26 (-14.58, -1.94) | NA
72% | | 13
1
2 | 1034
21
82 | -9.89 (-14.42, -5.36)
-9.02 (-10.68, -7.36)
NA
-2.80 (-13.85, 8.25) | NA
42% | 15
0
2 | 1291
0
59 | -9.79 (-13.42, -6.15)
-8.73 (-9.62, -7.85)
NA
-15.15 (-36.78, 6.47) | NA
90% | 12
0
6 | 851
0
347 | -7.13 (-10.62, -3.64)
-3.79 (-4.78, -2.80)
NA
-8.26 (-14.58, -1.94) | NA
72% | | 13
1
2
10 | 1034
21
82
931 | -9.89 (-14.42, -5.36)
-9.02 (-10.68, -7.36)
NA
-2.80 (-13.85, 8.25)
-11.85 (-16.68, -7.03) | NA
42%
78% | 15
0
2
13 | 1291
0
59
1232 | -9.79 (-13.42, -6.15)
-8.73 (-9.62, -7.85)
NA
-15.15 (-36.78, 6.47)
-8.93 (-12.50, -5.36) | NA
90%
91% | 12
0
6
6 | 851
0
347
504 | Fffect estimate -7.13 (-10.62, -3.64) -3.79 (-4.78, -2.80) NA -8.26 (-14.58, -1.94) -5.99 (-9.80, -2.18) | NA
72%
76% | | 13
1
2
10 | 1034
21
82
931
614 | -9.89 (-14.42, -5.36)
-9.02 (-10.68, -7.36)
NA
-2.80 (-13.85, 8.25)
-11.85 (-16.68, -7.03)
-9.01 (-15.84, -2.19) | NA
42%
78% | 15
0
2
13 | 1291
0
59
1232 | -9.79 (-13.42, -6.15)
-8.73 (-9.62, -7.85)
NA
-15.15 (-36.78, 6.47)
-8.93 (-12.50, -5.36)
-9.47 (-17.73, -1.22) | NA
90%
91% | 12
0
6
6 | 851
0
347
504
368 | Fffect estimate -7.13 (-10.62, -3.64) -3.79 (-4.78, -2.80) NA -8.26 (-14.58, -1.94) -5.99 (-9.80, -2.18) -7.29 (-11.66, -2.93) | NA
72%
76% | | 13
1
2
10 | 1034
21
82
931
614 | -9.89 (-14.42, -5.36)
-9.02 (-10.68, -7.36)
NA
-2.80 (-13.85, 8.25)
-11.85 (-16.68, -7.03)
-9.01 (-15.84, -2.19) | NA
42%
78% | 15
0
2
13 | 1291
0
59
1232 | -9.79 (-13.42, -6.15)
-8.73 (-9.62, -7.85)
NA
-15.15 (-36.78, 6.47)
-8.93 (-12.50, -5.36)
-9.47 (-17.73, -1.22) | NA
90%
91% | 12
0
6
6 | 851
0
347
504
368 | Fffect estimate -7.13 (-10.62, -3.64) -3.79 (-4.78, -2.80) NA -8.26 (-14.58, -1.94) -5.99 (-9.80, -2.18) -7.29 (-11.66, -2.93) | NA
72%
76% | | 13
1
2
10
9
4 | 1034
21
82
931
614
420 | -9.89 (-14.42, -5.36)
-9.02 (-10.68, -7.36)
NA
-2.80 (-13.85, 8.25)
-11.85 (-16.68, -7.03)
-9.01 (-15.84, -2.19)
-11.37 (-18.96, -3.78) | NA
42%
78%
72%
86% | 15
0
2
13
7
8 | 1291
0 59
1232
436
855 | -9.79 (-13.42, -6.15)
-8.73 (-9.62, -7.85)
NA
-15.15 (-36.78, 6.47)
-8.93 (-12.50, -5.36)
-9.47 (-17.73, -1.22)
-9.84 (-13.56, -6.12) | NA
90%
91%
93%
88% | 12
0
6
6
8
4 | 851
0
347
504
368
486 | Fffect estimate -7.13 (-10.62, -3.64) -3.79 (-4.78, -2.80) NA -8.26 (-14.58, -1.94) -5.99 (-9.80, -2.18) -7.29 (-11.66, -2.93) -7.01 (-13.43, -0.58) | NA
72%
76%
66%
84% | | 13
1
2
10
9
4 | 1034
21
82
931
614
420 | -9.89 (-14.42, -5.36)
-9.02 (-10.68, -7.36)
NA
-2.80 (-13.85, 8.25)
-11.85 (-16.68, -7.03)
-9.01 (-15.84, -2.19)
-11.37 (-18.96, -3.78) | NA
42%
78%
72%
86% | 15
0
2
13
7
8 | 1291
0 59
1232
436
855 | -9.79 (-13.42, -6.15)
-8.73 (-9.62, -7.85)
NA
-15.15 (-36.78, 6.47)
-8.93 (-12.50, -5.36)
-9.47 (-17.73, -1.22)
-9.84 (-13.56, -6.12) | NA
90%
91%
93%
88% | 12
0
6
6
8
4 | 851
0
347
504
368
486 | Fffect estimate -7.13 (-10.62, -3.64) -3.79 (-4.78, -2.80) NA -8.26 (-14.58, -1.94) -5.99 (-9.80, -2.18) -7.29 (-11.66, -2.93) -7.01 (-13.43, -0.58) | NA
72%
76%
66%
84% | | 13
1 2
10
9 4 | 1034
21
82
931
614
420 | -9.89 (-14.42, -5.36)
-9.02 (-10.68, -7.36)
NA
-2.80 (-13.85, 8.25)
-11.85 (-16.68, -7.03)
-9.01 (-15.84, -2.19)
-11.37 (-18.96, -3.78)
-10.60 (-15.03, -6.17) | NA
42%
78%
72%
86%
75% | 15
0
2
13
7
8 | 1291
0 59
1232
436
855 | -9.79 (-13.42, -6.15)
-8.73 (-9.62, -7.85)
NA
-15.15 (-36.78, 6.47)
-8.93 (-12.50, -5.36)
-9.47 (-17.73, -1.22)
-9.84 (-13.56, -6.12)
-9.79 (-13.42, -6.15) | NA
90%
91%
93%
88% | 12
0
6
6
8
4 | 851
0
347
504
368
486
749 | Fffect estimate -7.13 (-10.62, -3.64) -3.79 (-4.78, -2.80) NA -8.26 (-14.58, -1.94) -5.99 (-9.80, -2.18) -7.29 (-11.66, -2.93) -7.01 (-13.43, -0.58) -7.08 (-10.92, -3.25) | NA
72%
76%
66%
84% | | | 14
23
21
20
32
57
40 | 41 49,705 4 244 14 12,142 23 37,319 21 1207 20 48,498 32 48,201 57 51,845 40 40,921 | 41 49,705 -7.15 (-8.27, -6.03) -3.18 (-3.20, -3.16) 4 244 -1.59 (-3.19, 0.01) 14 12,142 -8.14 (-10.96, -5.31) 23 37,319 -8.00 (-9.48, -6.51) 21 1207 -10.29 (-13.88, -6.70) 20 48,498 -5.68 (-7.01, -4.34) 32 48,201 -7.95 (-9.30, -6.60) 57 51,845 -1.27 (-1.83, -0.71) 40 40,921 -7.37 (-8.53, -6.20) | Studies Participants Effect estimate I² 41 49,705 -7.15 (-8.27, -6.03) -3.18 (-3.20, -3.16) 99% 4 244 -1.59 (-3.19, 0.01) 0% 0% 14 12,142 -8.14 (-10.96, -5.31) 93% 23 37,319 -8.00 (-9.48, -6.51) 99% 21 1207 -10.29 (-13.88, -6.70) 86% 20 48,498 -5.68 (-7.01, -4.34) 99% 32 48,201 -7.95 (-9.30, -6.60) 99% 57 51,845 -1.27 (-1.83, -0.71) 100% 40 40,921 -7.37 (-8.53, -6.20) 96% | Studies Participants Effect estimate I² Studies 41 49,705 -7.15 (-8.27, -6.03) -3.18 (-3.20, -3.16) 99% 35 4 244 -1.59 (-3.19, 0.01) 0% 2 14 12,142 -8.14 (-10.96, -5.31) 93% 11 11 23 37,319 -8.00 (-9.48, -6.51) 99% 22 22 21 1207 -10.29 (-13.88, -6.70) 86% 19 19 20 48,498 -5.68 (-7.01, -4.34) 99% 16 16 32 48,201 -7.95 (-9.30, -6.60) 99% 31 31 57 51,845 -1.27 (-1.83, -0.71) 100% 48 48 40 40,921 -7.37 (-8.53, -6.20) 96% 34 | Studies Participants Effect estimate I² Studies Participants 41 49,705 -7.15 (-8.27, -6.03) -3.18 (-3.20, -3.16) 99% 35 49,152 4 244 -1.59 (-3.19, 0.01) 0% 2 109 14 12,142 -8.14 (-10.96, -5.31) 93% 11 11,789 11 7,789 23 37,319 -8.00 (-9.48, -6.51) 99% 22 37,254 21 1207 -10.29 (-13.88, -6.70) 86% 19 1155 15 20 48,498 -5.68 (-7.01, -4.34) 99% 16 47,997 32 48,201 -7.95 (-9.30, -6.60) 99% 31 48,276 57 51,845 -1.27 (-1.83, -0.71) 100% 48 50,973 40 40,921 -7.37 (-8.53, -6.20) 96% 34 40,368 | Studies Participants Effect estimate I² Studies Participants Effect estimate 41 49,705 -7.15 (-8.27, -6.03) -3.18 (-3.20, -3.16) 99% 35 49,152 -9.21 (-11.15, -7.26) -4.82 (-4.85, -4.80) 4 244 -1.59 (-3.19, 0.01) 0% 2 109 -2.81 (-6.84, 1.21) 11,789 -11.96 (-18.66, -5.26) 14 12,142 -8.14 (-10.96, -5.31) 93% 11 11,789 -11.96 (-18.66, -5.26) 23 37,319 -8.00 (-9.48, -6.51) 99% 22 37,254 -8.67 (-11.04, -6.29) 21 1207 -10.29 (-13.88, -6.70) 86% 19 1155 -9.45 (-13.67, -5.22) 20 48,498 -5.68 (-7.01, -4.34) 99% 16 47,997 -9.16 (-11.80, -6.51) 32 48,201 -7.95 (-9.30, -6.60) 99% 31 48,276 -9.53 (-11.59, -7.47) 57 51,845 -1.27 (-1.83, -0.71) 100% 48 50,973 -1.73 (-2.39, -1.08) 40 40,921 -7.37 (-8.53, -6.20) 96% 34 40,368 -9.39 (-11.42, -7.36) | Studies Participants Effect estimate I² Studies Participants Effect estimate I² 41 49,705 -7.15 (-8.27, -6.03) -3.18 (-3.20, -3.16) 99% 35 49,152 -9.21 (-11.15, -7.26) -4.82 (-4.85, -4.80) 100% 4 244 -1.59 (-3.19, 0.01) 0% 2 109 -2.81 (-6.84, 1.21) 0% 0% 14 12,142 -8.14 (-10.96, -5.31) 93% 11 11,789 -11.96 (-18.66, -5.26) 95% 23 37,319 -8.00 (-9.48, -6.51) 99% 22 37,254 -8.67 (-11.04, -6.29) 100% 21 1207 -10.29 (-13.88, -6.70) 86% 19 1155 -9.45 (-13.67, -5.22) 89% 20 48,498 -5.68 (-7.01, -4.34) 99% 16 47,997 -9.16 (-11.80, -6.51) 100% 32 48,201 -7.95 (-9.30, -6.60) 99% 31 48,276 -9.53 (-11.59, -7.47) 100% 57 51,845 -1.27 (-1.83, -0.71) 100% 48 50,973 -1.73 (-2.39, -1.08) 100% 40 40,921 -7.37 (-8.53, -6.20) 96% 34 40,368 -9.39 (-11.42, -7.36) 98% | Studies Participants Effect estimate I² Studies Participants Effect estimate I² Studies 41 49,705 -7.15 (-8.27, -6.03) -3.18 (-3.20, -3.16) 99% 35 49,152 -9.21 (-11.15, -7.26) -4.82 (-4.85, -4.80) 100% 45 4 244 -1.59 (-3.19, 0.01) -3.18 (-3.20, -3.16) 0% 2 109 -2.81 (-6.84, 1.21) -4.82 (-4.85, -4.80) 0% 2 14 12,142 -8.14 (-10.96, -5.31) -93% -8.11 -11,789 -11.96 (-18.66, -5.26) -95% -15 15 23 37,319 -8.00 (-9.48, -6.51) -99% -22 -37,254 -8.67 (-11.04, -6.29) -100% -28 28 21 1207 -10.29 (-13.88, -6.70) -86% -199 -1155 -9.45 (-13.67, -5.22) -9.45 (-13.67, -5.22) -9.45 (-13.67, -5.22) -9.45 (-13.67, -5.22) -9.45 (-13.67, -5.22) -9.45 (-13.67, -5.22) -9.45 (-13.67, -5.22) -9.45 (-13.67, -5.22) -9.45 (-13.67, -5.22) -9.45 (-13.67, -5.22) -9.45 (-13.67, -5.22)
-9.45 (-13.67, -5.22) -9.45 | Studies Participants Effect estimate I² Studies Participants Effect estimate I² Studies Participants 41 49,705 -7.15 (-8.27, -6.03) -3.18 (-3.20, -3.16) 99% 35 49,152 -9.21 (-11.15, -7.26) -4.82 (-4.85, -4.80) 100% 45 50,711 4 244 -1.59 (-3.19, 0.01) 0% 2 109 -2.81 (-6.84, 1.21) 0% 2 109 14 12,142 -8.14 (-10.96, -5.31) 93% 11 11,789 -11.96 (-18.66, -5.26) 95% 15 12,759 15 12,759 23 37,319 -8.00 (-9.48, -6.51) 99% 22 37,254 -8.67 (-11.04, -6.29) 100% 28 37,843 21 1207 -10.29 (-13.88, -6.70) 86% 19 1155 -9.45 (-13.67, -5.22) 89% 20 1168 20 48,498 -5.68 (-7.01, -4.34) 99% 16 47,997 -9.16 (-11.80, -6.51) 100% 25 49,543 32 48,201 -7.95 (-9.30, -6.60) 99% 31 48,276 -9.53 (-11.59, -7.47) 100% 38 49,359 57 51,845 -1.27 (-1.83, -0.71) 100% 48 50,973 -1.73 (-2.39, -1.08) 100% 69 53,875 40 40,921 -7.37 (-8.53, -6.20) 96% 34 40,368 -9.39 (-11.42, -7.36) 98% 44 26,029 | Studies Participants Effect estimate I² Studies Participants Effect estimate I² Studies Participants Effect estimate 41 49,705 -7.15 (-8.27, -6.03) -3.18 (-3.20, -3.16) 99% 35 49,152 -9.21 (-11.15, -7.26) -4.82 (-4.85, -4.80) 100% 45 50,711 -0.27 (-1.63, 1.08) -0.01 (-0.00, 0.02) 4 244 -1.59 (-3.19, 0.01) 0% 2 109 -2.81 (-6.84, 1.21) 0% 2 109 -1.94 (-4.92, 1.05) 14 12,142 -8.14 (-10.96, -5.31) 93% 11 11,789 -11.96 (-18.66, -5.26) 95% 15 12,759 1.16 (0.27, 2.05) 23 37,319 -8.00 (-9.48, -6.51) 99% 22 37,254 -8.67 (-11.04, -6.29) 100% 28 37,843 -0.53 (-2.39, 1.33) 21 1207 -10.29 (-13.88, -6.70) 86% 19 1155 -9.45 (-13.67, -5.22) 89% 20 1168 -1.69 (-4.86, 1.48) 20 48,498 -5.68 (-7.01, -4.34) 99% 16 <td< td=""></td<> | Abbreviations: DL_{co}, diffusion capacity of the lung for carbon monoxide; FEF_{25-75%}, forced expiratory flow between 25% and 75% of total lung capacity; FEV₁, forced expiratory volume in one second; FVC, forced vital capacity; NA, not applicable; PEF, peak expiratory flow. # Figure legends - Figure 1. Flowchart of included studies - Figure 2. Forest plots of % predicted forced expiratory volume in one second (A) and % predicted forced vital capacity (B). - Figure 3. Forest plot of forced expiratory volume in one second/forced vital capacity ratio (%) - Figure 4. Forest plots of % predicted forced expiratory flow between 25% and 75% of total lung capacity (A), % predicted peak expiratory flow (B), and % predicted diffusion capacity of the lungs for carbon monoxide (C). - Figure 5. Funnel plots of % predicted forced expiratory volume in one second (A) and % predicted forced vital capacity (B), forced expiratory volume in one second/forced vital capacity ratio (%) (C), forced expiratory flow between 25% and 75% of total lung capacity (D), % predicted peak expiratory flow (E), and % predicted diffusion capacity of the lungs for carbon monoxide (F). A. %FEV₁ | Study or Subgroup Al-Habbo, 2012 Ali, 2009 Ari, 2002 Benbassat, 2001 Boulbou, 2003 Buchmann, 2016 | 84.4
93.4 | 8.7 | Total
45 | Mean
100.7 | SD | Total | | IV, Random, 95% CI | IV, Random, 95% CI | |---|--------------|-------|-------------|---------------|-------|-------|--------|-------------------------|--------------------| | Ali, 2009
Ari, 2002
Benbassat, 2001
Boulbou, 2003 | 93.4 | | 45 | 100.7 | 407 | 0.00 | | | | | Ari, 2002
Benbassat, 2001
Boulbou, 2003 | | 0.24 | | 100.7 | 18.7 | 45 | 1.9% | -16.30 [-22.33, -10.27] | | | Benbassat, 2001
Boulbou, 2003 | 100 | 9.31 | 60 | 130.13 | 12.84 | 30 | 2.3% | -36.73 [-41.89, -31.57] | | | Boulbou, 2003 | 103 | 14.7 | 25 | 103.4 | 10.1 | 10 | 1.2% | -0.40 [-8.91, 8.11] | | | | 104.2 | 16 | 12 | 102 | 14.1 | 15 | 0.8% | 2.20 [-9.33, 13.73] | | | | 96.9 | 12.8 | 49 | 103.97 | 14.28 | 22 | 1.6% | -7.07 [-14.03, -0.11] | · · | | | 96.1 | 16.5 | 91 | 99.6 | 18 | 506 | 2.9% | -3.50 [-7.24, 0.24] | | | Ceylan, 2011 | 86.3 | 11.4 | 37 | 92.4 | 9.2 | 25 | 2.3% | -6.10 [-11.25, -0.95] | | | Chance, 2008 | 94.8 | 14.4 | 69 | 98 | 1 | 45 | 3.1% | -3.20 [-6.61, 0.21] | | | Dharwadkar, 2011 | 67.44 | | 40 | 90.94 | 8.19 | 40 | | | | | Guazzi, 2002 | 95.1 | 12.2 | 15 | 97.5 | 10.7 | 15 | 1.3% | -2.40 [-10.61, 5.81] | | | Huang, 2014 | 89.14 | | 292 | | 13.34 | 292 | 3.6% | -4.51 [-7.05, -1.97] | + | | Isotani, 1999 | 85.3 | 7 | 54 | 87.3 | 6.8 | 34 | 3.4% | -2.00 [-4.95, 0.95] | - | | Kabitz, 2008 | 103.2 | 10.6 | 21 | 102.9 | 12 | 23 | 1.7% | 0.30 [-6.38, 6.98] | | | Katoh, 1996 | 85.5 | 5.4 | 19 | 88.2 | 4.7 | 16 | 3.1% | -2.70 [-6.05, 0.65] | - | | Kaur, 2016 | 85.4 | 7.3 | 50 | | 16.14 | 50 | 2.4% | -9.86 [-14.77, -4.95] | | | | 85.87 | | 347 | | 14.92 | 386 | 3.8% | | _ | | Khafaie, 2017 | | | | | | | | -0.48 [-2.58, 1.62] | | | Kim, 2011 | 89 | 12 | 2745 | 92 | 11 | | 4.3% | -3.00 [-3.47, -2.53] | | | Kim, 2017 | 89.3 | 0.4 | 1431 | 92.4 | 0.2 | 7353 | 4.4% | -3.10 [-3.12, -3.08] | | | Klein, 2011 | 75.3 | 0.7 | 76 | 82.6 | 0.4 | 210 | 4.4% | -7.30 [-7.47, -7.13] | | | | 68.825 | | 40 | | 10.63 | 22 | 1.8% | -9.41 [-15.86, -2.95] | | | Lara Rodriguez, 1995 | | 11.53 | 12 | | 12.09 | 9 | 0.9% | 1.00 [-9.24, 11.24] | | | Lau, 2004 | 96.7 | 12.4 | 40 | 103.7 | 15.2 | 20 | 1.4% | -7.00 [-14.69, 0.69] | | | Lecube, 2010 | 88.4 | 19.7 | 25 | 100.1 | 12.4 | 50 | 1.2% | -11.70 [-20.15, -3.25] | | | Lopez-Cano, 2017 | 82.9 | 25.9 | 49 | 101.1 | 13.1 | 98 | 1.4% | -18.20 [-25.90, -10.50] | | | Maiolo, 2002 | 98.88 | 14.17 | 12 | 116.52 | 13.28 | 12 | 0.8% | -17.64 [-28.63, -6.65] | | | Matsubara, 1991 | 79.8 | 6.5 | 52 | 80.7 | 5.6 | 48 | 3.7% | -0.90 [-3.27, 1.47] | + | | Nandhini, 2012 | 67.64 | 21.99 | 45 | 94.4 | 27.36 | 47 | 1.0% | -26.76 [-36.88, -16.64] | | | Okur, 2018 | 96.78 | 14.43 | 58 | 99.73 | 15.8 | 52 | 2.1% | -2.95 [-8.63, 2.73] | -+ | | Ortiz-Aguirre, 2006 | 86.9 | 1.3 | 144 | 92 | 1.3 | 139 | 4.4% | -5.10 [-5.40, -4.80] | • | | Röhling, 2018 | 77.3 | 15.6 | 34 | 94.8 | 12.6 | 26 | 1.6% | -17.50 [-24.64, -10.36] | | | Shafiee, 2013 | 107.07 | 14.91 | 80 | 109.82 | 15.33 | 40 | 2.0% | -2.75 [-8.52, 3.02] | -+ | | Shah, 2013 | 78.98 | 14.09 | 60 | 88.03 | 6.69 | 60 | 2.8% | -9.05 [-13.00, -5.10] | | | Sinha, 2004 | 80.47 | 19.2 | 29 | 83.5 | 14 | 11 | 0.9% | -3.03 [-13.86, 7.80] | | | Tai, 2017 | 77.03 | 3.79 | 63 | 78.59 | 2.21 | 32 | 4.2% | -1.56 [-2.77, -0.35] | + | | Tayarami, 2018 | 82.3 | 15.2 | 50 | 90.4 | 9.4 | 50 | 2.4% | -8.10 [-13.05, -3.15] | | | Uz-Zaman, 2014 | 81.31 | 3.86 | 60 | 97.5 | 9.59 | 60 | | -16.19 [-18.81, -13.57] | - | | Weisbrod, 2005 | 90.2 | 5.6 | 8 | 92.2 | 5.8 | 7 | 2.0% | -2.00 [-7.79, 3.79] | | | Wilms, 2017 | 84.2 | 12.6 | 65 | 86.7 | 13.1 | 65 | 2.6% | -2.50 [-6.92, 1.92] | | | Yeh, 2008 | 92.5 | 14.1 | 1100 | 96.4 | 14.6 | 10162 | 4.3% | -3.90 [-4.78, -3.02] | | | Zamarron, 2001 | 62.7 | 29.3 | 31 | 102.4 | 12.8 | 16 | | -39.70 [-51.77, -27.63] | | | Zineldin, 2015 | 73.42 | 3.77 | 45 | 87.02 | 5.59 | 45 | | -13.60 [-15.57, -11.63] | + | | Total (95% CI) | | | 7580 | | | 42125 | 100.0% | -7.15 [-8.27, -6.03] | • | # B. %FVC | Study or Subgroup
Agarwal, 2010 | Mean | SD | Total | | - | - | | | | |---|--------|-------|-------|--------|-------|-------|--------|-------------------------|--------------------| | Agarwal 2010 | | 50 | Total | Mean | SD | Total | Weight | IV, Random, 95% CI | IV, Random, 95% CI | | | 84.06 | 8.35 | 30 | 86.6 | 10.57 | 15 | 2.7% | -2.54 [-8.67, 3.59] | | | Al-Habbo, 2012 | 95 | 13.5 | 45 | 90.5 | 10.3 | 45 | 3.0% | 4.50 [-0.46, 9.46] | | | Ali, 2009 | 79.2 | 8.32 | 60 | 112.86 | 11.97 | 30 | 3.1% | -33.66 [-38.43, -28.89] | | | Ari, 2002 | 104.8 | 16.2 | 25 | 105.5 | 13.5 | 10 | 1.8% | -0.70 [-11.20, 9.80] | | | Benbassat, 2001 | 100 | 15.7 | 12 | 101.1 | 13.2 | 15 | 1.7% | -1.10 [-12.21, 10.01] | | | Boulbou, 2003 | 92.31 | 13.26 | 49 | 95.95 | 11.51 | 22 | 2.7% | -3.64 [-9.72, 2.44] | | | Buchmann, 2016 | 101.5 | 15.46 | 91 | 107.5 | 16.1 | 606 | 3.4% | -6.00 [-9.43, -2.57] | - | | Ceylan, 2011 | 77.6 | 12.5 | 37 | 102.8 | 10.6 | 25 | 2.8% | -25.20 [-30.99, -19.41] | | | Chance, 2008 | 90.39 | 14 | 69 | 101 | 15 | 45 | 2.9% | -10.61 [-16.10, -5.12] | | | Huang, 2014 | 85.02 | 12.65 | 292 | 88.33 | 8.7 | 292 | 3.6% | -3.31 [-5.07, -1.55] | + | | sotani, 1999 | 100 | 11 | 54 | 103 | 10 | 34 | 3.1% | -3.00 [-7.46, 1.46] | - | | <abitz, 2008<="" td=""><td>106.7</td><td>14.3</td><td>21</td><td>109.2</td><td>13.3</td><td>23</td><td>2.3%</td><td>-2.50 [-10.68, 5.68]</td><td></td></abitz,> | 106.7 | 14.3 | 21 | 109.2 | 13.3 | 23 | 2.3% | -2.50 [-10.68, 5.68] | | | Kaur, 2016 | 78.6 | 8.8 | 50 | 88.24 | 15.6 | 50 | 3.0% | -9.64 [-14.60, -4.68] | | | Khafaie, 2017 | 85.88 | 13.53 | 347 | 86.79 | 13.82 | 386 | 3.6% | -0.91 [-2.89, 1.07] | + | | Kim, 2011 | 86 | 11 | 2745 | 91 | 10 | 21937 | 3.7% | -5.00 [-5.43, -4.57] | • | | Kim, 2017 | 89.2 | 0.4 | 1431 | 93.9 | 0.2 | 7353 | 3.8% | -4.70 [-4.72, -4.68] | | | Klein, 2011 | 71.2 | 0.7 | 76 | 83.8 | 0.5 | 210 | 3.8% | -12.60 [-12.77, -12.43] | | | Kumar, 2016 | 78.85 | 14.38 | 40 | 89.32 | 10.33 | 22 | 2.7% | -10.47 [-16.67, -4.27] | | | _ara Rodriguez, 1995 | 90 | 13.1 | 12 | 92 | 8.76 | 9 | 2.0% | -2.00 [-11.36, 7.36] | | | au, 2004 | 86.9 | 29.45 | 40 | 103.2 | 14.5 | 20 | 1.7% | -16.30 [-27.42, -5.18] | - 3 | |
Lecube, 2010 | 85.1 | 17.2 | 25 | 93.3 | 20.1 | 50 | 2.1% | -8.20 [-16.95, 0.55] | | | Lopez-Cano, 2017 | 79.7 | 21.7 | 49 | 92.9 | 11 | 98 | 2.7% | -13.20 [-19.65, -6.75] | | | Maiolo, 2002 | 103.88 | 16.36 | 12 | 123.69 | 10.48 | 12 | 1.7% | -19.81 [-30.80, -8.82] | | | Vandhini, 2012 | 60.78 | 19.18 | 45 | 81.83 | 21.91 | 47 | 2.2% | -21.05 [-29.45, -12.65] | | | Okur, 2018 | 99.17 | 14.13 | 58 | 104.65 | 16.01 | 52 | 2.8% | -5.48 [-11.15, 0.19] | (| | Röhling, 2018 | 96.8 | 22 | 34 | 103.4 | 14.3 | 26 | 2.0% | -6.60 [-15.81, 2.61] | | | Shafiee, 2013 | 107.59 | 14.39 | 80 | 111.35 | 14.87 | 40 | 2.9% | -3.76 [-9.34, 1.82] | - | | 3hah, 2013 | 77.97 | 12.99 | 60 | 89.36 | 9.71 | 60 | 3.2% | -11.39 [-15.49, -7.29] | | | ai, 2017 | 71.71 | 3.56 | 63 | 79.06 | 3.84 | 32 | 3.7% | -7.35 [-8.94, -5.76] | + | | Fayarami, 2018 | 80.7 | 14.6 | 50 | 90.5 | 8.6 | 50 | 3.1% | -9.80 [-14.50, -5.10] | | | Jz-Zaman, 2014 | 77.75 | 5.65 | 60 | 96.5 | 9.52 | 60 | 3.5% | -18.75 [-21.55, -15.95] | - | | Weisbrod, 2005 | 83.6 | 4.1 | 8 | 84.5 | 4.6 | 7 | 3.1% | -0.90 [-5.34, 3.54] | | | Yeh, 2008 | 96.5 | 13.2 | 1100 | 103.1 | | 10162 | 3.7% | -6.60 [-7.42, -5.78] | • | | Zamarron, 2001 | 58.7 | 22.4 | 31 | 94.6 | 7.8 | 16 | 2.1% | -35.90 [-44.66, -27.14] | | | Zineldin, 2015 | 75.04 | 3.81 | 45 | 88.82 | 4.95 | 45 | 3.6% | -13.78 [-15.61, -11.95] | - | | Total (95% CI) | | | 7246 | | | 41906 | 100.0% | -9.21 [-11.15, -7.26] | • | # A. %FEF_{25-75%} | | Type- | 2 diabe | tes | (| Control | | | Mean Difference | Mean Difference | |----------------------------|-----------|--------------|--------|---------|---------|------------|--------|-------------------------|--| | Study or Subgroup | Mean | SD | Total | Mean | SD | Total | Weight | IV, Random, 95% CI | IV, Random, 95% CI | | Agarwal, 2010 | 83.55 | 13.7 | 30 | 89.07 | 8.76 | 15 | 9.8% | -5.52 [-12.13, 1.09] | | | Al-Habbo, 2012 | 95.1 | 24.5 | 45 | 97.8 | 14.5 | 45 | 8.7% | -2.70 [-11.02, 5.62] | | | Ali, 2010 | 96.25 | 13.02 | 60 | 124.6 | 24.72 | 30 | 8.0% | -28.35 [-37.79, -18.91] | | | Ari, 2002 | 83.1 | 19.5 | 25 | 91.2 | 13.3 | 10 | 7.0% | -8.10 [-19.34, 3.14] | | | Ceylan, 2011 | 83.1 | 11.7 | 37 | 90 | 14.7 | 25 | 9.6% | -6.90 [-13.79, -0.01] | | | Lara Rodriguez, 1995 | 109 | 27.1 | 12 | 89 | 31.35 | 9 | 2.5% | 20.00 [-5.59, 45.59] | | | Lecube, 2010 | 72.5 | 40.7 | 25 | 97.8 | 24.4 | 50 | 4.4% | -25.30 [-42.63, -7.97] | | | Lopez-Cano, 2017 | 73.9 | 32.5 | 49 | 100.2 | 25.1 | 98 | 7.5% | -26.30 [-36.67, -15.93] | | | Nandhini, 2012 | 71.02 | 33.82 | 45 | 92.66 | 42.98 | 47 | 4.9% | -21.64 [-37.41, -5.87] | | | Okur, 2018 | 77.79 | 20.01 | 58 | 78.58 | 19.77 | 52 | 9.2% | -0.79 [-8.23, 6.65] | - | | Tayarami, 2018 | 71.9 | 17.5 | 50 | 82.1 | 13.9 | 50 | 10.0% | -10.20 [-16.39, -4.01] | | | Uz-Zaman, 2014 | 82.83 | 4.93 | 60 | 91.76 | 6.95 | 60 | 12.0% | -8.93 [-11.09, -6.77] | - | | Zamarron, 2001 | 100.5 | 20.3 | 31 | 97.3 | 21 | 16 | 6.3% | 3.20 [-9.33, 15.73] | | | Total (95% CI) | | | 527 | | | 507 | 100.0% | -9.89 [-14.42, -5.36] | • | | Heterogeneity: Tau2 = 4 | 3.43; Ch | $i^2 = 49.7$ | 6, df= | 12 (P < | 0.0000 | 1); 2 = 7 | 76% | _ | | | Test for overall effect: Z | = 4.28 (F | o < 0.00 | 01) | • | | | | | -20 -10 0 10 20
Type-2 diabetes Control | #### B. %PEF # C. %DL_{CO} #### SUPPLEMENTARY MATERIAL #### **REFERENCES OF EXCLUDED STUDIES** #### Studies without control group - S1. Mori H, Okubo M, Okamura M, et al. Abnormalities of pulmonary function in patients with non-insulin dependent diabetes mellitus. Internal Medicine 1992; 31: 189-93. - S2. Strojek K, Ziora D, Sroczynski J, Oklek K. [Pulmonary function changes as a late diabetic complications]. Pneumonol Alergol Pol 1993; 61: 166-70. - S3. Çelik P, Özmen B, Yorgancioglu A, Özmen D, Çok G. Pulmonary function parameters in patients with diabetes mellitus. Turk J Endocrinol Metab 1999; 1: 5-10. - S4. Davis TM, Knuiman M, Kendall P, Vu H, Davis WA. Reduced pulmonary function and its associations in type 2 diabetes: the Fremantle Diabetes Study. Diabetes Res Clin Pract 2000; 50: 153-9. - S5. Marvisi M, Bartolini L, del Borrello P, et al. Pulmonary function in non–insulin dependent diabetes mellitus. Respiration 2001; 68: 268–72. - S6. Özmen B, Çelik P, Yorgancioglu A, Özmen B, Özmen D, Çok G. Pulmonary function parameters in patients with diabetes mellitus. Diabetes Res Clin Pract 2002; 57: 209-11. - S7. Davis WA, Knuiman M, Kendall P, Grage V, Davis TME. Glycemic exposure is associated with reduced pulmonary function in type 2 diabetes. The Fremantle Diabetes Study. Diabetes Care 2004; 21: 752-7. - S8. Brassard P, Ferland A, Bogaty P, Desmeules M, Jobin J, Poirier P. Influence of glycemic control on pulmonary function and heart rate in response to exercise in subjects with type 2 diabetes mellitus. Metab Clin Exp 2006; 55: 1532-7. - S9. Berriche O, Ben Mami F, Mhiri S, Achour A. [Is the respiratory function altered during diabetes mellitus?]. Tunis Med 2009; 87:499-504. - S10. Agarwal AS, Fuladi AB, Mishra G, Tayade BO. Spirometry and diffusion studies in patients with type-2 diabetes mellitus and their association with microvascular complications. Indian J Chest Dis Allied Sci 2010; 52: 213-6. - S11. Dennis RJ, Maldonado D, Rojas MX, Aschner P, Rondón M, Charry L, et al. Inadequate glucose control in type 2 diabetes is associated with impaired lung function and systemic inflammation: a cross-sectional study BMC Pulm Med 2010; 10: 38. - S12. Malik A, Yunus F, Harahap F, Rochismandoko. Comparison of lung function values in controlled and uncontrolled diabetes mellitus patient in Persahabatan Hospital Jakarta. J Respir Indo 2010; 30: 159-65. - S13. Restrepo HF, Rondón M, Rojas MX, Torres Y, Aschner P, Dennis RJ. Comparación de la función pulmonar de pacientes con diabetes mellitus tipo 2 sometidos a tratamiento de insulina inyectada versus tratamiento con hipoglucemiantes orales. Acta Med Colomb 2010; 35: 113-8. - S14. Surag MK. Pulmonary function abnormalities in patients with type 2 diabetes mellitus. Rajiv Gandhi University of Health Sciences, Karnataka, India. These, 2010. - S15. Kaminski DM, Schaan B, Vargas da Silva AM, Soares PP, Plentz RD, Dall'Ago P. Inspiratory muscle weakness is associated with autonomic cardiovascular dysfunction in patients with type 2 diabetes mellitus. Clin Auton Res 2011; 21: 29-35. - S16. Kumari K, Nataraj SM, Devaraj HS. Correlation of duration of diabetes and pulmonary function tests in type 2 diabetes mellitus patients. Int J Biol Med Res 2011; 2: 1168-70. - S17. Kolawole BA, Erhabor GE, Ikem RT. Assessment of lung function parameters in Nigerian males with diabetes. Afr J Respir Med 2012; 7: 20-2. - S18. Jamatia SN, Kanan W, Singh AW. Spirometric lung function profile of type II diabetes mellitus in Manipur. Indian J Physiol Pharmacol 2012; 56:85-6. - S19. Sweety LM, Selvi EC, Kumar PS. Effect of phrenic neuropathy on forced expiratory flow rates in patients with type 2 diabetes mellitus. Biomedicine 2012; 32: 565-71. - S20. Akram. SF, Asharaf E, Masood SH, Ali SMM. Association of Pulmonary Functions and HbA1c in Diabetics. Pak J Med Health Sci 2013; 7:307-9. - S21. Bazdyrev ED, Bayrakova YV, Polikutina OM, Bezdenezhnykh NA, Slepynina YS, Barbarash OL. Lung diffusion capacity and non-specific inflammation markers in patients with coronary heart disease and diabetes mellitus. Russ J Cardiol 2013; 6: 33-8. - S22. Fuso L, Condoluci C, Conte E, Pitocco D, Contu C, Rizzi A, et al. Decline of the lung function and quality of glycemic control in type 2 diabetes mellitus. Eur Respir J 2013; 42(Suppl 57): P417. - S23. Kambanpati KK, Prasad AS, Raju CH, Mosali RK, Kumar PR, Pragati D, et al. Relation between pulmonary function tests and duration of diabetes mellitus in patients with type 2 diabetes mellitus. Lung India 2013; 30(Suppl 1): S39. - S24. Kumari K, Nataraj SM, Devaraj HS. Glycemic control and pulmonary function tests in type 2 diabetes mellitus patients: Do they correlate? Indian J Public Health Res Dev 2013; 4: 124-8. - S25. Kuziemski K. The role of lung function measurement in the diagnosing of pulmonary microangiopathy in diabetic patients. Eur Respir J 2013; 42: P3943. - S26. Nayak BS, Sakamuri SM, Guerra C, Cummings S, Bisnath J, Maxwell C, et al. Evaluation of pulmonary dysfunction among persons with type 2 diabetes in Trinidad. Int J Res Dev Pharm Life Sci 2013; 2: 317-20. - S27. Pinto-Pereira LM, Seemungal TAR, Teelucksingh S, Nayak BS. Restrictive pulmonary deficit is associated with inflammation in suboptimally controlled obese diabetics. J Thorac Dis 2013; 5: 289-97. - S28. Adeyeye OO, Ogbera OA, Dada AO, Bamisile RT, Brodie Mens A. Correlates of abnormal pulmonary function tests in persons with type 2 diabetes mellitus. J Pulm Respir Med 2014; 5: 1. - S29. Adeyeye OO, Ogbera OA. Correlates of abnormal lung functions in type 2 diabetes in Lagos, Nigeria. Chest 2014; 146 –MeetingAbstracts): 806A. - S30. Raju S. A study of lung function test in type 1 diabetes mellitus and type 2 diabetes mellitus. Rajiv Ghandi University of Health Sciences, Bangalore, India. These 2013. - S31. Bazdyrev ED, Bairakova IuV, Polikutina OM, Bezdenezhnykh NA, Slepynina IuS, Barbarash OL. [Relationship between respiratory function and myocardial structure and function in patients with type 2 diabetes mellitus and ischemic heart disease]. Kardiologiia 2015; 55: 4-8. - S32. Fuso L, Pitocco D, Condoluci C, Conte E, Contu C, Rizzi A, et al. Decline of the lung function and quality of glycemic control in type 2 diabetes mellitus. Eur J Intern Med 2015; 26: 273-8. - S33. Kowaas MR, Pandelaki K, Wongkaar MCP. Hubungan kendali gula darah dengan faal paru pada pasien diabetes melitus di poli endokrin rsup Prof. Dr. R. D. Kandou Manado. Jurnal e-Clinic 2015; 3: 108-12. - S34. Okyay GU, Yenigün EC, Hondur A, Çoruh Y, Uzunmehmetttoglu CPT, Yildirim IS. The association of pulmonary
functions with glycemic control and microvascular complications in patients with type II diabetes mellitus. Istanbul Med J 2015; 16: 48-52. - S35. Pawar DB, Pawar SD, Zawar SD, Patil DR. A study of clinico-demographic profile and ventilatory pulmonary function tests in type 2 diabetes mellitus. Int J Res Med Sci 2015; 3: 1765-8. - S36. Shegokar V, Agrawal SP, Kokiwar PR. A study of pulmonary function tests in type II diabetes mellitus. MRIMS J Health Sci 2015; 3: 16-20. - S37. Acharya PR, D'Souza M, Anand R, Kotian SM. Pulmonary function in type 2 diabetes mellitus: correlation with body mass index and glycemic control. Int J Sci Stud 2016; 3: 18-23. - S38. Bazdyrev ED, Polikutina OM, Kalichenko NA, Slepynina YS, Barbarash OL. [Pulmonary function in patients with type 2 diabetes and coronary artery disease]. Klin Med (Mosk) 2016; 94: 366-73. - S39. Charak G, Kaur A, Kaur S, Kocchar S. Effect of duration of type 2 diabetes mellitus on lung function tests. IOSR J Dent Med Sci 2016; 15: 8-14. - S40. Farooq M, Saleem S, Hussain I, Abaidullab S. Frequency of restrictive pulmonary function in type 2 diabetes mellitus. Ann King Edward Med Univ 2016; 22: 119-23. - S41. Karande S, Pednekar SJ, Nabar ST, Mehta A, Iyengar V. Pulmonary functions in type 2 diabetes mellitus patients: an observational study at a tertiary level hospital in Mumbai, Maharashtra, India. Int J Res Med Sci 2016; 4: 1574-7. - S42. Mandava V, Gopathi NR. Pulmonary function changes in type 2 diabetic lungs. Int J Adv Med 2016; 3: 378-81. - S43. Senthilnathan NK, Muthumani L, Nehru D. Effect of glycaemic control (HbA1c) on pulmonary function tests (spirometry) in patients with type 2 diabetes mellitus. J Evid Based Med Healthc 2016; 3: 1230-6. - S44. Surag MK, Sudhir U. A study of pulmonary function abnormalities in patients with type 2 diabetes mellitus. IOSR J Dent Med Sci 2016; 15: 46-54. - S45. Tai H, Wang MY, Zhao YP, Li LB, Dong QY, Liu XG, et al. The effect of alogliptin on pulmonary function in obese patients with type 2 diabetes inadequately controlled by metformin monotherapy. Medicine 2016; 95: 33(e4541). - S46. Vargas HA, Rondón M, Dennis R. Tratamiento farmacológico y deterioro de la función pulmonar en pacientes con diabetes de tipo 2: un estudio de corte transversal. Biomédica 2016; 36: 276-84. - S47. Nizamuddin J, Khan B, Wazir ZM. Restrictive pulmonary dysfunction in patients with type-2 diabetes mellitus. J Med Sci (Peshawar) 2017; 25: 37-40. - S48. Sreekumar PS, Bagialakshmi G, Mohamed SHP. A study on pulmonary function test in diabetes mellitus and its correlation with duration of diabetes mellitus. IOSR J Dent Med Sci 2017; 16: 1-5. - S49. Suhendra U, Ratnawati R, Samoedro E, Antariksa B, Rochismandoko R, Pramitha P, et al. Pulmonary functions in patients with microangiopathy diabetic at Persahabatan Hospital Jakarta, Indonesia. Respirology 2017; 22(Suppl 3): 153. - S50. Al-Mudhafer ZA, Al-Ghuraibawi NHA, Mohammed SJ. The relationship between the level of albuminuria and severity of impairment in pulmonary function in type II diabetic patients. Int J Res Pharm Sci 2018; 10: 174-8. - S51. Faisal HD, Antariksa B, Rochsismandoko R, Yunus F, Nurwidya F. Lung diffusion capacity disorder in Indonesian patients with type 2 diabetes mellitus and the related factors. J Nat Sc Biol Med 2018; 9: 222-6. - S52. Mee-Inta A, Chanaporn R, Anuttra N, Parnjai B, Peeranutt K Diabetes mellitus, HbA1c, and lung function: do they are related?. Int J Diabetes Complications 2018; 2: 1-6. - S53. Mee-Inta A, Rojwipaporn C, Ngernrot A, Butpeng P, Kaewthaamma P. Diabetes mellitus, HbA1c and lung function: do they are related?. J Diabetes Metab 2018; 9: 48. - S54. Moshin KM. Study of pulmonary function test in patients of type 2 diabetes mellitus and its correlation with duration of diabetes. Global J Res Anal 2018; 7: 27-30. - S55. Shah ZH, Ghias F, Irshad A, Mehfuz I, Imran M, Qureshi IH, et al. Patterns of pulmonary dysfunction in diabetes mellitus and their effects on patient life. Pakistan J Med Health Sci 2018; 12: 222-4. - S56. Tosta AM, Borges MC, Carneiro da Silva EM, Takeuti TD, Terra JA Jr, Crema E. Pulmonary function evaluation in type 2 diabetes mellitus patients submitted to metabolic surgery. Fisioter Mov 2018; 31: e003120. - S57. Vanidassane I, Malik R, Jain N. Study of pulmonary function tests in type 2 diabetes mellitus and their correlation with glycemic control and systemic inflammation. Adv Respir Med 2018; 86: 172-8. - S58. Agarwal A, Grover A, Agarwal A. Pulmonary function test in patients of type 2 diabetes mellitus. Int J Res Med Sci 2019; 7: 2240-5. - S59. Al-Azzawi OFN, Alobaidy MW, Saham MM. Nephrotic range proteinuria; does it predict lung involvement in patients with type 2 diabetes Diabetes Metab Syndr Clin Res Rev 2019; 13: 622-5. - S60. Gutierrez-Carraquilla L, Sánchez E, Barbé F, Dalmases M, López-Cano C, Hernández M, Rius F, et al. Effect of glucose improvement on spirometric maneuvers in patients with type 2 diabetes: the Sweet Breath Study. Diabetes Care 2019; 42: 617-24. - S61. Jadadesha CG, Srinivas RD. Lung function in type 1 and type 2 diabetes mellitus. Int J Innov Res Med Sci 2019; 4: 429-34. - S62. Toppo A, Ajamani KS. Assessment of pulmonary function test in type 2 diabetes mellitus and its correlation with their HbA1c levels. Int J Adv Med 2019; 6: 164-9. #### Studies that included patients with mixed type 1 and type 2 diabetes mellitus - S63. Asanuma Y, Fujiya S, Ide H, Agishi Y. Characteristics of pulmonary function in patients with diabetes mellitus. Diabetes Res Clin Pract 1985; 1: 95–101. - S64. Asanuma Y, Fujiya S, Ide H, Agishi Y. Characteristics of pulmonary function in patients with diabetes mellitus. Jan J Thorac Dis 1985; 23: 430-5. - S65. Sandler M, Bunn AE, Stewart RI. Cross-section study of pulmonary function in patients with insulin-dependent diabetes mellitus. Am Rev Respir Dis 1987; 135: 223-9 - S66. Cooper BG, Taylor R, Alberti KGMM, Gibson GJ. Lung function in patients with diabetes mellitus. Respir Med 1990; 84: 235-9. - S67. Matsubara T, Hara F. The pulmonary function and histopathological studies of the lung in diabetes mellitus. Nippon Ika Daigaku Zasshi 1991; 58: 528-36. - S68. Ljubic S, Metelko Z, Car N, Roglic G, Drazic Z. Reduction of diffusion capacity for carbon monoxide in diabetic patients. Chest 1998; 114: 1033-5. - S69. Minette P, Buysschaert M, Rahier J, Veriter C, Frans A. Pulmonary gas exchange in life-long nonsmoking patients with diabetes mellitus. Respiration 1999; 66: 20-4. - S70. Lange P, Parner J, Schnohr P, Jensen G. Copenhagen City Heart Study: longitudinal analysis of ventilator capacity in diabetic and nondiabetic adults. Eur Respir J 2002; 20: 1406-12. - S71. Sreeja CK, Elizabeth Samuel, Kesavachandran C, Shashidhar S. Pulmonary function in patients with diabetes mellitus. Indian J Physiol Pharmacol. 2003; 47: 87–93. - S72. Walter RE, Beiser A, Givelber RJ, O'Connor GT, Gottlieb DJ. The association between glycemic state and lung function: the Framingham Heart Study. Am J Respir Crit Care Med 2003; 167: 911-6. - S73. McKeever TM, Weston PJ, Hubbard R, Fogarty A. Lung function and glucose metabolism: an analysis of data from the Third National Health and Nutrition Examination Survey. Am J Epidemiol. 2005; 161: 546-56. - S74. Yu H, Wang S, Zhang Y, Bi H. Observation of pulmonary function in patients with diabetes mellitus. Chin J Clin Rehabil 2005; 9: 162-3. - S75. Meo SA, Al-Drees Am, Arif M, Shah FA. Assessment of respiratory muscles endurance in diabetic patients. Saudi Med J 2006; 27: 223-6. - S76. Meo SA, Al Drees AM, Ahmed J, Shah SFA, Al-Regaiey K, Husain A, et al. Effect of duration of disease on ventilatory function in an ethnic Saudi group of diabetic patients. J Diabetes Sci Technol 2007; 1: 711-7. - S77. Berclaz PY, Gao H, Tobian JA, Swanson DL, Webb DM, Crapo RO. The impact of diabetes and age on pulmonary function: data from the National Health and Nutrition Examination Survey. Diab Res Clin Pract 2009; 83: e1-3. - S78. Fukushima Y, Iwata M, Kamura Y, Kobasi T, Takikawa A, Okazawa T, et al. Study of lung function in adults with and without impaired glucose tolerance (IGT). Lung could be a target organ for diabetic complication. Diabetologia 2009; 52(Suppl1): S469. - S79. Malek F, Malek T, Tosi S, Soltani S, Hashemi H. Comparison of pulmonary function in diabetic patients with and without retinopathy compared with control group. Iran J Endocrinol Metab 2009; 11: 43-50. - S80. Oda E, Kawai R. A cross-sectional relationship between vital capacity and diabetes in Japanese men. Diabetes Res Clin Pract 2009; 85: 111-6. - S81. Yeh F, Marion S, Dixon A, Schaefer C, Best L, Calhoun D, et al. Reduced lung function in adults with diabetes: the Strong Heart Study. Diabetes 2010; 59(Suppl). - S82. Lo T, Tan L, Yap J, Terry M, Lum M, Gold P. A prospective evaluation of spirometric changes In diabetic, pre-diabetic and non-diabetic patients undergoing long term hyperbaric oxygen therapy. Am J Respir Crit Care Med 2010; 181: A5005. - S83. Paek YJ, Jung KS, Hwang IL, Lee KS, Lee DR, Lee JU. Association between low pulmonary function and metabolic risk factors in Korean adults: the Korean National Health and Nutrition Survey. Metab Clin Exp 2010; 59: 1300-6. - S84. Wang G, Jiang X, Bai C. Analysis of pulmonary function in 298 patients with diabetes mellitus. Chest 2010; 138(4 MeetingAbstracts): 565A. - S85. Hassina MZ, Jahan W. Correlation of peak expiratory flow rate and glycemic status in diabetes mellitus. Indian J Physiol Pharmacol 2011; 55(Suppl 1): 221-2. - S86. Hickson D, Burchfield CM, Liu J, Petrini MF, Harrison K, White WB, et al. Diabetes, impaired glucose tolerance, and metabolic biomarkers in individuals with normal glucose tolerance are inversely associated with lung function: the Jackson Heart Study. Lung 2011; 189: 311-21. - S87. Irfan M, Jabbar A, Haque AS, Awan S, Hussain SF. Pulmonary functions in patients with diabetes mellitus. Lung India 2011; 28:
89- 92. - S88. Yeh F, Dixon AE, Marion S, Schaefer C, Zhang Y, Best LG, et al. Obesity in adults Is associated with reduced lung function in metabolic syndrome and diabetes. The Strong Heart Study. Diabetes Care 2011; 34: 2306-13. - S89. Francisco CO, Catai AM, Moura SCG, Lopes SLB, Del Vale AM, Leal AMO. Cardiorespiratory fitness, pulmonary function and C reactive protein levels in adults with diabetes. Eur Respir J 2012; 40(Suppl 56): P4140. - S90. Raskin. P, Heller S, Honka M, Chang PC, Boss AH, Richardson PC, et al. Pulmonary function over 2 years in diabetic patients treated with prandial inhaled - Technosphere Insulin or usual antidiabetes treatment: a randomized trial. Diabetes Obesity Metab 2012; 14: 163-73. - S91. Verma S, Goni M, Kudyar RP, Kumar D. Assessment of respiratory muscle endurance in type 1 & 2 diabetes mellitus. JK Science 2012; 14: 168-71. - S92. Kabeya Y, Kato K, Okisugi M, Kawasaki M, Tomita M, Katsuki T, et al. Association between glycaemic control and impaired lung function in Japanese adults. Diabetología 2013; 56: S523. - S93. Klein OL, Aviles-Santa L, Jianwen C, Collard H, Kanaya A, Kaplan R, et al. The relationship between lung function and diabetes in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Diabetes 2013; 62: A693. - S94. Koo HK, Kim DK, Chung HS, Lee CH. Association between metabolic syndrome and rate of lung function decline: a longitudinal analysis. Int J Tuberc Dis 2013; 17: 1507-14 - S95. Lee YJ, Kim NK, Yang JY, Noh JH, Lee SS, Ko KS, et al. Low pulmonary function in individuals with impaired fasting glucose: The 2007-2009 Korea National Health and Nutrition Examination Survey. Plos One 2013; 8: e76244. - S96. Yamane T, Yokoyama A, Kitahara Y, Miyamoto S, Haruta Y, Hattori N, et al. Cross-sectional and prospective study of the association between lung function and prediabetes. BMJ Open 2013; 3: e002179. - S97. El-Habashy MM, Agha MA, El-Basuni HA. Impact of diabetes mellitus and its control on pulmonary function and cardiopulmonary exercise tests. Egyp J Chest Dis Tuber 2014; 63: 471-6. - S98. Francisco CO, Catai AM, Moura-Tonello SCG, Lopez SLB, Benze BG, Del Vale AM, et al. Cardiorespiratory fitness, pulmonary function and C-reactive protein levels in nonsmoking individuals with diabetes. Br J Med Biol Res 2014; 47: 426-31. - S99. Kabeya Y, Kato K, Tomita M, Katsuki T, Oikawa Y, Shimada A. Association of glycemic status with impaired lung function among recipients of a health screening program: a cross-sectional study in Japanese adults. J Epidemiol 2014; 24: 460: 1-7. - S100. Yeh F, Dixon AE, Best LG, Marion SM, Lee ET, Ali T, et al. Lung function and heart disease in American Indian adults with high frequency of metabolic abnormalities (from the Strong Heart Study). Am J Cardiol 2014; 114: 312-9. - S101. Fontaine.-Delaruelle C, Viart-Ferber C, Luyton C, Couraud S. Fonction pulmonaire du patient diabétique. Rev Pneumol Clin 2016; 72: 10-6. - S102. Baba S, Takashima T, Hirota M, Kawashima M, Horikawa E. Relationship between pulmonary function and elevated glycated hemoglobin levels in health checkups: A cross-sectional observational study in Japanese participants. J Epidemiol 2017; 27: 511-5. - S103. Cichosz SL, Vestergaard ET, Hejlesen O. Muscle grip strength is associated to reduced pulmonary capacity in patients with diabetes. Prim Care Diabetes 2018; 12: 66-70. - S104. Giovanelli J, Trouiller P, Hulo S, Chérot-Kornobis N, Ciuchete A, Edmé JL, et al. Low-grade systemic inflammation: a partial mediator of the relationship between diabetes and lung function. Ann Epidemiol 2018; 28: 26-32. - S105. Ledesma Velázquez A, Castro Serna D, Vargas Ayala G, Paniagua Pérez A, Meneses Acero I, Huerta Ramírez S. Trastornos glucémicos y su asociación con la función pulmonar. Estudio transversal analítico. Med Clin 2019; 153: 387-90. - S106. Lee HM, Zhao Y, Liu MA, Yanez D, Carnethon M, Barr RG, et al. Impact of lung-function measures on cardiovascular disease events in older adults with metabolic syndrome and diabetes. Clin Cardiol 2018; 41: 959-65. - S107. Sivarajan L, Colangelo L, Pickens C, Thyagarajan B, Iribarren C, Jacobs D, et al. Association between impaired fasting glucose, insulin resistance, and lung health from Young adulthood to middle age: the CARDIA Lung Study. ATS 2018; A103. - S108. Sonoda N, Morimoto A, Tatsumi Y, Asayama K, Ohkubo T, Izawa S. A prospective study of the impact of diabetes mellitus on restrictive and obstructive lung function impairment: The Saku study. Metab Clin Exp 2018; 82: 58-64 - S109. Szylinska A, Listewnik M, Ciosek Z, Ptak M, MikolajczykA, Pawlukowska W, et al. The relationship between diabetes mellitus and respiratory function in patients eligible for coronary artery bypass grafting. Int J Environ Res Public Health 2018; 15: 907. - S110. Kuziemski K, Slominski W, Jassem E. Impact of diabetes mellitus on functional exercise capacity and pulmonary functions in patients with diabetes and healthy persons. BMC Endocr Disord 2019; 19: 2. - S111. Sonoda N, Morimoto A, Tatsumi Y, Asayama K, Ohkubo T, Izawa S, et al. The association between glycemic control and lung function impairment in individuals with diabetes: the Saku study. Diabetol Int 2019; 10: 213-8. ## Studies reporting insufficient data for inclusion in the meta-analysis - S112. Maidorn K. Spiroergometrische Untersuchungen zur Frage der Beurteilung der korperlichen Belastbarkeit von Diabetikern. Dtsch Med J 1969; 20: 261-8. - S113. Lange P, Groth S, Kastrup J, Mortensen J, Appleyard M, Nyboe J, et al. Diabetes mellitus, plasma glucose and lung function in a cross-sectional population study. Eur Respir J 1989; 2: 14-9. - S114. Sharma B, Daga MK, Tiwari N, Kaushik M. Diabetic nephropathy and effect of glycemic control and losartan therapy on pulmonary function. Chest 2003; 124(Meeting Abstracts): 162S. - S115. Lawlor DA, Ebrahim S, Smith GD. Associations of measures of lung function with insulin resistance and Type 2 diabetes: findings from the British Women's Heart and Health Study. Diabetologia 2004; 47: 195-203. - S116. Litonjua AA, Lazarus R, Sparrow D, DeMolles D, Weiss ST. Lung function in type 2 diabetes: the Normative Aging Study. Respir Med 2005; 99: 1583-90. - S117. Valerio E, Jasul G, David L, Penafiel A, Banares M, Quimpo J. Pulmonary functions in Filipino patients with type 2 diabetes mellitus: A preliminary study. Philippine J Intern Med 2006; 44: 125-30. - S118. Hickson DA, Burchfield CM, Liu J, Petrini MF, Harrison K, White WB, et al. Type 2 diabetes and glycemia are inversely associated with lung function among African American adults: The Jackson Heart Study. Diabetes 2010; 59(Suppl 1). - S119. Dally FA. Spirometric changes in patients with diabetes mellitus. Med J Babylon 2011; 8: 142-8. - S120. Shah SH, Sonawane PP, Nahar PS, Vaidya SM. Pulmonary functions in type 2 diabetes mellitus. Indian J Physiol Pharmacol 2011; 55(Suppl 1):229. - S121. Talukdar A, Choudhury B. Effect of duration of diabetes on ventilatory function. Indian J Physiol Pharmacol 2011; 55 (Suppl 1): 240-1. - S122. Uz-Zaman S, Singhamahapatra A, Mukherjee A, Banerjee J. Study of pulmonary function in type2 diabetes mellitus and its changes with change in duration and glycemic control. ERJ 2012; 40(suppl 56): 258. - S123. Li Y, Saito M, Tobimatsu S, Oshida H, Hori Y, Fuchigami H, et al. Prediabetes and impaired lung function in asymptomatic adults. Diabetes Res Clin Pract 2013; 100: e51. - S124. Pillai SB. Evaluation of clinicoradiological pulmonary manifestations in type 2 diabetes mellitus and correlation between pulmonary function test and glycemic control. Medical University Tamilnadu, Chennai, India. These, 2013. - S125. Scarlata S, Fimognari FL, Cesari M, Giua R, Franco A, Pasqualetti P, et al. Lung function changes in older people with metabolic syndrome and diabetes. Geriatr Gerontol Int 2013; 13: 894-900. - S126. Panpalia N, Kulkarni S, Aundhkar S. To study the effect of type 2 diabetes on pulmonary function test. Indian J Crit Care Med 2014; 18 (suppl 1): S39. - S127. Yu D, Simonds D. Association between lung capacity measurements and abnormal glucose metabolism: findings from the Crossroads study. Diabet Med 2014; 31: 595-9. - S128. Kapoor D, Kumar P, Ranjan A, Sharma KN, Dogra VD, Bansal R, et al. Assessment of pulmonary function in patients with type 2 diabetes mellitus: a case-control study. Int J Res Med Sci 2015; 3: 207-13. - S129. Dhungel A, Tariq W, Upadhyay-Dhungel K. Pulmonary function test among diabetic and non-diabetic: A comparative study. Janaki Med Coll J Med Sci 2016; 4: 19-26. - S130. Karale M, Karale B, Usendi C, Kamble S. Evaluation of pulmonary functions in patients of type-2 diabetes mellitus. Int J Adv Med 2016; 3: 1020-3. - S131. Klein OL, Aviles-Santa L, Cai J, Collard HR, Kanaya AM, Kaplan RC, et al. Hispanics/Latinos with type 2 diabetes have functional and symptomatic pulmonary impairment mirroring kidney microangiopathy: findings from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Diabetes Care 2016; 39: 2051–7. - S132. Yu D, Chen T, Qin R, Cai Y, Jiang Z, Zhao Z, et al. Association between lung capacity and abnormal glucose metabolism: findings from China and Australia. Clin Endocrinol 2016; 85: 37-45. - S133. El-Jundi H, Dagdelen S, Demir AU, El-Jundi O, Çöplü L. Insulin therapy preserves pulmonary diffusing capacity. ERS 2017; [abstract] - S134. Lecube A, Sánchez F, Betriu A, Gutiérrez-Carrasquilla L, Elías M, Barbé F, et al. Imapired pulmonary function in type 2 diabetic: is there a role for advanced glycation end-products measured by skin autofluorescence? Data from the ILERVAS project. Diabetologia 2017; 60(Suppl 1): S503. - S135. Bazdyrev E, Polikutina OM, Slepynina YS, Barbarash OL. Dysfunction of respiratory system in patients with diabetes mellitus and coronary artery disease. Diab Mellitus 2018; 21: 480-9. - S136. Gangisetty SRG, Devarmani SS, Nemagouda S, Warad VK, Balaganur SG, Kattimani R. Study of
pulmonary function in patient with type 2 diabetes mellitus. Ann Int Med Den Res 2018; 4: ME12-ME15. - S137. Jager V, Thorand B, Huth C, Kahnert K, Rathmann W, Peters A, et al. Association between type 2 diabetes, prediabetes and lung function: Results from the KORA cohort. Eur Respir J 2018; 52: PA2278. - S138. Kopf S, Groener JB, Kender Z, Fleming T, Brune M, Riedinger C, et al. Breathlessness and restrictive lung disease: an important diabetes-related feature in patients with type 2 diabetes. Respiration 2018; 96: 29-40. - S139. Kumar S, Gupta A, Sameja P, Patel I, Gupta S. Study of correlation between diabetic pulmonopathy with serum adiponectin levels in patients of type 2 diabetes mellitus. J Assoc Phys India 2018; 66: 31-3. - S140. Phillip S, Basheer A, Thomas K, Kandasamy R, Kisku KH. Pulmonary function abnormalities and type 2 diabetes mellitus a cross-sectional study. Afr J Diabetes Med 2018; 26: 24-7. S141. Mondal C, Ray A, Kumar A. A study of pulmonary function tests in type 2 diabetes mellitus patients of sub-himalayan plain area of Darjeeling district. Int J Sci Res 2019; 8: 45-7. ### Studies with duplicate or overlapping data - S142. Maiolo C, Mphamed EI, Andreoli AA, Candeloro N, Rossi P, De Lorenzo A. Is altered body fat distribution responsible for reduced pulmonary function in obese type 2 diabetic adult women? Diabetes Care 2001; 24: 961-2. - S143. Klein O, Tipping M, Lee J, Peng J, Williams M. Diffusion lung capacity predicts hospitalization for pneumonia in patients with type 2 diabetes mellitus. J Hosp Med 2010; 5: 43. - S144. Klein OL, Smith LJ, Tipping M, Peng J, Williams MV. Reduced diffusion lung capacity in patients with type 2 diabetes mellitus predicts hospitalization for pneumonia. Diabetes Res Clin Pract 2011; 92: e12-5. - S145. Thangadhurai A. Assessment of pulmonary function tests in type 2 DM (spirometry based. The Tamilnadu Medical University. Chennai, India. These, 2012. - S146. Banu G, Aithala M. Lung functions in type-2 diabetes and its correlation with glycemic index. Indian J Physiol Pharmacol 2013; 57(Suppl): 132. - S147. Kumar A, Deepak KK, Jyotsna VP, Talwar A. Postural variation of pulmonary diffusing capacity in type-II diabetes mellitus. Indian J Physiol Pharmacol 2013; 57(Suppl 1): 104. - S148. Suguna S. A study of pulmonary function test in type II diabetes mellitus spirometry based. The Tamilnadu Dr. M. G. R Medical University. Chennai, India These, 2013. - S149. Singh J, Gupta KK, Himanshu D, Patel ML, Mishra A, Surya K. Study of pulmonary functions in patients with type 2 diabetes mellitus and its correlation with microvascular complications. Int J Med Med Sci 2014; 47: 1558-62. - S150. Singh J, Gupta KK, Himanshu D, Dinkar A, Atam V, Kant S. To study the effect of glycemic control and duration of disease on pulmonary function tests and diffusion capacity in type 2 diabetes mellitus. Int J Res Med Sci 2015; 3: 224-8. - S151. Wilms B, Ernst B, Thurnheer M, Spengler CM, Schultes B. Type 2 diabetes is associated with lower cardiorespiratory fitness independent of pulmonary function in severe obesity. Diabetol Stoffwechsel 2018; 13: 184-90. ## **Predatory journals** - S152. Banu G, Anita D, Pallavi K, Lata M, Manjunatha A. A comparative study of lung functions in type-2 diabetes and non diabetic subjects. Int J Biomed Adv Res 2012; 3: 629-31. - S153. Keerthi S, Singh SB, Bandi HK, Suresh M, Preetham JK, Mallikarjuna R. Deterioration of pulmonary functions in type 2 diabetes mellitus. IOSR J Pharm Biol Sci 2012; 1: 39–43. - S154. Murthy M. Changes in lung function tests in type-2 diabetes mellitus. Int J Basic Med Sci 2012; 3: 54-61. - S155. Niazi S, Hassan SH, Ahmed I, Ashfaq A. Effects of type two diabetes mellitus on lung function parameters. Sch J App Med Sci 2013; 1: 482-7. - S156. Sajja S, Pragathi BH. Pulmonary function tests in type II diabetics in correlation with fasting blood glucose. Int J Med Res Health Sci 2013; 2: 756-61. - S157. Yadav A, Saxena AK, Gaur K, Punjabi P, Meena G. Study of Pulmonary function tests in type 2 diabetes mellitus: case-control study. IOSR J Dent Med Sci 2013; 10: 74-7. - S158. Deshpande A, Afshan A. Evaluation of respiratory functions in patients with type II diabetes mellitus. Sch J App Med Sci 2014; 2: 1939-41. - S159. Gajbhiye RN, Tambe AS. Pulmonary function tests in type 2 diabetics. Global J Biol Agric Health Sci 2014; 3: 20-22. - S160. Panpalia NG, Kulkarni S, Aundhkar SC, Agrawal S, Lakhotia A, Choraria K. To study the effect of diabetes mellitus on pulmonary function tests. Int J Health Sci Res 2014; 4: 108-13. - S161. Shete AN, Garkal KD. Lung functions in type 2 diabetes mellitus. Res J Pharm Biol Chem Sci 2014; 5: 916-9. - S162. Ahmed S, Joshi AA. A study of pulmonary function test in type 2 diabetics. Int J Curr Res Life Sci 2015; 4: 177-9. - S163. Kulkarni GV, Surdi AD. Study of pulmonary function tests in type 2 diabetic patients: correlation with glycemic status. Int J Pharm Bio Sci 2015; 6: 138-45. - S164. Pramodh V, Akhila NR. Pulmonary function tests in type 2 diabetes. IOSR J Dent Med Sci 2015; 14: 44-7. - S165. Singh J, Gupta KK, Himanshu D, Dinkar A, Atam V. Pulmonary function tests and diffusion capacity in type 2 diabetes and their possible correlation with proteinuria. J Med Sci Clin Res 2014; 2: 3091-8. - S166. Fatma J, Gupta N, Karoli R, Shukla V, Siddiqui , Gupta N. Ventilatory functions in diabetes mellitus an assessment made by spirometry and six minute walk test. Int J Contempor Med Res 2016; 3: 3549-51. - S167. Mane SB, Somani SS, Mundkar SM, Shinde MS. The study of pulmonary functions in patient of type 2 diabetes mellitus. J Evid Based Med Healthc 2016; 3, 4380-2. - S168. Bhuvaneswari T. Diabetes mellitus alteres the pulmonary function test parameters among the patients attending regular check-up in tertiary care hospital in and around Chennai Evidence-based study. Int Arch Integr Med 2017; 4: 1-5. - S169. Selvaraj S, Durai G, Murugesan I, Indhuja, Sureshkumar P, Ganesan M. A comparative study on pulmonary function test in type ii diabetics and non-diabetics in a tertiary care centre Kanyakumari. J Evid Based Med Healthc 2017; 4: 242-7. - S170. Ejaz SK, Hasan AR, Poddar CK, Prasad BK. A comparative study on pulmonary function test in type II diabetics and non-diabetics in a tertiary care hospital in koshi region (Northern Bihar), India. J Evid Based Med Healthc 2018; 5: 2199-203. - S171. Suguna S, Vinodha R. A study of pulmonary function test in type II diabetes mellitus Spimetry based. Int J Physiol 2018; 6: 1-6. - S172. Thangadhurai A. Assessment of pulmonary function tests in type 2 DM (spirometry based). IOSR J Dent Med Sci 2018; 17: 23-6. - S173. Pande SS, Chutani A. Comparative study of pulmonary function tests with microvascular complications, retinopathy and nephropathy in type 2 diabetes mellitus and correlation with duration of diabetes. Int J Clin Biomed Res 2018; 4: 14-22. - S174. Giri SG, Kapse, VR, Barade SB, Mhaisekar DG. Study of pulmonary function test in type 2 diabetics and COPD with diabetes. J Pulm Respir Med 2019; 9: 1000485. - S175. Rani RE, Ebenezer BSI, Venkateswarlu M. A study on pulmonary function parameters in type 2 diabetes mellitus. Nat J Physiol Pharm Pharmacol 2019; 9: 53-7. - S176. Mishra T, Dube S, Dave L, Dubey TN. Case control study on pulmonary function in people with type 2 diabetes mellitus. J Med Sci Clin Res 2019; 7: 922-30. S177. Nwanneamaka EC, Chukwuebuka NB, Richard ON, Ed N. Pulmonary function in females with type 2 diabetes in AWKA, Anambra State. Int J Clin Dermatol 2019; 2: 1-6. # **Grey literature** - S178. Kumar S. Changes in lung function tests in type-2 diabetes mellitus. Rajiv Gandhi University of Health Sciences, Karnataka, Bangalore, India. These, 2006. - S179. Lecube A, Sampol G, Lloberes P, Mesa J, Hernandez C, Simo R. Impaired lung function in type 2 diabetes correlates with insulin resistance and metabolic control. A case-control study. Diabetologia 2009; 52(Suppl 1): S469. - S180. Manakar PK. A comparative study of pulmonary functions in patients with type-2 diabetes mellitus and normal individuals. Rajiv Gandhi University of Health Sciences, Karnataka, Bangalore, India. These, 2011. - S181. Hayfron-Benjamin C. the association between glycaemic state and spirometric indices in Ghanaian individuals with type 2 diabetes mellitus. University of Ghana. These, 2013. - S182. Ilamaran M. The pulmonary function test in type-2 diabetics and non-diabetics-a comparative study. The Tamilnadu Dr. M. G. R Medical University. Chennai, India These, 2016. - S183. Bhavya RL. Pulmonary functions in type 2 diabetic patients and its correlation with factors affecting glycemic status. The Tamilnadu Dr. M. G. R Medical University. Chennai, India These, 2017. #### Other - S184. Grassi V, Scionti L, Santeusanio F, Tantucci C, Brunetti P. [Diabetic autonomic neuropathy. Respiratory functional changes]. Recenti Prog Med 1988; 79: 41-5. - S185. Tan MQ, Tan PQ, Xu FY. [Pulmonary function and artery blood analysis of diabetes mellitus]. Zhonghua nei ke za zhi 1990; 29: 736-8, 766. - S186. Singh S, Sircar SS, Singh KP. Are ventilatory impairments related to early onset and long history of diabetes? J Indian Med Assoc 1995; 93: 458-9. - S187. Masmoudi K, Choyakh F, Zouari N. La mecanique ventilatoire et la diffusion alveolocapillaire dans le diabete. Tunis Med 2002; 80: 524-30. - S188. Goldman MD. Lung dysfunction in diabetes. Diabetes Care 2003; 26: 1915-8. - S189. Zhang D, Liu CT, Wang DL. 10 years follow-up observation on pulmonary function in elderly patients with type 2 diabetes mellitus. Chin J Clin Rehabil 2003; 7: 2182-3. - S190. Yu H, Zhang Z, Bi H. Pulmonary function in type 2 diabetes and its related factors. Med J Wuhan Univ 2004; 552-3, 556. - S191. Matei D, Ciochina AI, Corciova C, Stratone A. [Changes of spirographic parameters in type 2 diabetes mellitus]. Rev Med Chir Soc Med Nat Iasi 2009; 113: 1298-302. - S192. Van den Borst B, Gosker HR,
Zeegers MP, Schols MWJ. Pulmonary function in diabetes. A metaanalysis. Chest 2010; 138: 393-406. - S193. Mishra GP, Dhamgaye TM, Tayade BO, Amol BF, Amit SA, Jasmin DM. Study of pulmonary function tests in diabetics with COPD or asthma. Appl Cardiopulmon Pathophysiol 2012; 16: 299-308. - S194. Malhotra, AM, Alaparthi GK, Vaishali, Shyam K, Zulfeequer, Anand R, et al. Pulmonary function test in type 2 diabetes mellitus in Mangalore Indian population: A case control study. Rev Progress 2013; 1: 1-7. - S195. Mukhopadhyay B, Khan S, Uz Zaman S. Study of lung function tests in type II diabetes mellitus in west Bengal. Biomedicine 2013; 33: 426-9. - S196. Malarvzihi D, Anandakrishnan G. Effect of incentive spirometry and balloon exercises to improve pulmonary function for type 2 diabetes. Indian J Public Health Res Dev 2019; 10: 1254-9. - S197. Saini M, Kulandaivelan S, Bansal VK, Saini V, Sharma S, Kaur J, et al. Pulmonary pathology among patients with type 2 diabetes mellitus: an updated systematic review and meta-analysis. Curr Diabetes Rev 2020; 16: 759-69. | Table S1A. Meta | -regression | with subgroup | analysis | | | | | | | | |-----------------|-------------|---------------|----------------------|----------------|---------|---------|--------------|----------------------|----------------|---------| | | | | FEV ₁ (L) | | | FVC (L) | | | | | | | Studies | Participants | Effect estimate | l ² | р | Studies | Participants | Effect estimate | l ² | р | | Male | 10 | 1396 | -0.28 (-0.41, -0.16) | 89% | < 0.001 | 10 | 1416 | -0.36 (-0.59, -0.14) | 95% | 0.001 | | Female | 7 | 1376 | -0.29 (-0.43, -0.15) | 88% | <0.001 | 7 | 1376 | -0.42 (-0.69, -0.15) | 96% | 0.003 | | Nonsmokers | 19 | 1490 | -0.39 (-0.52, -0.27) | 92% | <0.001 | 20 | 1614 | -0.45 (-0.58, -0.32) | 84% | < 0.001 | | Continent | | | | | | | | | | | | Africa | 2 | 275 | -0.71 (-1.66, 0.24) | 99% | 0.14 | 2 | 275 | -0.68 (-1.53, 0.16) | 97% | 0.11 | | America | 8 | 17,639 | -0.30 (-0.41, -0.19) | 95% | <0.001 | 8 | 17,639 | -0.25 (-0.33, -0.17) | 85% | < 0.001 | | Asia | 15 | 2018 | -0.35 (-0.42, -0.28) | 78% | < 0.001 | 15 | 2018 | -0.37 (-0.48, -0.27) | 80% | < 0.001 | | Europe | 8 | 1110 | -0.28 (-0.40, -0.15) | 51% | < 0.001 | 6 | 950 | -0.39 (-0.57, -0.22) | 47% | < 0.011 | | Oceania | 1 | 15 | NA | NA | NA | 1 | 15 | NA | NA | NA | | BMI (kg/m²) | | | | | | | | | | | | <25 | 4 | 285 | -0.27 (-0.51, -0.02) | 72% | 0.03 | 4 | 285 | -0.31 (-0.62, -0.00) | 77% | 0.05 | | 25-29.9 | 11 | 3444 | -0.39 (-0.51, -0.27) | 95% | <0.001 | 11 | 3444 | -0.32 (-0.43, -0.20) | 84% | < 0.001 | | 30-39.9 | 7 | 15,832 | -0.27 (-0.37, -0.17) | 80% | <0.001 | 7 | 15,832 | -0.37 (-0.45, -0.30) | 55% | < 0.001 | | ≥ 40 | 1 | 130 | NA | NA | NA | 0 | 0 | NA | NA | NA | | Table S1B. Met | ta-regressio | n with subgrou | p analysis | | | | | | | | | | | | | | | |--------------------------|--------------|----------------|--------------------------|----------------|--------|-----------|--------------|----------------------|----------------|---------|---------|------------------|----------------------|----------------|--------|--|--| | | | | FEF ₂₅₋₇₅ (L) | | | PEF (L/s) | | | | | | DL _{co} | | | | | | | | Studies | Participants | Effect estimate | l ² | р | Studies | Participants | Effect estimate | l ² | р | Studies | Participants | Effect estimate | l ² | р | | | | Male | 1 | 72 | NA | NA | NA | 4 | 312 | -1.31 (-1.98, -0.64) | 95% | < 0.001 | 1 | 19 | NA | NA | NA | | | | Female | 0 | NA | NA | NA | NA | 3 | 169 | -1.09 (-1.47, -0.71) | 69% | < 0.001 | 0 | NA | NA | NA | NA | | | | Nonsmokers | 10 | 623 | -0.52 (-0.81, -0.24) | 86% | <0.001 | 14 | 1148 | -1.14 (-1.55, -0.73) | 94% | < 0.001 | 6 | 400 | -4.52 (-6.98, -2.06) | 88% | <0.001 | | | | Continent | | | | | | | | | | | | | | | | | | | Africa | 1 | 70 | NA | NA | NA | 2 | 275 | -1.69 (-3.58, 0.20) | 97% | 0.08 | 1 | 70 | NA | NA | NA | | | | America | 1 | 34 | NA | NA | NA | 1 | 283 | NA | NA | NA | 3 | 4789 | -1.74 (-2.95, -0.54) | 74% | 0.005 | | | | Asia | 7 | 529 | -0.38 (-0.52, -0.24) | 27% | <0.001 | 11 | 969 | -0.99 (-1.39, -0.60) | 92% | < 0.001 | 3 | 205 | -3.62 (-4.86, -2.39) | 0% | <0.001 | | | | Europe | 3 | 192 | -0.32 (-0.67, 0.03) | 45% | 0.07 | 5 | 351 | -1.11 (-1.93, -0.29) | 81% | 0.008 | 3 | 225 | -3.80 (-5.35, -2.24) | 0% | <0.001 | | | | Oceania | 0 | NA | NA | NA | NA | 0 | NA | NA | NA | NA | 0 | NA | NA | NA | NA | | | | BMI (kg/m ²) | | | | | | | | | | | | | | | | | | | <25 | 2 | 125 | -0.30)-0.63, -0.03) | 0% | 0.08 | 4 | 285 | -1.19 (-1.91, -0.48) | 71% | 0.01 | 1 | 45 | NA | NA | NA | | | | 25-29.9 | 2 | 95 | -0.55 (-0.93, -0.17) | 0% | 0.005 | 7 | 845 | -1.06 (-1.74, -0.38) | 98% | 0.002 | 2 | 208 | -4.25 (-5.72, -2.77) | 0% | <0.001 | | | | 30-39.9 | 1 | 110 | NA | NA | NA | 2 | 134 | -0.90 (-2.12, 0.32) | 92% | 0.15 | 3 | 4789 | -1.74 (-2.95, -0.54) | 74% | 0.005 | | | | ≥ 40 | 0 | NA | NA | NA | NA | 0 | NA | NA | NA | NA | 0 | NA | NA | NA | NA | | | Abbreviations: BMI, body mass index; DL_{CO}, diffusion capacity of the lung for carbon monoxide; FEF_{25-75%}, forced expiratory flow between 25% and 75% of total lung capacity; FEV₁, forced expiratory volume in one second; FVC, forced vital capacity; NA, not applicable; PEF, peak expiratory flow. | | | F | EV ₁ (L) | FVC (L) | | | | | | |---------------------------------------|---------|--------------|----------------------|----------------------|---------|--------------|----------------------|----------------|--| | | Studies | Participants | Effect estimate | l ² | Studies | Participants | Effect estimate | l ² | | | Statistical analysis method | | | | | | | | | | | Random effect | 24 | 24.057 | -0.34 (-0.42, -0.27) | -0.34 (-0.42, -0.27) | | 20.007 | -0.36 (-0.43, -0.29) | 070/ | | | Fixed effect | 34 | 21,057 | -0.33 (-0.34, -0.32) | 94% | 32 | 20,987 | -0.32 (-0.34, -0.31) | 87% | | | Publication year | | | | | | | | | | | Before 2000 | 1 | 1239 | NA | NA | 1 | 1239 | NA | NA | | | 2000-2009 | 14 | 12,637 | -0.28 (-0.36, -0.21) | 84% | 13 | 12,607 | -0.35 (-0.44, -0.26) | 84% | | | 2010-2019 | 19 | 7181 | -0.34 (-0.46, -0.23) | 94% | 18 | 7051 | -0.39 (-0.50, -0.28) | 90% | | | Type-2 diabetes group size | | | | | | | | | | | <50 patients | 18 | 940 | -0.40 (-0.53, -0.27) | 91% | 17 | 910 | -0.47 (-0.63, -0.30) | 81% | | | ≥50 patients | 16 | 20,117 | -0.29 (-0.36, -0.2 | 92% | 15 | 19,987 | -0.29 (-0.34, -0.23) | 82% | | | Study quality | | | | | | | | | | | Only good quality studies | 27 | 19,574 | -0.35 (-0.45, -0.25) | 94% | 26 | 19,544 | -0.38 (-0.47, -0.29) | 100% | | | Including predatory journals and grey | | | | | | | | ĺ | | | literature | 54 | 23,495 | -1.18 (1.38, -0.98) | 96% | 52 | 23,335 | -1.03 (-1.21, -0.85) | 95% | | | Excluding the greatest weight study | 33 | 20,774 | -0.34 (-0.43, -0.26) | 94% | 31 | 16,733 | -0.36 (-0.43, -0.29) | 88% | | | Table S2B. Sensitivity analysis | | | | | | | | | | | | | | |-------------------------------------|---------|--------------|------------------------|----------------|---------|--------------|------------------------|----------------|------------------|--------------|-----------------------|----------------|--| | | | FE | F ₂₅₋₇₅ (L) | | | Р | EF (L/s) | | DL _{co} | | | | | | | Studies | Participants | Effect estimate | l ² | Studies | Participants | Effect estimate | l ² | Studies | Participants | Effect estimate | l ² | | | Statistical analysis method | | | | | | | | | | | | | | | Random effect | 12 | 825 | -0.48 (-0.71, -0.24) | 84% | 19 | 1878 | -1.07 (-1.73, -0.71) | 97% | 10 | 5289 | -3.42 (-5.14, - 1.70) | 93% | | | Fixed effect | 12 | 823 | -0.47 (-0.54, -0.39) | 0470 | 19 | 1878 | -0.60 (-0.64, -0.56) | 3770 | 10 | 3289 | -3.17 (-3.55, -2.80) | 33/0 | | | Publication year | | | | | | | | | | | | | | | Before 2000 | 0 | NA | NA | NA | 0 | NA | NA | NA | 1 | 100 | NA | NA | | | 2000-2009 | 5 | 288 | -0.35 (-0.53, -0.17) | 21% | 6 | 551 | -0.83 (-1.33, -0.32) | 94% | 3 | 225 | -3.80 (-5.35, -2.24) | 0% | | | 2010-2019 | 7 | 537 | -0.54 (-0.92, -0.16) | 88% | 13 | 1327 | -1.18 (-1.67, -0.69) | 94% | 6 | 4964 | -3.16 (-5.56, -0.77) | 96% | | | Type-2 diabetes group size | | | | | | | | | | | | | | | <50 patients | 9 | 535 | -0.57 (-0.85, -0.29) | 86% | 13 | 835 | -1.24 (- 1.60, - 0.89) | 88% | 6 | 271 | -3.58 (-6.59, -0.58) | 91% | | | ≥50 patients | 3 | 290 | -0.15 (-0.37, 0.07) | 8% | 6 | 1043 | -0.62 (-0.90, -0.34) | 79% | 4 | 5018 | -2.64 (-3.67, -1.61) | 68% | | | Study quality | | | | | | | | | | | | | | | Only good quality studies | 12 | 825 | -0.48 (-0.71, -0.24) | 84% | 16 | 1435 | -1.09 (-1.51, -0.68) | 92% | 9 | 5189 | -3.37 (-5.23, -1.50) | 94% | | | Including predatory journals and | | | | | | | | | | | | | | | grey literature | 24 | 2027 | -1.08 (-1.41, -0.74) | 92% | 35 | 3790 | -1.06 (-1.31, -0.82) | 92% | 10 | 5289 | -0.76 (-1.07, -0.45) | 89% | | | Excluding the greatest weight study | 11 | 753 | -0.49 (-0.79, -0.20) | 84% | 18 | 1595 | -1.12 (-1.47, -0.76) | 93% | 9 | 1125 | -3.48 (-5.76, -1.20) | 93% | | Abbreviations: DL_{co}, diffusion capacity of the lung for carbon monoxide; FEF_{25-75%}, forced expiratory flow between 25% and 75% of total lung capacity; FEV₁, forced expiratory volume in one second; FVC, forced vital capacity; NA, not applicable; PEF, peak expiratory flow. Figure S1. Forest plot of forced expiratory volume in one second (L) Figure S2. Forest plot of forced vital capacity (L) Figure S3. Forest plot of forced expiratory flow between 25% and 75% of total lung capacity (L/s) Figure S4. Forest plot of peak expiratory flow (L/s) | | Type | 2 diabe | tes | Control | | | | Mean Difference | Mean Difference | | | |---------------------------------------|-----------------------|----------|----------|-----------|--------|-------------|--------|----------------------|--|--|--| | Study or Subgroup | Mean | SD | Total | Mean | SD | Total | Weight | IV, Random, 95% CI | IV, Random, 95% CI | | | |
Abd El-Azeem, 2013 | 3.25 | 0.6 | 30 | 5.89 | 0.8 | 40 | 6.2% | -2.64 [-2.97, -2.31] | 123-3-44P | | | | Agarwal, 2010 | 5.47 | 1.41 | 30 | 5.96 | 1.07 | 15 | 5.1% | -0.49 [-1.23, 0.25] | | | | | Anandhalakshmi, 2013 | 5.2 | 2 | 30 | 6.2 | 1.7 | 30 | 4.5% | -1.00 [-1.94, -0.06] | | | | | Aparna, 2013 | 4.36 | 0.31 | 40 | 5.95 | 0.3 | 40 | 6.5% | -1.59 [-1.72, -1.46] | * | | | | Ari, 2002 | 5.7 | 1.7 | 25 | 7 | 2.5 | 10 | 2.7% | -1.30 [-2.99, 0.39] | | | | | Dharwadkar, 2011 | 5.17 | 1.61 | 40 | 6.07 | 2.51 | 40 | 4.6% | -0.90 [-1.82, 0.02] | 9 -1 | | | | Guvener, 2003 | 5.53 | 2.26 | 25 | 5.68 | 1.55 | 12 | 3.7% | -0.15 [-1.40, 1.10] | | | | | Jamatia, 2014 | 4.83 | 1.98 | 30 | 7.2 | 1.53 | 30 | 4.6% | -2.37 [-3.27, -1.47] | | | | | Maiolo, 2002 | 4.33 | 0.6 | 12 | 5.84 | 0.43 | 12 | 6.0% | -1.51 [-1.93, -1.09] | | | | | Meo, 2006 | 5.77 | 0.46 | 32 | 6.91 | 0.28 | 40 | 6.4% | -1.14 [-1.32, -0.96] | - | | | | Nandhini, 2012 | 6.59 | 1.37 | 45 | 7.32 | 1.46 | 47 | 5.6% | -0.73 [-1.31, -0.15] | | | | | Nidhianand, 2017 | 3.795 | 0.724 | 100 | 4.11 | 0.696 | 100 | 6.4% | -0.32 [-0.51, -0.12] | - | | | | Okur, 2018 | 5.17 | 1.51 | 58 | 5.43 | 1.51 | 52 | 5.6% | -0.26 [-0.83, 0.31] | - | | | | Ortiz-Aguirre, 2006 | 4.5 | 0.2 | 144 | 4.9 | 0.2 | 139 | 6.5% | -0.40 [-0.45, -0.35] | | | | | Ozoh, 2010 | 5.6 | 2.24 | 101 | 6.31 | 1.62 | 104 | 5.7% | -0.71 [-1.25, -0.17] | - | | | | Rajani, 2013 | 5.41 | 2.27 | 40 | 6.51 | 1.72 | 40 | 4.7% | -1.10 [-1.98, -0.22] | - * | | | | Shergill, 2017 | 8.73 | 1.22 | 50 | 9.85 | 1.69 | 50 | 5.6% | -1.12 [-1.70, -0.54] | - 14 | | | | Van Eetvelde, 2018 | 5.51 | 3.39 | 110 | 7.85 | 2.2 | 35 | 4.4% | -2.34 [-3.31, -1.37] | | | | | Verma, 2009 | 5.19 | 1.69 | 50 | 5.56 | 1.68 | 50 | 5.3% | -0.37 [-1.03, 0.29] | | | | | Total (95% CI) | | | 992 | | | 886 | 100.0% | -1.07 [-1.43, -0.71] | • | | | | Heterogeneity: Tau ² = 0.5 | 2; Chi ² = | 526.67 | , df = 1 | 8 (P < 0. | 00001) | $ ^2 = 97$ | '% | 197 | 1 1 1 1 | | | | Test for overall effect: Z= | 5.83 (P | < 0.0001 | 01) | - | | 2 | | | -2 -1 U 1 2
Type-2 diabetes Control | | | | | - 46 | | 33. | | | | | | Type-2 dianetes Colling | | | Figure S5. Forest plot of diffusion capacity of the lungs for carbon monoxide (mL/min/mm Hg) Figure S6. Funnel plot of FEV $_1$ (L), FVC (L), FEF $_{25-75\%}$ (L/s), PEF (L/s) and DL $_{CO}$ (mL/min/mm Hg)