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ABSTRACT 

Multiple breath nitrogen washout (MBNW) quantifies ventilation heterogeneity. Two distinct 

protocols are currently used for MBNW testing: 'controlled breathing‟, with targeted tidal 

volume (VT) and respiratory rate (RR); and „free breathing‟, with no constraints on breathing 

pattern. Indices derived from the two protocols (functional residual capacity [FRC], lung 

clearance index [LCI], Scond, Sacin) have not been directly compared in adults. We aimed 

to determine whether MBNW indices are comparable between protocols, to identify factors 

underlying any between-protocol differences, and to determine the between-session 

variabilities of each protocol. 

We performed MBNW testing by both protocols in 27 healthy adult volunteers, applying the 

currently-proposed correction for VT to Scond and Sacin derived from free breathing. To 

establish between-session variability, we repeated testing in 15 volunteers within 3 months. 

While FRC was comparable between controlled vs free breathing (3.17(0.98) vs 3.18(0.94) 

L,p=0.88), indices of ventilation heterogeneity derived from the two protocols were not, with 

poor correlation for Scond (r=0.18,p=0.36) and significant bias for Sacin (0.057(0.021)L-1 vs 

0.085(0.038)L-1,p=0.0004). Between-protocol differences in Sacin were related to 

differences in the breathing pattern, i.e. VT (p=0.004) and RR (p=0.01), rather than FRC. 

FRC and LCI showed good between-session repeatability, but Scond and Sacin from free 

breathing showed poor repeatability with wide limits of agreement.  

 

These findings have implications for the ongoing clinical implementation of MBNW, as they 

demonstrate that Scond and Sacin from free breathing, despite VT correction, are not 

equivalent to the controlled breathing protocol. The poor between-session repeatability of 

Scond during free breathing may limit its clinical utility. 

  



 

INTRODUCTION 

Increased ventilation heterogeneity is a characteristic physiological abnormality in 

respiratory diseases such as asthma and COPD [1, 2]. The multiple breath nitrogen washout 

(MBNW) test is an increasingly-available method of quantifying ventilation heterogeneity. 

MBNW is conducted by breathing 100% oxygen (O2) which then „washes out‟ the resident 

nitrogen (N2) in the lung. Analysis of the exhaled N2 concentration versus exhaled volume of 

each breath then allows calculation of a number of parameters: a global measure of 

heterogeneity known as the lung clearance index (LCI); heterogeneity arising predominantly 

within the conducting airways (Scond); heterogeneity arising predominantly in the more 

distal/intra-acinar airways (Sacin); and functional residual capacity (FRC).  

Two distinct breathing protocols are currently used for MBNW testing. One is a „controlled 

breathing‟ protocol whereby the patient maintains a consistent tidal volume (VT) 

(approximately 1 L) and respiratory rate (RR) (8-12 breaths/min) [3] through the use of a 

visual incentive screen and real-time feedback from the test operator. These breathing 

constraints are applied to all individuals equally, regardless of lung size; consequently, a 

given patient‟s breathing pattern during the test may deviate significantly from their usual 

resting breathing pattern. The alternative is a „free breathing‟ protocol, with no constraints on 

VT or RR, i.e. the individual determines their own breathing depth and frequency. While this 

makes the method more suited to paediatric testing [3], variability in breathing patterns 

within or between individuals may have an impact on indices of ventilation heterogeneity [4-

6] and their repeatability. A correction for lung size and breath-to-breath variation in VT has 

been proposed for this method [7], but this has not been formally validated against a 

controlled breathing approach. Standard reference equations are available for both methods 

to guide interpretation of MBNW indices, which account for factors such as age, height and 

sex [8-11], but little is known about their comparability. 

Differences in how controlled and free breathing MBNW protocols are conducted and 

analysed may therefore limit the comparability of indices derived from them. A direct 



 

comparison of the protocols in children [12] showed significant differences in LCI and Scond; 

the authors concluded that this was due to a reduction in end-expiratory lung volume (EELV) 

induced by controlled breathing. However, the results suggested that other patient-related 

factors (e.g. lung size, body weight) may contribute to the discrepancies. Indices derived 

from the two protocols have not been directly compared in adults, nor have their respective 

between-session variabilities. 

Therefore, in a sample of healthy adults, we aimed to determine: 1) whether controlled and 

free breathing MBNW protocols provide equivalent FRC and indices of ventilation 

heterogeneity; 2) the influence of patient-related factors (anthropometrics and/or breathing 

pattern) on any observable differences; and 3) if the choice of protocol influences between-

session variability, which would allow us to interpret any between-protocol differences. Our 

overall hypothesis was that controlled and free breathing MBNW would produce comparable 

measurements of ventilation heterogeneity, with the secondary hypothesis that any 

differences would be, in part, due to patient-related factors. 

 

METHODS 

Study overview 

We recruited and studied volunteers aged ≥18 years in the respiratory function laboratories 

at two sites (RNSH and WIMR, Sydney, Australia; see Supplement for inclusion/exclusion 

criteria) from a convenience sample of volunteers (predominantly hospital staff) between 

April 2018 and November 2019. Our target sample size was n=25, comparable to the control 

group of a previous study [12]. The RNSH Human Research Ethics Committee approved the 

study (LNR/16/HAWKE/11). After obtaining written informed consent to be tested and for 

their data to be used for research purposes, participants first underwent standard (pre-

bronchodilator) lung function testing to confirm they had normal lung function. After a period 

of rest of at least 10 minutes, participants underwent MBNW testing by both breathing 

protocols conducted in a randomised order. Each participant was invited to return for repeat 



 

testing, at their convenience, within the next three months. This follow-up testing was 

performed in an identical manner, including the order of MBNW protocol testing, for 

consistency.  

Standard lung function testing 

We measured spirometry and lung volumes according to ATS/ERS quality criteria using a 

Jaeger MasterScreen PFT (Vyaire Medical V2.21.4) device, with comparison to reference 

values [13, 14] for plethysmography. 

MBNW testing 

Detailed descriptions of the device and testing procedure are found in the Supplement. After 

at least 10 minutes of rest for the participant, we conducted MBNW tests using the 

Exhalyzer D with Spiroware v3.1.6 (Eco Medics AG, Duernten, Switzerland).  

Participants performed both controlled and free breathing protocols in succession, in a 

random order (as determined by a computer-based random number generator), according to 

current international consensus recommendations [3]. All trials started with a period of 

normal relaxed breathing on room air in order to establish a stable EELV. For the controlled 

breathing protocol, the operator then instructed the participant to breathe at a VT of 0.95-1.3 

L and at RR 8-12/min with the use of the visual incentive screen within Spiroware (described 

by Verbanck [15]); once the operator was satisfied that a stable breathing pattern and EELV 

had been achieved, they commenced the washout by switching the circuit to 100% O2 and 

the participant maintained the same breathing pattern for the duration of the washout phase. 

For the free breathing protocol, the operator instructed the participant to “continue to breathe 

in a normal relaxed manner” through both the pre-phase and washout-phase, with the visual 

incentive screen switched off and without any additional coaching during the trial. 

Participants repeated the test until at least 3 technically acceptable trials with FRC values 

within ±10% of the mean were achieved for each protocol. 



 

MBNW analysis 

Full details are provided in the Supplement. We analysed MBNW data using Spiroware 

software (v.3.1.6). While the test operator performed preliminary analysis on individual trials 

during the testing session, a single investigator re-analysed the data post hoc for all 

participants as a batch in order to ensure a consistent approach to analysis. 

To differentiate between measurements made by the different protocols, we have 

subscripted all indices with CB or FB to indicate controlled and free breathing, respectively. 

Under the free breathing protocol, Scond and Sacin are adjusted for VT and are thus 

denoted in the literature and Spiroware software as Scond*VT and Sacin*VT; however, we 

refer to them here simply as ScondFB and SacinFB, respectively. 

Statistical analyses 

We compared FRC, LCI, Scond, and Sacin measured by the two breathing protocols using 

paired t tests and Pearson correlation. Additionally, we compared FRC from either protocol 

against the gold-standard FRCpleth. To investigate for bias, we generated Bland-Altman plots 

as the between-protocol difference (free breathing minus controlled breathing) versus the 

average, plotting the mean difference and 95% limits of agreement (95% LOA). We then 

performed linear regression of the difference versus average to determine any proportional 

bias. To examine the effects of various predictors (age, sex, height, BMI, mean RR from free 

breathing, mean VT from free breathing, and FRCpleth) on between-protocol difference, we 

performed linear regression of the difference versus each predictor. To determine within-

session variability, we calculated the coefficient of variation (CoV) from the three washout 

trials. To determine between-session variability, we calculated the difference (Visit 2 minus 

Visit 1) and 95% LOA separately for each protocol. We also report the between-session 

intra-class correlation coefficients (ICC), calculated using a two-way mixed effects ANOVA 

model based on absolute agreement, multiple measurements (k=3) [16], We set statistical 



 

significance at p<0.05. Results are presented as mean(standard deviation [SD]) unless 

otherwise stated. 

  

RESULTS 

Participant characteristics and breathing patterns 

We studied 27 non-smoking, healthy volunteers (22 at the RNSH site, 5 at the WIMR site) 

with a median age of 34 (range 19-65) years and spirometry/lung volumes within the limits of 

normal (Table 1). Since MBNW parameters are likely to be device- and protocol-specific [17, 

18], we were unable to compare all measurements to a single set of reference equations. 

However, MBNW indices from the free breathing protocol were within the ranges of normal 

derived from the same testing device (Table S1) [9]. 

Compared to controlled breathing, free breathing produced smaller mean VT (mean(SD) 

difference -0.24(0.33) L, p=0.0006), faster mean RR (1.6(3.4) breaths/min, p=0.02), smaller 

minute ventilation (-2.4(3.1) L/min, p<0.0001), greater cumulative expired volume (CEV) 

(1.84 L, p=0.006), but similar washout times (p=0.17). Four out of the 27 participants 

required coaching prior to commencing the free breathing protocol due to inadequate phase 

III. The average proportions of washout breaths excluded from analysis due to inadequate 

phase III were 2.7% for controlled breathing and 3.9% for free breathing. 

FRC was comparable between protocols, and with plethysmography 

There was no significant difference in mean FRC measured by either MBNW protocol 

(FRCCB 3.17(0.98) vs FRCFB 3.18(0.94), p=0.88). FRCCB and FRCFB were strongly correlated 

(r=0.94, p<0.0001; Figure 1A). There was no evidence of bias in the absolute (Figure 1B) or 

percentage difference (Figure S1). 

There were no significant differences between mean FRCCB or FRCFB and mean FRCpleth 

(p=0.83 and p=0.86, respectively). Both FRCCB and FRCFB were strongly correlated with 



 

FRCpleth (r=0.84 and r=0.92, respectively, p<0.0001 for both; Figure 2). Within-subject 

differences in FRC between the two MBNW protocols were not related to the individual‟s 

FRCpleth (p=0.55, Figure S2-A). Similarly, within-subject differences in FRC between the 

protocols were not related to age, sex, height, mean VT or mean RR from free breathing, but 

there was a trend towards an effect of BMI (p=0.07, Figure S2-B). 

LCI was comparable between protocols 

Mean LCI was significantly lower with controlled breathing (LCICB 7.2(0.58) vs LCIFB 

7.55(0.81), p=0.0004), however the mean difference was small. There was a strong 

correlation between the protocols (r=0.84, p<0.0001; Figure 3-A). However, there was 

evidence of proportional bias (between-protocol difference increased with LCI, p=0.004; 

Figure 3-B). 

Scond was poorly correlated between protocols 

Overall, mean Scond measured by both protocols was not significantly different (ScondCB 

0.017(0.009) vs ScondFB 0.018(0.01) L-1, p=0.74). However, there was no significant 

correlation between the protocols (r=0.18, p=0.36, Figure 4-A). The Bland-Altman plot 

revealed large variance in between-protocol differences and possible (but non-significant) 

proportional bias (p=0.45, Figure 4-B).  

Sacin showed significant between-protocol differences 

Mean Sacin was significantly lower with controlled breathing (SacinCB 0.057(0.021) L-1 vs 

SacinFB 0.085(0.038) L-1, p=0.0004). The correlation between the protocols was borderline 

significant (r=0.37, p=0.06; Figure 5-A). The Bland-Altman plot revealed significant 

proportional bias (between-protocol difference increased with Sacin, p=0.002; Figure 5-B). 

Linear regression showed that within-subject differences in Sacin between the two protocols 

were related to the breathing pattern. Specifically, the greater the deviation in mean VT or 

mean RR between the protocols, the larger the discrepancy in Sacin (p=0.004 and p=0.01, 



 

respectively; Figures 5-C and 5-D), such that participants who breathed shallower or faster 

during the free breathing protocol had greater apparent SacinFB. 

Breathing protocol influenced between-session variability of MBNW indices 

15 volunteers underwent repeat testing; the baseline (Visit 1) characteristics of this subgroup 

were similar to those of the group as a whole, except for a narrower age range (Table 1). 

The mean(SD) time between sessions was 5.9(3.3) weeks. Within-session and between-

session variability measures for both protocols are presented in Table 2. There were no 

differences seen in within-session CoV between protocols in FRC (p=0.677) or LCI 

(p=0.157). In terms of between-session variability, the free breathing protocol showed 

relatively greater variability in LCI, Scond and Sacin, as indicated by numerically greater 

mean differences and wider 95% LOAs, with very poor between-session ICC seen in Scond 

and Sacin. The controlled breathing protocol showed wider 95% LOA for FRC. Bland-Altman 

plots did not suggest any proportional bias for either protocol (Figures S3, S4). 

 

DISCUSSION 

Summary of results 

In this study in healthy adults comparing two commonly-used MBNW breathing protocols, 

we found that: 1) FRC was comparable between the two protocols, however indices of 

ventilation heterogeneity based on phase III slopes were not – Scond was poorly correlated 

between the two protocols and Sacin were systematically higher under the free breathing 

protocol, whereas LCI was only marginally higher; 2) there was greater between-protocol 

discrepancy in Sacin in subjects whose free breathing pattern deviated from that of the 

volume- and frequency-controlled protocol; and 3) Scond and Sacin exhibited poorer 

between-session repeatability under the free breathing protocol.  



 

Lack of discrepancy in FRC 

Yammine et al [12] demonstrated in children that Scond and LCI obtained from a controlled 

breathing protocol were higher than when obtained by free breathing, and that the 

discrepancy was related to a decrease in FRC during controlled breathing. Thus, the authors 

argued that a controlled breathing protocol may overestimate heterogeneity by inadvertently 

causing individuals to change the EELV at which they would otherwise normally breathe. In 

children, a 1 L VT represents a significant proportion of TLC; the high VT may increase 

ventilation heterogeneity due to the recruitment of normally non-ventilated lung units [19], or 

due to closure of lung units in the dependent regions if the child expires to below their 

normal end-expiratory lung volume [20], or some combination of both. 

Our current findings in healthy adults do not support the argument that FRC is altered with 

controlled breathing, as we showed that FRC estimated by the two protocols was in fact 

comparable, with no systematic bias. Furthermore, both were comparable to the „gold 

standard‟, i.e. FRCpleth. A number of factors may explain the differences between our findings 

and those of Yammine et al. For example, the effect of variation in FRC may be relatively 

mild in the adults in our study compared to that in children, and thus insufficient to cause 

significant differences in heterogeneity. We observed that the variability in between-protocol 

differences (assessed by the LOA) in FRC were comparable to the between-session 

variabilities of either protocol, though interestingly between-session LOA was numerically 

higher under the controlled breathing protocol. Alternatively, our standard procedure for the 

controlled breathing protocol includes an initial period of unconstrained breathing to allow 

the individual‟s end-expiratory lung volume to stabilise before commencing the washout. 

This is in line with current ATS/ERS recommendations [3] and may have ensured FRC 

differences were kept minimal between protocols.  

Discrepancy in ventilation heterogeneity indices 



 

While LCI – an index of global heterogeneity that is independent of SIII – was comparable 

between protocols (with a small bias), we found that SIII-dependent ventilation heterogeneity 

partitioned into proximal/conducting (Scond) and distal/acinar (Sacin) zones was not. Scond 

was poorly correlated between protocols, perhaps driven by a large between-session 

variability. Sacin was significantly different between protocols; moreover, Sacin obtained by 

free breathing was higher than that obtained by controlled breathing in individuals with 

relatively small VT or high RR. Between-protocol differences in Sacin appear to be 

independent of age, height or lung size, i.e. a change in breathing pattern was the dominant 

driver of the discrepancy.  

There are two possible explanations for this. First, the effect could be purely methodological: 

when breaths are too „shallow‟, estimation of SIII is rendered invalid as the N2 expirogram 

either never reaches a plateau or attains a plateau that is too short for reliable curve fitting, 

which would subsequently affect the derivation of Sacin and Scond. Anectodal evidence 

suggests this occurs frequently. Methods to more reliably estimate SIII exist [21], but are still 

ultimately dependent on the presence of distinct phase II and III regions in the expirogram 

and an adequate portion of phase III. More useful may be methods of quantifying ventilation 

heterogeneity that do not rely on SIII slope estimation [22, 23] – these may help not just in 

free breathing but also in pathologies where SIII is often difficult to define. The feasibility and 

clinical relevance of these methods should be a direction for future investigation. 

Alternatively, the effect may be physiological: when patients breathe shallower and faster, 

the fast-emptying lung compartments will increase their N2 washout while the slow-emptying 

lung compartments will be unable to empty completely, thus increasing apparent 

heterogeneity estimated by Sacin and Scond. Indeed, the foundational studies on ventilation 

distribution clearly demonstrated an effect of breathing pattern (including VT) on MBNW 

indices [4]. Recently, Ratjen and colleagues [24] investigated the effects of altered VT on 

MBNW indices and found that shallow breathing (compared to „unrestricted‟ breathing) 

significantly increased LCI. The authors speculated that this was due to the effects of 



 

increased dead space to VT ratio on the determinants of LCI (both CEV and FRC). Notably, 

these investigators did not examine the impact on Scond or Sacin.  

We found that on average, VT was shallower, RR was faster and CEV higher in the free 

breathing protocol in our study participants. The change in CEV would be expected, since 

smaller breaths may reduce alveolar gas mixing efficiency and therefore increase the 

volume (and time, though this was not significant) required to reach end-of-test criteria. This 

likely drove the changes in LCI we observed – indeed, differences in LCI were directly 

proportional to differences in CEV (Figure S5). However, it should be noted that the 

differences seen in LCI were very small relative to its magnitude, and unlikely to be clinically 

significant. Furthermore, we found a weak relationship between differences in Scond and 

differences in CEV; this was not seen with Sacin (Figure S6). However, when plotted against 

differences in CEV/FRC (i.e. LCI, which corrects CEV for lung volume), the relationship with 

Sacin became significant. This supports the interpretation that the differences seen in Sacin 

were driven by changes in ventilation heterogeneity, rather than alterations to lung volume.  

Variability of MBNW indices 

We also report between-session variability over 2-10 weeks for both protocols, using the 

same commercially-available device. This allowed us to compare between-protocol 

differences in MBNW indices against their short-term variability. Within-session CoV of FRC 

and LCI was similar to published values for the free-breathing protocol [25], using the same 

device. However the between-session coefficient of repeatability (equal to 1.96xSD of the 

mean differences) of LCI, Scond, and Sacin were greater in our study, which may reflect the 

different time between sessions (weeks/months vs days). There is a paucity of repeatability 

data in health, and previous reports may not be generalizable due to persistent between-

device differences [17, 18, 26]. Nevertheless, the excellent between-session repeatability for 

FRC and LCI [25, 27-29] but poor repeatability in Sacin and Scond [25, 28] has been noted 

with the free breathing protocol by other investigators, regardless of device, tracer gas, or 



 

disease. The higher between-session repeatability values seen in Scond and Sacin with the 

controlled breathing protocol are consistent with other studies [30, 31]. 

It is also worth noting that FRC and LCI are derived from successive cumulation of volume 

at each breath, i.e. they are integrated measures, which are more robust to noise. On the 

other hand, Scond and Sacin are estimated from slopes, i.e. differentiated measures, which 

are inherently susceptible to noise. Furthermore, unlike FRC and LCI, the values of Scond 

and Sacin are very close to zero, which may explain the very low between-session ICC 

values observed. These may be fundamental reasons for the greater variability seen in 

Scond and Sacin but not FRC and LCI, and this variability becomes even more pronounced 

when variability in tidal breathing is introduced. This higher variability may also drive the 

differences seen between the two protocols. We also note the potential for these differences 

to be further exaggerated in disease – this and the high between-session variability 

observed may limit the clinical utility of SIII indices derived from free breathing. These 

speculations need to be confirmed in further investigations. 

Significance 

Both MBNW breathing protocols are designed to measure ventilation heterogeneity during 

resting tidal breathing. The controlled breathing protocol was originally devised based on 

modelling studies in which convection-dependent and diffusion-convection interaction-

dependent mechanisms of airflow in the lung (the basis of Scond and Sacin, respectively) 

were first described [32]. The controlled breathing protocol standardises the VT at which 

ventilation distribution is assessed, and also ensures that expiration occurs well into the 

alveolar plateau so that a reliable SIII estimation can be made. This standardisation 

potentially minimises variability between tests. However, this „artificial‟ pattern of breathing 

may distribute the ventilation differently in lungs of different sizes i.e. in shorter versus taller 

people. These differences may then affect the measurements of MBNW indices such that 

they no longer reflect true resting or „natural‟ ventilation distribution. In contrast, under a free 

breathing protocol, breathing occurs at (or closer to) natural resting breathing pattern; thus, 



 

the MBNW indices obtained arguably better reflect the indvidual‟s native ventilation 

distribution during normal tidal breathing.  

Our results lend weight to the idea that controlled breathing imposes a condition that is 

different to the individual‟s natural resting breathing pattern, and that MBNW indices derived 

from this protocol may not necessarily reflect their „native‟ ventilation heterogeneity. 

Specifically, breathing at 1 L tended to improve heterogeneity measured by Sacin in 

individuals whose VT during free breathing was less than 1 L, or whose RR during free 

breathing was faster than the prescribed 8-12 per minute. So, which is the „better‟ test? We 

suggest that it is whichever provides the highest sensitivity in detecting disease or assessing 

treatment. The „better‟ test may even be disease-specific, and warrants further investigation.  

Since these differences are apparent despite the use of VT-corrected versions of Scond and 

Sacin, our study suggests that the linear VT correction currently employed for the free 

breathing protocol may not be adequate.  Again, methods which assess ventilation 

heterogeneity without the need for estimating SIII, ideally in a manner that is independent of 

VT [22], may be useful here.  

Limitations 

Our study has several limitations to be taken into consideration. First, a number of the 

volunteers could be considered „trained‟ in lung function testing. However, it is unlikely that 

prior experience would influence the largely effort-independent MBNW test. Second, 4/27 

participants required coaching before or after free breathing testing due to insufficient 

expired volume for phase III slope estimation. Thus, there is a chance our results may 

actually underestimate the true discrepancy between the two protocols, particularly in 

shallow breathers [24] or in lung disease where increased dead space further complicates 

phase III slope estimation [33]. Third, our results only apply to a healthy population tested on 

a single MBNW device. There are likely to be differences between equipment [17, 18] and 



 

between populations (e.g. children, older adults, lung disease) that limits the generalisability 

of our results. 

Conclusion

We have demonstrated that while controlled and free breathing protocols are equivalent in 

terms of FRC and LCI, phase III-derived MBNW indices of ventilation heterogeneity are 

lower (i.e. better) when measured by the controlled breathing method. This effect seems to 

be driven largely by deviations in breathing pattern between the two protocols, particularly in 

patients who either breath faster or shallower than the criteria imposed by the controlled 

breathing protocol. Future work needs to be carried out in diseased patients to see if these 

observations hold true. Our study sheds light on potential physiological mechanisms behind 

these differences, and the overall interpretation of ventilation heterogeneity measured by 

MBNW. In better characterising the difference between the two protocols, these findings also 

help facilitate the ongoing efforts to standardise MBNW as an emerging clinical test.  
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TABLES 

Table 1.  Participant characteristics, lung function and MBNW parameters. Values are 

mean(SD) unless otherwise stated. For the repeatability subgroup, results are from the first 

visit. Reference equations for predicted values from †Quanjer 2012 [13] and ‡Quanjer [14]. 

BMI, body mass index; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; 

TLC, total lung capacity; FRC, functional residual capacity; LCI, lung clearance index; 

Scond, conductive zone ventilation heterogeneity; Sacin, acinar zone ventilation 

heterogeneity; VT, mean tidal volume across a measurements; CEV, cumulative expired 

volume. Subscripts indicate the testing method/protocol: Pleth, body plethysmography; CB, 

controlled breathing protocol; FB, free breathing protocol; MBNW, multiple breath nitrogen 

washout. 

 Whole group Repeatability subgroup 

Females:Males, n 11:16 6:9 
Age, yrs (range) 34 (19-65) 30 (23-41) 

BMI, kg/m2 24.6(3.4) 25.1(4.2)  
   

Lung function   
FEV1, % predicted† 105(14) 101(30) 

FEV1/FVC, % 83(6) 84(5) 
TLCPleth, % predicted‡ 101(23) 107(11) 

FRCPleth, % predicted‡ 97(27) 104(20) 
   

MBNW parameters   
Controlled breathing   

FRCCB, L 3.17(0.98) 3.23(0.97) 

LCICB 7.2(0.58) 7.13(0.5) 
ScondCB, L-1 0.017(0.009) 0.02(0.01) 

SacinCB, L-1 0.057(0.022) 0.063(0.021) 
VT, mL 1124(37) 1127(37) 

VT/FRCMBNW 0.40(0.15) 0.39(0.14) 
RR, breaths/minute 12.21(1.36) 11.9(1.53) 

   
Free breathing   

FRCFB, L 3.18(0.94) 3.25(0.96) 
LCIFB 7.55(0.81) 7.4(0.79) 

ScondFB, L-1 0.018(0.01) 0.018(0.013) 
SacinFB, L-1 0.085(0.038) 0.091(0.04) 

VT, mL 880(325) 912(304) 
VT/FRCMBNW 0.29(0.11) 0.3(0.13) 

RR, breaths/minute 13.78(3.43) 13.18(3.46) 
 



 

Table 2. Within- and between-session variability for the controlled and free breathing 

protocols. Mean differences are Visit 2 minus Visit 1. CoV, coefficient of variation; 95% 

LOA, 95 % limits of agreement; ICC, intra-class correlation coefficient; FRC, functional 

residual capacity; LCI, lung clearance index; Scond, conducting airways ventilation 

heterogeneity; Sacin, distal/intra-acinar airways ventilation heterogeneity. 

 

 

 Within-session  
CoV 

Between-session 
mean difference(SD) 

95% LOA Between-
session  

ICC 

 Controlled Breathing 

FRCCB, L 3.3(2.9) % -0.03(0.52) -1.04, 0.98 0.931 

LCICB 2.5(2.4) % 0.06(0.47) -0.86, 0.98 0.812 

ScondCB, L-1 - -0.001(0.011) -0.017, 0.015 0.836 

SacinCB, L-1 - -0.003(0.018) -0.037, 0.031 0.835 

 Free Breathing 

FRCFB, L 3.6(2.3) % -0.05(0.29) -0.62, 0.52 0.980 

LCIFB 3.2(1.5) %  0.15(0.53) -0.89, 1.19 0.850 

ScondFB, L-1 - 0.003(0.016) -0.027, 0.033 0.158 

SacinFB, L-1 - 0.004(0.052) -0.098, 0.106 0.334 

 

 



 

FIGURE CAPTIONS 

Figure 1. Functional residual capacity measured by controlled breathing (FRCCB) and 

free breathing (FRCFB) protocols. (A) There was strong correlation between the protocols 

(r=0.94, p<0.0001). (B) Bland-Altman plot showing good agreement between the protocols 

(mean difference (95% limits of agreement) 0.009 (-0.666, 0.686) L, p=0.88). 

  

Figure 2. Functional residual capacity measured by controlled breathing (FRCCB) and 

free breathing (FRCFB) protocols versus the gold-standard body plethysmography 

(FRCPleth). There was good correlation between FRC measured by both protocols and 

FRCPleth (r=0.84 and r=0.92, respectively, p<0.0001 for both).  

 

Figure 3. Lung clearance index measured by controlled breathing (LCICB) and free 

breathing (LCIFB) protocols. (A) There was strong correlation between the protocols 

(r=0.84, p<0.0001). (B) Bland-Altman plot showing that free breathing produced a higher LCI 

compared to controlled breathing (mean difference (95% limits of agreement) 0.35 (-0.53, 

1.23), p=0.0004). There was also significant proportional bias confirmed by linear regression 

(p=0.004). 

 

Figure 4. Ventilation heterogeneity in conducting airways measured by controlled 

breathing (ScondCB) and free breathing (ScondFB) protocols. (A) There was no 

significant correlation between the protocols (r=0.18, p=0.36). (B) Bland-Altman plot showing 

high between-protocol variability (mean difference (95% limits of agreement) 0.0008 (-0.02, 

0.02) L-1, p=0.74). There appeared to be proportional bias on visual inspection, but linear 

regression was not statistically significant (p=0.45). 

 

Figure 5. Ventilation heterogeneity in distal/intra-acinar airways measured by 

controlled breathing (SacinCB) and free breathing (SacinFB) protocols. (A) There was 

relatively poor correlation between the protocols (r=0.37, p=0.06). (B) Bland-Altman plot 



 

showing that free breathing produced higher Sacin compared to controlled breathing (mean 

difference (95% limits of agreement) 0.03 (-0.04, 0.10) L-1, p<0.0001). There was also 

significant proportional bias confirmed by linear regression (p=0.002). (C) and (D) The 

between-protocol difference in Sacin (SacinFB – SacinCB) was predicted by the between-

protocol differences in tidal volume (VTFB-VTCB, regression p=0.004) and respiratory rate 

(RRFB-RRCB, regression p=0.01). n=1 participant excluded from Sacin analyses due to 

negative value in one trial. 
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1. METHODS: Participant inclusion and exclusion criteria 

Inclusion: 

- >18 years of age 

- Free of respiratory disease 

- Free of cardiovascular conditions 

- No current respiratory symptoms 

- No regular use of respiratory medications 

Exclusion: 

- Current smoking 

- ≥5 pack years past smoking history 

- Symptoms of respiratory tract infection in the previous 6 weeks 

- Unable to provide informed written consent 

 

2. METHODS: MBNW testing protocols 

 

We used the Exhalyzer D with Spiroware v3.1.6 (Eco Medics AG, Duernten, Switzerland). This device 

measures flow via a mainstream ultrasonic flowmeter, oxygen (O2) concentration by a side-stream 

laser sensor, and carbon dioxide (CO2) by a main-stream infra-red sensor. The device measures 

nitrogen (N2) concentration indirectly by subtraction of CO2, argon and O2 concentrations. The 

software accounted for the pre- and post-gas-sampling dead space (47 mL and 22 mL, respectively), 

and BTPS corrections. 

 

Device calibration and quality control 

Prior to each testing session, the flow sensor was calibrated using a 1 L syringe, and gas analysers 

were calibrated using medical air and 100 percent O2. Periodically (weekly) during the study period, 

gas and flow signal synchronisation was performed by a control operator breathing on the mouth 

piece. As a functional calibration, an “octopus” syringe lung model of known “functional residual 

capacity (FRC)” [1] was also tested periodically (1-4 weeks) to ensure the measured FRC was within 



 

an acceptable range. RNSH and WIMR laboratories both conduct internal biological control 

programmes where 2-3 nominated healthy individuals undergo testing on a monthly basis, or as 

required following changes in conditions (moving of equipment, replacement of parts, software 

updates, etc). A standard control chart approach was used, whereby deviations from the baseline 

average of greater than 2xSDs were considered significant cause for investigation. There were no 

deviations from the expected ranges during the testing period. 

 

Test procedure 

Volunteers were asked to sit in an upright, comfortable position with bite-on rubber mouthpiece 

positioned securely within the mouth, whilst maintaining a tight seal with the lips and a neutral head 

position. The operator monitored the test using real-time flow/volume and volume/time traces. All trials 

started with a period of normal relaxed breathing on room air in order to establish a stable EELV as 

indicated on the volume-time trace. After determining that a stable breathing pattern on room air had 

been established, the operator switched the breathing circuit to 100% O2. The operator visually 

monitored the N2 concentration and volume/time traces to ensure there were no mouth leaks, coughs, 

or inspirations that exceeded the bias flow. If these were present, the operator terminated the trial and 

repeated it after the appropriate wash-in time (twice the length of the previous washout [2]). When the 

mean N2 concentration was 1/40
th
 of the initial concentration, the operator asked the participant to 

breathe a further 5-6 breaths before terminating the trial. We considered a measurement session to 

be complete when there were at least 3 technically acceptable trials (i.e technically acceptable 1
st
 

breath, at least 2/3 of total breaths technically acceptable, end of trial criteria met, and absence of 

artefacts), as per the current consensus statement [2] with FRC values within ±10% of the mean of 

the 3 trials. 

 

For the free breathing protocol, the operator instructed the participant to “breathe relaxed and 

normally” on room air. The software’s visual incentive screen was switched off at all times during this 

protocol. After an initial period of breathing stabilisation (approximately 30 s), the operator 

commenced the washout by switching the circuit to 100% O2 and the participant continued to breathe 

normally for the duration of the trial. Sometimes, at the time of acquisition, the operator observed the 

participant was not breathing sufficiently deeply for an adequate phase III slope to be captured. In 



 

those cases, the operator requested that the participant breathed “a little deeper” and noted this 

instruction in the participant’s file.  

 

For the controlled breathing protocol, after the initial breathing stabilisation period, the operator 

instructed the participant to breathe at a VT of 0.95 – 1.3 L and at RR 8-12/min with the use of the 

visual incentive screen as originally described by (described by Verbanck et al [3]);. Once this was 

achieved, and the operator was satisfied that a stable end-expiratory lung volume had been reached, 

they commenced the washout by switching the circuit to 100% O2. The participant continued this 

same pattern of breathing until the end of the trial.   

 

3. METHODS: MBNW analysis 

We analysed MBNW data using Spiroware software (v.3.1.6).  

N2 Phase III slope (SIII) calculation 

Breaths for which the operator decided there was insufficient Phase III to accurately estimate the 

slope were excluded. By default, the software estimates SIII as the linear regression between 50-95% 

of expired volume. However, the operator manually adjusted the boundaries for SIII determination 

where needed, e.g. to exclude Phase II (particularly when expired volume was relatively small) and 

when there were prominent cardiogenic oscillations.  

While the test operator performed preliminary analysis on individual trials during the testing session, a 

single investigator re-analysed the data post hoc for all participants as a batch in order to ensure a 

consistent approach to analysis. 

 

Calculation of MBNW indices 

MBNW indices are calculated automatically by the Spiroware software. 

 FRC is calculated as the ratio of exhaled N2 volume to the difference in initial and final end-

tidal concentrations.  

 Phase III slopes, normalised for mean expired N2 concentration within phase III for that breath 

(SnIII), are plotted as a function of lung turnover (i.e. cumulative expired volume [CEV] divided 

by FRC).  



 

 LCI is calculated by dividing the CEV measured at 1/40
th
 of initial N2 concentration by FRC 

[2].  

 Scond is calculated as the slope of a linear regression of SnIII between the limits of 1.5 and 6 

lung turnovers.  

 Sacin is calculated as SnIII of the first breath minus Scond.  

 

For the free breathing protocol, to allow comparison of Scond and Sacin between participants with 

different lung sizes and breathing at different VT, each SnIII is divided by FRC and then multiplied by 

FRC*VT of the breath, resulting in a net multiplication by VT [4]. These adjusted indices are denoted 

in the literature and Spiroware software as Scond*VT and Sacin*VT; however, in keeping with the 

nomenclature described above, we refer to them simply as ScondFB and SacinFB, respectively.  



 

4. RESULTS: Table S1 – MBNW ventilation heterogeneity from free breathing (Z scores) 

 

 Whole group Repeatability subgroup 

Free breathing   

Z-LCIFB 1.56(1.73) 1.38(1.79) 

Z-ScondFB -0.2(2.22) 0.12(1.76) 

Z-SacinFB 1.15(1.88) 0.03(1.01) 

 

Values are mean(SD). For the repeatability subgroup, results are from the first visit. Reference 

equations for Z-scores from the free breathing protocol were from Kjellberg 2016 [4]. These equations 

were derived from data collected on the same MBNW device used in the present study. LCI, lung 

clearance index; Scond, conductive zone ventilation heterogeneity; Sacin, acinar zone ventilation 

heterogeneity.  

 
  



 

5. RESULTS: Table S2 – Scond and Sacin before and after VT correction 

 
 
 Controlled Breathing Free Breathing 

Scond 0.017(0.009) 0.022(0.022) 

Scond*VT 0.019(0.009) 0.018(0.01) 

Sacin 0.057(0.022) 0.13(0.125) 

Sacin*VT 0.064(0.023) 0.085(0.038) 

 

Values are mean(SD). During the free breathing protocol, a correction for VT is typically made to 

allow comparison of Scond and Sacin between individuals with different lung sizes and breathing at 

different VT. These corrected indices are denoted Scond*VT and Sacin*VT. In line with the current 

consensus recommendations (Robinson et al 2013) [2], we are reporting both corrected and 

uncorrected values for both protocols. (Note: in the rest of the manuscript, Scond*VT and Scain*VT 

from the free breathing protocol are referred to as ScondFB and SacinFB, wheras ScondCB and 

SacindCB refer to the uncorrected values from the controlled breathing protocol).   



 

6. RESULTS: Figure S1 
 

Figure S1. Percent difference in functional residual capacity measured by controlled breathing 

and free breathing protocols. Bland-Altman plot showing good agreement between the protocols 

(mean difference (95% limits of agreement) 0.54 (-24.43, 25.51) %, p=0.76). 

  



 

7. RESULTS: Figure S2 
 

Figure S2. Predictors of differences in functional residual capacity measured by controlled 

breathing and free breathing MBNW protocols. Between-protocol differences were not predicted 

by FRC measured by the gold-standard body plethysmography (linear regression p=0.55) (A), but 

may be related to the individual’s body mass index (linear regression of borderline significance, 

p=0.07) (B). 

  



 

8. RESULTS: Figure S3 
 

Figure S3. Bland-Altman plots of between-session difference (Visit 2 minus Visit 1) for 

functional residual capacity measured by controlled breathing (FRCCB, left panels) and free 

breathing (FRCFB, right panels) MBNW protocols. Mean absolute difference (95% limits of 

agreement [LOA]) for (A) controlled breathing -0.03 (-1.04, 0.98) L and (B) free breathing -0.05 (-0.62, 

0.52). Mean percent difference (95% LOA) for (C) controlled breathing -1.98 (-34.05, 30.1) % and (D) 

free breathing -2.89 (-23.18, 17.41) %. 

  



 

9. RESULTS: Figure S4 
 

Figure S4: Bland-Altman plots of between-session difference (Visit 2 minus Visit 1) for 

ventilation heterogeneity indices measured by controlled breathing (left panels) and free 

breathing (right panels) MBNW protocols. Values are mean difference (95% limits of agreement). 

Lung clearance index (A) controlled breathing 0.06 (-0.86, 0.98) and (B) free breathing 0.42 (-0.54, 

1.37). Scond (C) controlled breathing -0.001 (-0.017, 0.015) and (D) free breathing 0.003 (-0.027, 

0.033). Sacin (E) controlled breathing -0.003 (-0.037, 0.031) and (F) free breathing 0.004 (-0.098, 

0.106). 

 

 
  



 

10. RESULTS: Figure S5 

 
Figure S5: Relationship between differences in functional residual capacity (FRC) and 

change in cumulative expired volume (CEV) between controlled breathing and free 

breathing protocols. 

 

  



 

11. RESULTS: Figure S6 

 
Figure S5: Between-protocol differences in Scond and Sacin plotted against differences in 

cumulative expired volume (CEV, top panels) and CEV corrected for functional residual 

capacity (FRC, bottom panels).  Between-protocol difference in Scond was related to between-

protocol difference in CEV (linear regression p=0.04) (A) but not CEV/FRC (p=0.35) (C). Between-

protocol difference in Sacin was not related to difference in CEV (p=0.14) (B) but was significantly 

related to CEV/FRC (p=0.003) (D). n=1 outlier excluded from Scond analyses. n=1 participant 

excluded from Sacin analyses due to negative value in one trial. 
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