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Abstract:  

 

Accessible in vitro models recapitulating the human airway that are amenable to study whole 

cannabis smoke exposure are needed for immunological and toxicological studies that inform 

public health policy and recreational cannabis use. In the present study, we developed and 

validated a novel 3D printed In Vitro Exposure System (IVES) that can be directly applied to 

study the effect of cannabis smoke exposure on primary human bronchial epithelial cells.  

Using commercially available design software and a 3D printer, we designed a four-chamber 

Transwell® insert holder for exposures to whole smoke. COMSOL® Multiphysics software was 

used to model gas distribution, concentration gradients, velocity profile and shear stress within 

IVES. Following simulations, primary human bronchial epithelial cells cultured at air-liquid 

interface on Transwell® inserts were exposed to whole cannabis smoke using a modified 

version of the Foltin Puff procedure. Following 24 hours, outcome measurements included cell 

morphology, epithelial barrier function, lactate dehydrogenase (LDH) levels, cytokine and gene 

expression.  

Whole smoke delivered through IVES possesses velocity profiles consistent with uniform gas 

distribution across the four chambers and complete mixing. Airflow velocity ranged between 

1.0-1.5 µm s-1 and generated low shear stresses (<< 1 Pa). Human airway epithelial cells 

exposed to cannabis smoke using IVES showed changes in cell morphology and disruption of 

barrier function without significant cytotoxicity. Cannabis smoke elevated IL-1 family cytokines 

and elevated CYP1A1 and CYP1B1 expression relative to control, validating IVES smoke 

exposure impacts in human airway epithelial cells at a molecular level. 

The growing legalization of cannabis on a global scale must be paired with research related to 

potential health impacts of lung exposures. IVES represents an accessible, open-source, 

exposure system that can be used to model varying types of cannabis smoke exposures with 

human airway epithelial cells grown under air-liquid interface culture conditions.  

 

  



Introduction: 

 

The lung is responsible for gas exchange between the outside world and the human 

body. During ventilation, the lungs are in contact with the external environment and exposed to 

air that may contain a variety of pathogens including allergens, viruses, bacteria, and air 

pollutants, including organic combustion byproducts (Huff, Carlsten & Hirota, 2019). The 

pseudostratified airway epithelial cells that line the lungs have evolved to mitigate the risks 

from external insults, providing a tight physical and immunological barrier (Hirota & Knight, 

2012; Iwasaki et al., 2017; Whitsett & Alenghat, 2015). It contributes to coordinated immune 

responses including mucus production and airway surface lining fluid secretion, cytokines and 

chemokines secretion for local and systemic immune cell recruitment, and antimicrobial protein 

secretion in response to environmental assaults (Ganesan et al., 2013; Bakshani et al., 2018). 

Airway epithelium dysfunction has been strongly implicated in the pathogenesis of many airway 

diseases including asthma, Chronic Obstructive Pulmonary Disease (COPD), and pulmonary 

fibrosis (Kicic et al., 2006; Steiling et al., 2013; Xu et al., 2016). Importantly, environmental 

insults capable of damaging the airway epithelium are also risk factors for these same 

respiratory diseases (Broekema et al., 2009; Tamashiro et al., 2009; Thorley & Tetley, 2007; 

Walters et al., 2014).  

 Tobacco smoking, a direct environmental insult to the airway epithelium, remains 

common on a global scale despite well described effects on respiratory health (Amatngalim et 

al., 2016; Cantin, 2010; Mathis et al., 2013; Schamberger et al., 2015; Thun et al., 2002). Similar 

to tobacco smoke, cannabis smoking is also a direct environmental attack to the lungs. As a 

result of progressive legalization on a global scale, cannabis consumption has been on the rise, 

where 90% of consumers prefer smoking as a route of delivery (World Drug Report, 2019; 

Canadian Cannabis Survey, 2018). Tobacco and cannabis smoke exposure induce similar clinical 

features such that both environmental exposures are associated with increased prevalence of 

coughing, wheezing, chest tightness, and risk for developing COPD (Moir et al., 2008; Tashkin et 

al., 1987; Wu et al., 1988). Tobacco and cannabis smoke exposure also present divergent 

clinical features, with tobacco smokers more likely to develop lung cancer relative to cannabis 

smokers (Melamede, 2005). This observed divergence may be due to the presence of 

phytocannabinoids with anti-inflammatory properties unique to cannabis (Kaplan et al., 2008; 

Nagarkatti et al., 2009; Tashkin et al., 1975; Vachon et al., 1973). The uncertainty surrounding 

the health effects of cannabis smoke and discrepancies with the known negative impacts of 

tobacco smoke warrants further investigation to inform government policies, recreational 

practices and cultivation strategies in an era of broadening acceptance for legal and open 

markets.  

In vitro smoke exposure models using human airway epithelial cells have been crucial 

for tobacco smoke research and will likely be important for cannabis smoke research (St-



Laurent et al., 2009; Wan et al., 2009).  A proportion of available smoke exposure research, 

primarily with tobacco, has been established through submerged monolayer culture designs in 

which smoke extract has been used to expose cells (Ji et al., 2017; Jamieson et al., 2019; Gellner 

et al., 2016). Our group has recently applied these methods to Calu-3 cells with cannabis smoke 

extract exposure and observed an induction of a pro-inflammatory cytokine response and 

suppression of antiviral cytokines (Aguiar et al., 2019; Huff et al., 2020). Smoke extract 

exposures do not entirely reflect whole smoke exposure as the latter generates heat and water 

insoluble hydrocarbon combustion products (Lange, 2007; Moir et al., 2008; Schwartz, 2017; 

Tashkin et al., 1991). Additionally, submerged monolayer cell culture designs do not entirely 

reflect the in situ airway environment where a pseudostratified airway epithelium is exposed to 

inhaled air on an apical side while attached to a basement membrane on the basal side. To 

more accurately model the in situ environment, airway epithelial cells can be cultured on 

Transwell® inserts under air-liquid interface (ALI) culture conditions to create a pseudostratified 

tissue structure (Azzopardi et al., 2015; Jiang et al., 2018). Transwell inserts of airway epithelial 

cells under ALI can be used for whole smoke exposures using advanced systems that model 

inhalation and exhalation patterns of humans (Azzopardi et al., 2015; Jiang et al., 2018). The 

strengths and limitations of popular smoke generating machines have been characterized 

extensively (Aufderheide & Mohr, 1999; Deschl et al., 2011; Ritter et al., 2001; Thorne & 

Adamson, 2013). Commercially available smoking machines offer high throughput designs and 

are able to accommodate multiple cigarettes or cell culture plates that can be exposed with 

independent syringes, allowing for control over the parameters of each exposure under 

automated conditions (Thorne & Adamson, 2013). Some devices are directly amenable to 

multiple exposures beyond smoke, including  environmental toxins, gases, therapeutic aerosols, 

aerosolized pathogens, and other volatile compounds (Aufderheide & Mohr, 1999; Deschl et al., 

2011; Ritter et al., 2001; Thorne & Adamson, 2013). The throughput and automation benefits of 

these environmental exposure systems are offset by some important limitations (Adamson et 

al., 2011; Aufderheide et al., 2003; D. W. Bom bick, 1997; Scian et al., 2009; Thorne & Adamson, 

2013). From an operations perspective, these are capital intensive closed systems that cannot 

be customized, limiting accessibility to specialized research facilities and field participants 

(Thorne & Adamson, 2013). From a technical perspective, limitations may include potential air 

and smoke mixing inefficiencies, aging of smoke in mixing vessels, and turbulence that is 

inconsistent with lung physiology (Thorne & Adamson, 2013). Collectively, the development 

and validation of a low-cost in vitro environmental exposure system for Transwell® culture 

inserts of ALI cultured airway epithelial cells will broaden the ability of researchers to perform 

essential research related to cannabis smoke exposure and lung health.  

 To address existing constraints with environmental exposure systems and related 

research, we propose that additive manufacturing, such as 3D printing, can function as a 

disruptive solution to create an open-source, disposable, in vitro exposure system that is widely 



accessible without requiring specialized environmental exposure infrastructure. Additive 

manufacturing has been utilized in various fields to realize complex 3D constructs with a 

resolution at the micron level. In contrast to conventional manufacturing technologies, additive 

manufacturing is accessible and independent of specialized technologies or personnel, with 

widely available commercial 3D printers able to rapidly generate functional designs based on 

computer aided design (CAD) files. Additive manufacturing technologies have accelerated 

prototyping steps while reducing costs, effectively enabling researchers with limited design 

training to optimize novel designs independent of historical manufacturing constraints. 

Importantly, commercially available and capital accessible additive manufacturing technologies 

are sufficient for the medium throughput production that is required at a standard research lab 

scale.  

 In the present study, we develop and validate an open-source, disposable, 3D-printed in 

vitro environmental exposure system for Transwell® culture inserts and apply to study the 

effect of whole cannabis smoke on primary human bronchial epithelial cells (HBECs). Our In 

Vitro Exposure System (IVES) is widely accessible due to the open-source CAD file, amenability 

to commercially available 3D printers, and design for widely used Transwell® culture inserts. 

We validate our model with cannabis smoke laying a foundation for additional modalities 

including tobacco smoke and vaping products. IVES also gives the capacity for four transwell 

inserts to be exposed to the same environmental exposure, providing medium throughput 

while reducing variability that may occur with independent exposures for separate transwells. 

Finally, IVES is amenable to dilution of smoke with room air for adaptation to concentration-

response studies. Using cannabis smoke as an exposure of current public health importance, we 

validate IVES with primary HBECs and demonstrate an impact of the exposure on epithelial 

barrier function, IL-1 family cytokine expression and expression of genes involved in cellular 

detoxification.   

 

  



Materials and Methods System 

 

System Design: Autodesk Inventor software (2018, Autodesk, CA, USA) was used for all designs. 

The IVES units were 3D-printed with a FormLabs Form 2 printer using clear resin (RS-F2-GPCL-

04, MA, USA). IVES contains four Transwell exposure chambers, two inlets, four outlets, and 

four chamber caps (Figure 1).  Each inlet is distributed to each of the four exposure chambers. 

Inlet diameter was optimized at 3 mm to minimize obstruction with organic combustion 

byproducts. Exposure chamber size was designed based on the dimension of a Transwell® insert 

for 24 well-plate (VWR, Catalog Number: 29442-082). In addition, the location of the inlet and 

outlet of each chamber was designed such that Transwell® inserts would experience indirect 

exposures of turbulent air. Each chamber had an outlet for exhaust from the chamber. 

Threaded caps for the exposure chambers created seals that eliminated exhaust through this 

path. IVES has been validated using Corning® Transwell® inserts. Distinct transwell inserts of 

similar dimensions will be adaptable to the IVES design, whereas transwells from different 

manufacturers with different dimensions may need independent validation. The IVES design file 

is deposited in the online supplement as an .STL file format. 

 

Fluid Dynamic Modeling: During design phases, a quantitative simulation of fluid dynamics was 

performed using COMSOL Multiphysics software to model the gas distribution and 

concentration gradients in the IVES unit. To model the velocity profile and shear stress, the 

entire fluidic path from the merged inlet to the chambers and the outlets were included. The 

main purpose of this simulation was to ensure that the gas was equally distributed among all 

chambers with minimal shear stress experienced at the surface of Transwell® inserts. Air was 

used as the gas of interest in this part of the simulation, under the assumption that air was 

behaving as a Newtonian fluid. The governing equations used in the simulation as follows: 

             
r

p g S             (Equation1) 

 

     0    (Equation 2) 

       

Where ρ is the air density,   represent the velocity vector field, p shows the pressure,   

express the stress tensor field,  g  is the gravitational force, and 
r

S  shows for any possible 

external source term. The acceleration forces, including both the local and the conventional 

forces, are expressed on the left side of Equation 1, and the forces created by pressure gradient 

and viscosity are described on the right side of the equation. A no-slip condition on the walls 

was assumed for the entire IVES unit, with the model assuming no back-flow. A gas flow rate of 

7 mL s-1 was used as the boundary condition and the gas flow direction was set to be normal to 

the inlet and outlets. Equation 2 expresses the mass conservation for the exposure unit. In the 



simulation, initial values were set to zero. Then, the simulation was studied under a steady-

state condition.  

Cell Culture: All studies using human cells were approved by the Hamilton Integrated Research 

Ethics Board (HiREB Approval: 5305T). Primary HBECs were isolated from a bronchial brushing 

from consented subjects undergoing routine clinical procedures, and plated into T25 flasks 

containing Pneumacult™ Ex-Plus Basal Media (StemCell Technologies; Catalog Number 05040) 

with PneumaCult™ Ex-Plus 50x Supplement, 0.01% hydrocortisone stock solution (StemCell 

Technologies; Catalog Number 7925) and 1% antibiotic-antimycotic (Thermofisher; Catalog 

Number 15240062). Once cultures achieved ~80% confluence, cells were passaged at a density 

of 50,000 - 100,000 cells/insert into polyester Transwell® inserts for exposure experiments. 

Cells were fed with 200µl and 750µl of Pneumacult™ Ex-Plus Basal Media in the apical and basal 

compartments respectively. Once cultures reached 100% confluency, apical media was 

removed and culture inserts were fed from the basal side to bring cultures to ALI (Day 0 of ALI). 

Following 24h, culture inserts were fed from the basal compartment with 750µl of 

PneumaCult™ ALI Basal Medium (StemCell Technologies; Catalog Number 05001) with 

PneumaCult™-ALI 10x Supplement, PneumaCult™-ALI Maintenance 100x Supplement, 1% 

antibiotic-antimycotic, 0.5% hydrocortisone stock solution and 0.2% heparin solution (StemCell 

Technologies; Catalog Number 7980) to support development and differentiation of a 

pseudostratified epithelial culture (Day 1 of ALI). Transwell cultures were fed from the basal 

compartment and a phosphate buffered saline (PBS) wash was performed on the apical 

compartment every other day. Exposure experiments were performed between Day 14 - Day 15 

of ALI culture.  

 

Cannabis Material and Cigarette Manufacturing: A Kentucky Research Grade Cigarette 

(Lot:3R4f) contains ~0.7g of dried tobacco leaves and has been used extensively in in vitro 

studies. Using research grade tobacco cigarettes as a reference, cannabis cigarettes with ~0.7g 

of dried cannabis flower (~10% THC, 0% CBD; Purple Sun God, Lot: 00117 (b161)) were 

manufactured with RAW rolling papers and cardboard filters. Cannabis was purchased from the 

Ontario Cannabis Store with a Health Canada approved research license.  

 

Epithelial Barrier Function Assessment: Transepithelial Electrical Resistance (TEER) was 

measured using a Millicell ERS-2 Voltohmmeter (EMD Millipore, Etobicoke, Ontario, Canada) to 

quantify epithelial barrier function according to manufacturer’s directions. TEER was measured 

prior to and 24h post exposures (air or smoke). 

 

Exposure Protocol: In a biosafety cabinet, 800ul of PneumaCult™ ALI media was added into 

each individual chamber of the IVES unit. Transwell® inserts were transferred into the IVES and 

left in the a 37oC, 5% CO2 humidified incubator to equilibrate for 10 minutes prior to exposures. 



In a fume-hood, exposures were performed with a 50ml syringe connected to the fresh air inlet 

of the IVES through a PVC Tygon tube (length: 32 cm, lumen diameter: 2 mm) and a 3-way valve 

(Figure 2). Another 50ml syringe was connected to the smoke exposure inlet on the IVES 

through PVC Tygon tube (length: 32 cm, lumen diameter: 2 mm) and a 3-way valve. For the 

experiments with cannabis, a cigarette was placed into another PVC Tygon tube (length: 32 cm, 

lumen diameter: 8 mm), with the opening sealed with parafilm and connected to the 3-way 

valve. The dose was administered according to a modified version of the Foltin Puff Procedure 

(Abdallah et al., 2018; Chait et al., 1988; Foltin et al., 1987; Ramesh et al., 2013; Wilsey et al., 

2013, 2016). This procedure, optimized for our model, consisted of 1 puff of smoke separated 

by 3 puffs of fresh room air to mimic the behavior of human smoking patterns. Each puff of 

smoke or room air was 35ml in volume and was perfused over the Transwell® insert at a rate of 

7 ml/second. Between each puff, the cells were undisturbed for 10 seconds. Each experimental 

group received one cigarette smoked to completion using this regimen. Cells were exposed to 

freshly generated smoke outside of an incubator in a fume hood on a 37oC heating bed until the 

0.7g hand-rolled cannabis cigarette was entirely combusted (~20 minutes). Control conditions 

received as many puffs of room air as the corresponding experimental condition received 

smoke under the same regimen. Following exposure, inserts were immediately transferred to a 

new plate with 600ul of PneumaCult™-ALI media in the basal compartment. Plates were then 

transferred to a 37oC, 5% CO2 humidified incubator. Twenty-four hours later, basal and apical 

media was collected, spun down at 7500 x g/4oC for 15 minutes and supernatants were stored 

at -80oC for subsequent quantification of cytokines and assessment of cytotoxicity.  

 

Quantification of Cytokines: Cell culture media was collected and spun down at 7500 x g for 15 

minutes at 4oC. Apical supernatants were subsequently analyzed a via 42-plex multiple cytokine 

array (Eve Technologies, Calgary, Alberta, Canada).  

 

Cell Membrane Integrity and Cytotoxicity:  A CYTOQUANT™ lactate dehydrogenase (LDH) 

Cytotoxicity Assay kit (ThermoFisher; Catalog Number C20301) was used according to the 

manufacturer’s guidelines with positive controls used to indicate maximal LDH release.  

 

RNA Isolation, Purification and Transcriptomic Analysis: Following collection of apical and 

basal media 24h post-exposure, total RNA was extracted and isolated using an RNeasy Kit 

(Qiagen, Toronto, Ontario, Canada). Cells in each transwell were lysed in 100ul of RLT Isolation 

Buffer with 1% beta-mercaptoethanol (2Me) (v/v) and stored at -80oC. Subsequently, RNA was 

purified using the manufacturer’s protocol and quantified via Nanodrop200. cDNA was 

prepared and underwent transcriptomic analysis using Clariom S Microarray chips 

(ThermoFisher, Mississauga, Ontario, Canada).  

 



Processing of raw microarray data: Raw intensity values from the Clarion S microarray 

experiment were imported into the R statistical language environment (version 3.6.1; R Core 

Team, 2019). Probe definition files were obtained from the Brainarray database (version 24) 

(Dai et al., 2005). The Single Channel Array Normalization (SCAN) method was used to obtain 

log2- transformed normalised expression values with the SCAN.UPC R package (version 2.26.0) 

(Piccolo et al., 2012), with annotation data from the Bioconductor project (version 3.9) (Huber 

et al., 2015).  

 

Statistical Analysis: All statistical tests were performed on Graphpad® Prism 8 version 8.3.0 

(Graphpad Headquarters, San Diego, CA). A paired t-test was performed to assess significance 

between the differences in epithelial barrier function between the control group and 

experimental group. An ANOVA followed by a Tukey’s post-hoc test was performed to assess 

differences in cell cytotoxicity following smoke exposure. Differences in cytokine expression 

were assessed using paired t-tests. P values less than 0.05 were considered statistically 

significant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Results: 

 

IVES Fluid Dynamic Modeling 

A mesh analysis was conducted to determine the finest mesh resolution. The mesh size 

was varied from coarse to extra fine, and the mesh size was chosen to be finer since no 

significant change was recognized by changing the mesh size from finer to extra fine. A defined 

mesh resolution was chosen to run all simulations for fluid dynamic modeling (Figure 3) with a 

3D view of velocity streamlines presented (Figure 3a to Figure 3d). The purpose of the 

streamlines is to show vortexes in IVES after air exposure with a flow rate of 7 mL s-1.  

Quantitative values for the velocity profile were consistent with a uniform gas distribution with 

complete mixing (streamlines) (Figure 3e). In addition, the velocity profile (Figure 3f) and the 

shear stress profile (Figure 3g) at the Transwell® insert growth area location was simulated, 

investigating the impact of the exposure to the cells growing on this surface. Airflow velocity at 

an approximation of cell location was 1.0-1.5 µm s-1 and generated shear stresses << 1 Pa. 

Internal gas diffusion inside a chamber was quantified with carbon dioxide (CO2), a 

product of combustion, as the gas of interest with an assumption of 1 mol L-1 at the inlet with 

normal diffusion in the air (CO2 as the gas of the interest was assumed to be transported in air 

by diffusion and convection). For this part of the simulation, mass transport of CO2 was coupled 

with the laminar flow study, which was used to model the velocity profile in IVES. Since the gas 

was uniformly distributed among all four exposed chambers (Figure 3), only one chamber was 

considered in the modeling (the gas flow at the inlet was assumed to be 7/4 mL s-1). The 

simulation was studied dependent on time, and the CO2 diffusion was modeled over 5 seconds, 

which was the time of exposure. It was assumed that the CO2 concentration at the outlet was 

zero (the boundary condition for CO2 concentration at the outlet was assumed to be zero). A 

full cycle of smoke-fresh air was studied, and the cycle included one smoke exposure for 5 

seconds (the initial concentration was set to zero; it was assumed that there was no CO2 in the 

chamber at the beginning) and one continuous fresh air exposure for 15 seconds (the initial 

concentration was taken from the final average volumetric concentration of the smoke 

exposure after 5 seconds resting based on the experimental set-up). To model the mass 

transport of CO2 in the chamber, Fick’s law was used as described below:  

 2 2 2 2
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 (Equation 3) 

 



Where 
2

C O
C is the carbon dioxide concentration in the smoke exposure chamber and 

2
C O

D          

(
2

C O
D = 0.16 cm2 s-1)[1] is the diffusion coefficient of CO2 molecules in the chamber.  

The concentration distribution of CO2 in the chamber over 5 seconds of exposure is 

presented in Figure 4a with streamlines representing the concentration gradient in the 

chamber. After each smoke exposure, there was a 10-second resting time to allow the CO2 

concentration to become uniform in the entire chamber. Therefore, the initial concentration for 

the fresh air exposure was calculated from the previous step and assumed to be uniform in the 

entire chamber, as seen in Figure 4b. Figure 4b also shows the rate of change and uniformity of 

the CO2 concentration in the chamber during fresh air exposure. Figure 4c and Figure 4d show  

the volumetric average CO2 concentration of the chamber and the average CO2 concentration 

at the outlet of the chamber, respectively. The simulation results confirmed that the CO2 

concentration in the chamber reached zero after the first fresh air exposure, suggesting that 

the cells would experience a similar pattern for each cycle, thereby the size of the smoke 

exposure chamber was small enough to let a fast and uniform diffusion occur in the chamber. 

This means that the cells would experience the same gas concentration in each cycle. 

 

Impact of in vitro whole cannabis smoke exposure on airway epithelial cell viability and 

barrier function 

 

Following quantitative modeling, we next applied IVES for cannabis smoke exposure 

experiments with multiple biological readouts of relevance to epithelial cell biology.  We 

measured transepithelial electrical resistance (TEER) before and after fresh, whole cannabis 

smoke exposure on primary human bronchial epithelial cells. We compared the change in TEER 

(Δ TEER) pre- and post- exposure between cultures that received room air or smoke. Our results 

suggest that individual donor cultures exposed to cannabis smoke in IVES experienced a 

decrease in epithelial barrier function as compared to air-exposed control (p<0.05) (Figure 5A). 

The decline in epithelial barrier function was not associated with any increase in LDH, a 

measure of cell membrane integrity and cell viability (Figure 5B) suggesting that cell cytotoxicity 

was minimally impacted by our model.      

Following whole smoke exposure, cell cultures exhibited qualitative changes in 

morphology. Qualitative analyses revealed higher incidences of cell lifting, areas of patchiness 

and a circular shape of the cells relative to control. A representative microscopic image 

reflecting these notable changes is shown in Figure 5.  

 

Impact of in vitro whole cannabis smoke exposure on airway epithelial cell immune responses  

 

IL-1 cytokine family members are elevated in the context of tobacco smoke exposure to 

airway epithelial cells and lung tissue (Churg et al., 2009; Kang et al., 2007; Pauwels et al., 



2011). We therefore analyzed the differential expression of selected IL-1 cytokine family 

members - IL-1α, IL-1β, IL-18, IL-1Ra – in our model of cannabis exposure using IVES, as we have 

demonstrated significant overlap between airway epithelial cell responses to these two 

exposures in a submerged monolayer culture system  (Aguiar et al., 2019). Trends for elevations 

in IL-1α (p=0.054), IL-1β (p=0.296) and IL-18 (p=0.064) were observed and a significant elevation 

of IL-1Ra (p<0.05) in five individual donor samples (n=5) following cannabis smoke exposure 

relative to room air. On a donor basis, IL-1α, IL-18 and IL-1Ra  were elevated in 5/5 samples 

(100%) whereas IL-1β was elevated in 4/5 samples (80%) (Figure 6).  

We have demonstrated that cannabis smoke extract suppresses CXCL10 and CCL5 in 

Calu-3 epithelial cells under submerged monolayer conditions (Aguiar et al., 2019). We 

therefore analyzed CXCL10 and CCL5 levels following cannabis smoke exposure in IVES with 

primary human airway epithelial cells. We observed no significant changes in both CXCL10 or 

CCL5 expression (Figure 7). On a donor basis 4/5 (80%) of donor samples displayed a 

suppression of CXCL10 (p=0.110) and 0/5 (0%) donor samples displayed a suppression of CCL5 

(p=0.252).  

 

In vitro whole cannabis smoke exposure induces expression of genes involved in cellular 

detoxification  

 

We have demonstrated that tobacco and cannabis smoke extract exposures with Calu-3 

epithelial cells cultured under submerged monolayer conditions results in elevations in gene 

expression for CYP1A1 and CYP1B1, both which function as phase II detoxification enzymes 

(Aguiar et al., 2019). Additionally, Thioredoxin Interacting Protein (TXNIP) has been shown to 

inhibit the antioxidative effect of thioredoxin resulting in an accumulation of reactive oxygen 

species and cellular stress (Ji Cho et al., 2019; Junn et al., 2000). We therefore determined the 

gene expression level of CYP1A1, CYP1B1 and TXNIP in primary human airway epithelial cells 

following cannabis smoke exposure with IVES. We demonstrate that cannabis smoke exposure 

results in robust induction of both gene transcripts in 5/5 (100%) donor samples for CYP1A1 

(p<0.001), 5/5 (100%) donor samples for CYP1B1 (p<0.05) and a suppression of TXNIP in 4/5 

(80%) donor samples (p=0.058)(Figure 8). 
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Discussion: 

 

 The United States Center for Disease Control (CDC) declares that cigarette smoking is 

the leading preventable cause of death in the United States (CDCTobaccoFree, 2019). Adding to 

the pressing concern is the relatively new increase in global legalization and practice of smoking 

cannabis (Cerdá et al., 2017; Leyton, 2019; Volkow et al., 2014). Notably, evidence suggests that 

cannabis smoke consists of differential components relative to tobacco smoke, which may 

function as immunomodulatory agents (Ashton & Hancox, 2018; Kaplan et al., 2008; Klein, 

2005). To determine shared or divergent consequences of cannabis smoke on lung health, 

relevant experimental data must be generated to inform policy and decision making at the 

personal and population level. Frequently used low cost in vitro models of smoke exposure may 

not adequately reflect the realities of smoke delivery in situ, while advanced smoke exposure 

model systems, more physiologically relevant, are often expensive and inaccessible for many 

research groups. To address these constraints and the need for accessible, relevant, in vitro 

experimental systems, we sought to develop and validate a novel smoke exposure model 

applicable to various modalities through the conception of IVES. 

To capture the benefit of exposing cells directly to smoke while overcoming the 

shortcomings of the current smoke exposure systems, which are bulky, expensive, or lacking of 

adaptation to custom experimental set-ups (Amatngalim et al., 2015; de Bruijne et al., 2009; 

Herr et al., 2009; Lenz et al., 2009; Raredon et al., 2015), we have utilized 3D-printing 

technology to design and develop a versatile smoke exposure system that can be easily scaled 

up or down. Initially, the IVES was designed and fabricated as a single-chamber exposure unit. 

The purpose of this step was to optimize the size of the chamber considering various criteria 

such as basal liquid volume, accessibility to Transwell® insert and the basal media, and the 

fluidic path of smoke exposure. Then, the final design was scaled up to the current IVES as 

proposed in this work (Figure 1 and Figure 2). The fluidic dynamic modeling conducted in this 

study confirmed that the design of IVES and the exposure protocol were well-designed to 

expose cells in a repeatable fashion. Figure 3 shows a uniform gas flow distribution in IVES with 

indirect gas exposure to cells, which was critical in creating a stress-free exposure to cells. 

Additionally, mass transfer results from the simulation revealed that the length of fresh air 

exposure was sufficient to zero CO2 concentration (Figure 4). This in vitro model can be easily 

redesigned for different applications and purposes. The size of IVES can be changed to fit for 



various sizes of Transwell® inserts, or more exposure chambers can be integrated with IVES. 

Moreover, a fluidic path can be added to the basal side of the chambers to create a dynamic 

flow in the liquid compartment of the system. Overall, the proposed exposure system in this 

work is inexpensive, easy to use, easy-to-fabricate, and amenable to multiple experimental 

designs including smoke, vaping, co-exposures with pathogens.  

 The mucociliary escalator, secreted antimicrobial products and paracellular permeability 

mediated by intracellular junctions collectively serve to establish the barrier function between 

the external and internal environments (Ganesan et al., 2013). Human airways rely on the 

latter, tight and adherens junctions between cells at the apical border, to prevent inhaled 

pathogens and other insults from causing harm to the airways (Ganesan et al., 2013). In 

smokers, the epithelium is found to be dysfunctional and abnormally differentiated leaving a 

higher risk for viral, bacterial infection (Ganesan et al., 2013). To determine how IVES delivery 

of cannabis smoke impacted epithelial barrier function, TEER was measured in 10 individual 

donor primary HBECs prior to and following cannabis smoke exposure. Using IVES as a model 

for cannabis smoke exposure using primary HBECs, our data suggest that a compromised 

barrier may be observed in human cannabis smokers. The lungs rely on the formation and strict 

regulation of a mechanical barrier established by airway epithelial cells (Heijink et al., 2012). 

Previous studies have implicated oxidative stress brought on by cigarette smoke with the 

disruption of epithelial barrier function (Boardman et al., 2004). Other studies have found that 

cigarette smoke increases the permeability of human airways disrupting the balance between 

external fluids and macromolecules through altered regulation of multiple tight junction and 

adherens junction proteins (Mishra et al., 2016; Olivera et al., 2007; Tatsuta et al., 2019). 

Despite extensive studies of airway epithelial cell barrier function and tobacco smoke exposure, 

little data is available for cannabis smoke exposure. Using submerged monolayer cultures of 

Calu-3 cells, we were able to demonstrate that cannabis smoke condition media was able to 

reduce barrier function, as assessed by TEER, a response shared with tobacco smoke 

conditioned media (Aguiar et al., 2019). In the present study, we extended our published 

findings by interrogating how whole cannabis smoke impacted barrier function in primary 

human airway epithelial cells grown under ALI-conditions. Our data confirms that cannabis 

smoke, similar to tobacco smoke, is able to compromise barrier function. Furthermore, the data 

establish that monitoring epithelial cell barrier function measurements following exposures 

using IVES are possible. 

 Cytokines are signaling molecules crucial to the proper innate and adaptive immune 

function. They perform a host of essential duties ranging from mitigating viral, bacterial, fungal 

infections to signaling a cascade of other immunomodulatory agents responding to allergens in 

the air. Airway inflammation associated with changes in cytokines that regulate immune 

function is present in both cannabis and tobacco smokers resulting in clinical presentation of 

coughing, wheezing and the onset of asthma and COPD (Aldington et al., 2007; Costenbader & 

https://www.zotero.org/google-docs/?J6yD8C
https://www.zotero.org/google-docs/?OcL7de
https://www.zotero.org/google-docs/?UtlZ4Z
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Karlson, 2006; Hancox et al., 2015; Joshi et al., 2014; Lee et al., 2012; Moir et al., 2008; 

Nagarkatti et al., 2009). Notably, the IL-1 family of cytokines has been implicated in acute 

inflammatory processes as well as linked to cytokine balance disruption in cigarette smokers 

(Nyunoya et al., 2014). IL-1 family cytokine expression at the protein level was assessed in our 

model following cannabis smoke exposure in five individual patient donor samples. Our 

experiments with five independent donors show trends for an increase in IL-1α, IL-1β, and IL-18 

expression following cannabis smoke exposure relative to control, findings that are similar to 

observations made in other studies with tobacco smoke (Churg et al., 2009; Kang et al., 2007; 

Pauwels et al., 2011). These results indicate an inflammatory response induced by cannabis 

smoke characterized by IL-1 family cytokines, which may share downstream consequences with 

tobacco smoke that include neutrophilia driven by an IL-1R/IL-17 axis (Roos et al., 2015). We 

also observed a significant elevation of IL-1Ra following smoke exposure. Notably, other studies 

have found a suppression of IL-1Ra expression in tobacco smokers which works by antagonizing 

IL-1α and IL-1β (Shiels et al., 2014). In cannabis smoke however, IL-1Ra expression has been 

shown to be elevated owing to the unclear immunomodulatory features of cannabis active 

components (Melamede, 2005; Molina-Holgado et al., 2003).  

Our published in vitro data using Calu-3 airway epithelial cells under submerged 

monolayer culture conditions suggest that cannabis smoke extract conditions media attenuates 

expression of antiviral pathways important in host defence in human airway epithelial cells 

(Aguiar et al., 2019; Huff et al., 2020). To explore the possibility that whole cannabis smoke 

exposure of primary human airway epithelial cells grown under ALI-culture conditions behaved 

similarly, we analyzed CXCL10 and CCL5 levels as previously performed (Aguiar et al., 2019; Huff 

et al., 2020). The current data shows negligible changes from the baseline of CXCL10 and CCL5 

in primary HBECs. This suggests inherent differences in the model and/or use of primary cells at 

ALI when compared to cell-lines in submerged monolayers. Moreover, cytokines have been 

shown to not be expressed differentially following cigarette exposure alone; rather, they 

require viral/viral mimetic challenges prefacing expression (Eddleston et al., 2011; M. H. Hudy 

et al., 2010; M. H. Hudy et al., 2013). It will be relevant for future studies to induce 

CXCL10/CCL5 through viral/viral mimetic challenges to assess the impact of cannabis smoke on 

these antiviral cytokines. 

 Previously, we have shown that aryl hydrocarbon receptor induced genes associated 

with oxidative stress, CYP1A1 and CYP1B1, are significantly induced in Calu-3 cells exposed to 

cannabis and tobacco smoke extracts (Aguiar et al., 2019). Similarly, we have shown that TXNIP 

was reduced (Aguiar et al., 2019). Other studies have shown similar results of increased 

oxidative stress as indicated by dysregulated expression of these same genes in various types of 

smoke exposure such as tobacco, polycyclic aromatic hydrocarbons, incense smoke and 

cannabis smoke (Al-Arifi et al., 2012; Hussain et al., 2014; Roth et al., 2000). Consequently, we 

analyzed the expression of CYP1A1, CYP1B1 and TXNIP in primary human epithelial cells 

https://www.zotero.org/google-docs/?VwePyi
https://www.zotero.org/google-docs/?uy2LIH
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exposed to cannabis smoke using IVES. We chose these particular genes because of their robust 

induction in our Calu-3 cell model with cannabis smoke conditioned media. A significant 

elevation was observed in CYP1A1 and CYP1B1 while a negative trend was observed in TXNIP 

following smoke exposure, validating IVES for modeling molecular changes in human airway 

epithelial cells exposed to whole cannabis smoke.  

The aim of our study has been to validate and introduce an open-access, disposable, 

easy to use method for whole smoke exposure to airway epithelial cells grown on Transwell® 

inserts. The dosing parameters used in our study served as a means to reliably evoke a cannabis 

induced effect. To incorporate aspects of human smoke exposure studies we used a modified 

Foltin Puff Procedure. In this procedure used for clinical research, human participants are asked 

to inhale smoke for 5 seconds, hold for 10 seconds and then exhale.  We used these durations 

to define the durations for inhalations, exhalations, and periods of rest. To determine the 

volumes for the inhalations and exhalations, we used the ISO 3308 - Routine analytical 

cigarette-smoking machine guideline.  To determine the mass of cannabis, we aligned with the 

Kentucky Research Grade cigarette, a standardized product that has 0.7g/cigarette. We 

recognize that these conditions represent a single possible combination that does not provide 

concentration-response outcomes that may be impacted by length of time for combustion, 

frequency and volumes of inhalation/exhalation, and mass of cannabis combusted. Despite our 

single set of conditions, we validate IVES for equal distribution of smoke across the four 

exposure chambers, equal distribution of smoke pressure over the base of the transwell insert, 

minimal shear stress across the growth area, a capacity for the human airway epithelial cells to 

respond to smoke at a cellular and molecular level. Future studies can expand applications for 

the validated IVES to explore different concentrations, durations of smoke, period of smoke, co-

exposure with pathogens, or introduction of vaping technologies. Additional experiments could 

be performed to define a no-observed effect level for studies with toxicology focus.  

 In this study, we have outlined and validated the developmental parameters, flow 

simulation and streamlined the exposure protocol to measure epithelial barrier function, 

cytokine expression and gene expression. We have applied it to an exposure study assessing 

the impact of cannabis smoke exposure of primary HBECs. IVES shows stark similarities 

between existing models and promises the ability to generate needed relevant data to inform 

public health policy and individual user practices. 
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Figure Legends: 

 

Figure 1: 3D schematic view of the in vitro exposure system (IVES). As shown, air or exposure 

(e.g. smoke) delivered to the inlet is equally distributed across the four exposure chambers 

which house the transwell inserts. Circulated air or exposure (e.g. smoke) exits passively 

through the outlet in each exposure chamber.  

 

Figure 2: A schematic depicting the IVES connected to air and smoke sources. A 3-way valve 

connects the cannabis cigarette to IVES through a 50ml syringe. Another 3-way valve connects 

room air to IVES. Smoke is drawn through the smoke exposure syringe and expelled with 

predetermined rate and volume into IVES. Room air is introduced with the fresh air syringe in a 

similar fashion. A heating pad positioned below IVES maintains the experimental system at 37oC 

(Figure generated with BioRender). 

 

Figure 3: Quantitative simulation for IVES using COMSOL Multiphysics with air used as the gas 

of interest for simulation. (a) a 3D view of the IVES with air flow streamlines showing vortices in 

IVES and how gases distribute, (b) top view with gas flow streamlines, (c) and (d) the side views 

with gas flow streamlines. (e) The top-view of the velocity profile for the modeled gas 

presenting a uniform flow distribution among all four exposure chambers with a gentle velocity 

decrease, (f) the velocity profile at the close approximation to the surface where the cells were 

cultured, and (g) the shear stress profile at the location that the cells were cultured. It should 

be noted that both air and smoke inlets are merged into a larger duct which is only shown in 

this figure.  

 

Figure 4: 3D quantitative modeling results of the gas (CO2) concentration distribution in an IVES 

chamber: (a) real-time CO2 concentration distribution over 5 seconds exposure of smoke (initial 

CO2 concentration modeled at 1.0 mol L-1) showing a gentle gas distribution in the exposure 

chamber, (b) real-time CO2 concentration distribution over 5 seconds exposure of fresh air (the 

initial CO2 concentration was the final CO2 concentration in the exposure chamber from the 

previous smoke exposure and it was assumed that there was no CO2 in the fresh air exposed to 

the chamber), (c) volume average concentration of CO2 in the chamber for one smoke-fresh air 

cycle would lead to drop CO2 concentration in the chamber back to zero, and (d) average outlet 

concentration of CO2 after one smoke-fresh air cycle confirming that exposure kinetics were 

sufficient to reach a repeatable smoke/air exposure cycle (zero concentration at the outlet).   

 



Figure 5. (A) shows the change in TEER from baseline after room air versus whole cannabis 

smoke exposure. Analyzed with paired t-test, p=0.029, n=10. (B) Lactate dehydrogenase 

expression as a proportion of maximal LDH release. Analyzed via ANOVA and Tukey’s post hoc 

test. Shows representative microscopy (40x) of (C) Transwell inserts with HBECs prior to room 

air exposure (D) Transwell with HBECs after room air exposure (E) Tranwell with HBECs prior to 

whole cannabis smoke exposure (F) Transwell with HBECs after whole cannabis smoke 

exposure (product weight of 0.7g). Shows representative microscopy (100x) of (G) Transwell 

inserts with HBECs prior to room air exposure (H) Transwell with HBECs after room air exposure 

(I) Tranwell with HBECs prior to whole cannabis smoke exposure (J) Transwell with HBECs after 

whole cannabis smoke exposure (product weight of 0.7g).  

 

Figure 6. IL-1 cytokine family member quantification in apical washing of primary human airway 

epithelial cells exposed to air or whole cannabis smoke.  (A) IL-1α, p=0.054  (B) IL-1β, p=0.296 

(C) IL-18, p=0.064 (D) IL-1R antagonist, p<0.05 Analyzed via paired t-tests. 

 

Figure 7. Antiviral cytokine quantification in apical washing of primary human airway epithelial 

cells exposed to air or whole cannabis smoke. (A) CXCL10, p=0.110 (B) CCL5, p=0.252 (n=5). 

Analyzed via paired t-tests. 

 

Figure 8. Selected oxidative stress genes expressed in primary human airway epithelial cells 

exposed to air or whole cannabis smoke. (A) CYP1A1, p< 0.001 (B) CYP1B1, p<0.05 (C) TXNIP, 

p=0.058 (n=5). Analyzed via paired t-tests. 
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