Early View

Original article

Effect of β-blockers on the risk of COPD exacerbations according to indication of use: The Rotterdam study

Leila Karimi, Lies Lahousse, Phebe De Nocker, Bruno H. Stricker, Guy G. Brusselle, Katia M.C. Verhamme

This manuscript has recently been accepted for publication in the *ERJ Open Research*. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJOR online.

Copyright ©The authors 2021. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org
Effect of β-blockers on the Risk of COPD Exacerbations According to Indication of Use: the Rotterdam Study

Leila Karimi1, Lies Lahousse2,3, Phebe De Nocker2, Bruno H. Stricker3,4, Guy G. Brusselle3,5,6, and Katia M. C. Verhamme1,2

1Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, Netherlands
2Department of Bioanalysis, Ghent University, Ghent, Belgium
3Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
4Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
5Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
6Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, Netherlands

First author: Leila Karimi

Corresponding Author:
Prof. dr. B.H. Stricker MMed PhD
Erasmus MC
Department of Epidemiology
Postbus 2040
3000 CA ROTTERDAM
Email: b.stricker@erasusmc.nl
Abstract

Observational studies report a reduction of COPD exacerbations in patients treated with β-blockers. In contrast, the BLOCK COPD RCT which excluded COPD patients with cardiovascular (CV) conditions showed an increase in COPD exacerbations. It is unclear whether this discrepancy could be explained by underlying CV comorbidity. We examined whether the association between use of β-blockers and risk of COPD exacerbations differed between patients with and without a CV indication for β-blockers use.

Within the Rotterdam Study, we followed COPD subjects until the first COPD exacerbation, or end of follow-up. Cardiovascular indication for β-blocker use was defined as a history of hypertension, coronary heart disease, atrial fibrillation, or heart failure at baseline. The association between β-blockers use and COPD exacerbations was assessed using Cox proportional hazards models adjusted for age, sex, smoking, incident CV disease (i.e., heart failure, hypertension, atrial fibrillation, and coronary heart disease during follow-up), respiratory drugs, and nitrates.

In total 1,312 COPD patients with a mean age=69.7±9.2 years were included. In patients with a CV indication (n=755, mean age=70.4±8.8 years), current use of cardioselective β-blockers was significantly associated with a reduced risk of COPD exacerbations (HR=0.69, 95% CI: 0.57-0.85). In contrast, in subjects without a CV indication (n=557, mean age=68.8±9.7 years), cardioselective β-blockers was not associated with an altered risk of COPD exacerbations (HR=0.94, 95% CI: 0.55-1.62).

Use of cardioselective β-blockers reduced the risk of exacerbations in COPD patients with concomitant cardiovascular diseases. Therefore, the potential benefits of β-blockers might be confined to COPD patients with cardiovascular disease.
Introduction

Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide.[1,2] COPD exacerbations that are related to poor prognosis and severe COPD exacerbations requiring hospital admission increase the total costs due to COPD management.[2,3] Cardiovascular (CV) comorbidities encompassing arterial hypertension, ischemic heart disease, atrial fibrillation and heart failure are common in patients with COPD.[4] Based on the recommendations of the GOLD guideline, comorbidities in COPD patients should be treated according to the standard strategies irrespective of the presence of COPD.[2] β-blockers are recommended for the first-line treatment of several CV conditions, including coronary artery disease, heart failure, atrial fibrillation and hypertension (in case of concomitant with heart failure, angina pectoris, or recent myocardial infarction).[5-7]

Observational studies have already investigated the beneficial effect of the use of β-blockers in patients with COPD, but not stratified by the presence of cardiovascular diseases.[8,9] The effect of β-blockers use on survival and exacerbations has also been examined in patients with COPD and hypertension. [10,11] While observational studies and large meta-analysis reported that the use of β-blockers is associated with reductions in mortality, hospital admissions, and exacerbations in COPD patients [8,9,11-15], physicians are still reluctant to prescribe β-blockers in patients with CV disease and concomitant COPD due to concerns of the potential risk of β-blockers induced bronchoconstriction.[16-18] Recently, the BLOCK COPD (Beta-Blockers for the Prevention of Acute Exacerbations of Chronic Obstructive Pulmonary Disease) trial, a double-blind placebo-controlled randomized clinical trial (RCT), reported an increased risk of severe (leading to hospitalization), and very severe (leading to intubation and mechanical ventilation) COPD exacerbations in metoprolol treated COPD patients without an indication for the use of beta-blockers. However, the time until the first COPD exacerbation was similar in the metoprolol group and the placebo group. [19] It is still
unclear whether the current discrepancy between findings from observational studies and the BLOCK COPD RCT could be explained by underlying CV comorbidity. Therefore, we aimed to examine whether the association between the use of β-blockers and the risk of COPD exacerbations differed between patients with and without a CV indication for the use of β-blockers.

Methods

Setting and Study Population

The present study was performed within the Rotterdam Study, an ongoing prospective population-based cohort study in the well-defined Ommoord district in the city of Rotterdam in the Netherlands [20] The Rotterdam Study (RS) comprises approximately 15,000 participants, aged ≥ 45 years, and includes four sub-cohorts (RS-I, RS-II, RS-III, and RS-IV). Baseline data were collected from 1989 to 1992 in RS-I (n = 7,983), from 2000 to 2003 in RS-II (n = 3,011), from 2006 to 2009 in RS-III (n = 3,932), and RS-IV (n = 4,000) was established in 2016. Follow-up examinations were conducted periodically, which consisted of a home interview and an extensive set of tests at the research facility. In addition, the relevant data were retrieved from the medical records of the general practitioners, nursing homes, and hospitals. The Medical Ethics Committee of the Erasmus Medical Center approved the Rotterdam Study. All participants provide written informed consent. The study population for the analyses consisted of COPD patients who gave informed consent for follow-up monitoring and had pharmacy and covariables data available until January 1st, 2011.

COPD and COPD exacerbation

The diagnosis of COPD was confirmed by pre-bronchodilator obstructive spirometry (forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) < 0.7). If an interpretable spirometry was not available in the Rotterdam Study, the use of respiratory drugs
(Anatomical Therapeutic Chemical Classification codes: R03) was exclusively used for potential case finding; each potential case was validated through evaluation of all medical records, specialist letters and hospitalization. COPD cases were then identified as having a clear and well-founded physician diagnosis of COPD based on clinical presentation and/or lung function assessed by the general practitioner or respiratory physician. Prevalent COPD was defined as COPD diagnosed before the study start, and incident COPD was defined as the first diagnosis of COPD during follow-up. The start date of follow-up was defined as the date of study enrollment for prevalent COPD or the date of diagnosis for incident COPD. We followed COPD patients until the first COPD exacerbation, death, lost to follow-up, or the end of the follow-up (i.e., January 1st, 2011), whichever came first. COPD exacerbations were defined as acute episodes of worsening of respiratory symptoms requiring use of either systemic corticosteroids and/or antibiotics (moderate exacerbation), or requiring hospitalization (severe exacerbation). The outcome was defined as the first moderate to severe COPD exacerbation during follow-up and the date of outcome was taken as the index date.

Drug Exposure

We obtained medication dispensing data from the computerized pharmacies in the study district. Records of all filled prescriptions from 1 January 1991 onwards were available and included information on the product name, the Anatomical Therapeutic Chemical Classification (ATC) codes [14], the dispensing date, the prescribed dosing regimen, and the amount dispensed. The exposure of interest was β-blockers (C07) and these were categorized into non-cardioselective β-blockers (C07AA) and cardioselective β-blockers (C07AB). Patients were considered as "current users" if they used a β-blocker on the day of the first exacerbation (i.e. the index date) or when the last day of use of β-blockers fell within 30 days prior to the index date. If the last day of use of β-blockers was more than 30 days prior to the
index date, subjects were considered as "past users". Patients were considered as "non-users", if they did not use β-blockers prior to the first exacerbation during the study period.

Covariables

Several co-variables were considered as potential confounding factors such as: age at index date, sex, smoking, body mass index (BMI), use of respiratory drugs (R03), and use of cardiovascular drugs (i.e., diuretics [C03], calcium antagonists [C08], agents acting on the renin-angiotensin system [C09], antiarrhythmics [C01], nitrates [C01DA], and lipid-lowering drugs [C10]). Incident CV disease (i.e., arterial hypertension, coronary heart disease, atrial fibrillation, and heart failure during follow-up), as a time-varying determinant, was also considered as a confounder. BMI was calculated as weight divided by height squared (kg/m²). Hypertension was defined as a resting blood pressure above 140/90 mmHg or the use of blood pressure-lowering medication. The diagnosis of heart failure was during follow-up using the medical records of the participants [24]. Coronary Heart Diseases (CHD) was defined as a compound outcome including fatal or nonfatal myocardial infarction or CHD mortality [24]. Data on smoking were obtained from questionnaires and were categorized into “never” or “ever-smokers”.

Statistical analyses

Continuous variables were presented as mean with standard deviation (SD) and as medians and interquartile range (IQR), where appropriate. Categorical variables were described as counts (n) and proportions (%). Quantitative variables were statistically compared with a Student’s t-test (parametric) or Wilcoxon signed rank sum test (non-parametric, when necessary). Categorical variables were statistically compared with Chi² test. The use of β-blockers, other medications, age at index date, and incident CV disease were included in the models as time-varying determinants.[25] Individuals were considered to have a CV indication for treatment with β-blockers in case they were diagnosed with arterial
hypertension, coronary heart disease, atrial fibrillation, and/or heart failure at baseline. In the main analysis, the total population was stratified into participants with or without a CV indication for the use of β-blockers at baseline.

The association between the use of β-blocker and COPD exacerbations was assessed using Cox proportional hazards models, adjusted for age, sex, smoking, and other factors that changed the crude estimate for current use of β-blockers by more than 10% (i.e., incident CV diseases during follow-up, use of respiratory drugs, and nitrates). β-blockers are currently no longer considered as first-line treatments for hypertension in COPD.[26] Therefore, in a sensitivity analysis, the patients with a CV indication for the use of β-blockers were stratified into two strata: 1) only hypertension 2) coronary heart disease, atrial fibrillation, and/or heart failure with or without hypertension (strict CV indication). Furthermore, to assess the effect of long-term use of β-blockers, we repeated the analysis for long term use of β-blockers defined as the use of β-blockers for at least 270 days during one year prior to the index date. A p-value < 0.05 was considered statistically significant. All statistical analyses were conducted using the statistical software package SPSS/24.0 and package R (version 3.3.3).

Results

COPD patients characteristics

The study flow of participants is described in Figure 1. The COPD patients characteristics are shown in Table 1. A total of 1,312 COPD patients with a mean (± SD) age of 69.7±9.2 years were included. Males comprised 57.0% (n = 750) of the cohort, and 84.1% (n = 1,104) were ever smokers. The median follow-up time and interquartile range (IQR) was 426 days (155-1037). At the end of follow-up, 1,055 (80.4%) first COPD exacerbations were recorded. Patients with a CV indication for the use of β-blockers (n = 755, age = 70.4 ± 8.7 years, sex male = 58.0%) were significantly (P = 0.002) older than those (n = 557, age = 68.8 ± 9.7 years. sex male = 56.0%) without a CV indication for the use of β-blockers. During follow-
up, several subjects developed CV events in both categories with and without a CV indication for the use of β-blockers (116 (15.4%) and 124 (22.9%), respectively).

β-blocker use and risk of COPD exacerbation

In the total population, current use of cardioselective β-blockers, compared to non-use, was associated with a reduced risk of exacerbation (HR = 0.69, 95% CI: 0.58-0.83). In patients with a CV indication for the use of β-blockers (Table 2), current use of cardioselective β-blockers reduced the risk of COPD exacerbation by 31% (HR = 0.69, 95% CI: 0.57-0.85). In contrast, in subjects without a CV indication for the use of β-blockers, current use of cardioselective β-blockers did not alter the risk of COPD exacerbations (HR = 0.94, 95% CI: 0.55-1.62).

The results of sensitivity analysis showed that current use of cardioselective β-blockers significantly reduced the risk of COPD exacerbations across two strata of CV indications of β-blockers use, HR = 0.64 (95% CI: 0.44-0.91) in subjects with a strict CV indication for the use β-blockers (i.e., ischemic heart disease, atrial fibrillation, and heart failure) and HR = 0.69 (95% CI: 0.54-0.89) in subjects with only arterial hypertension as a CV indication, (Figure 2). We have also observed that long-term use of cardioselective β-blockers was significantly associated with a reduction in the risk of COPD exacerbation (HR = 0.69, 95% CI: 0.57-0.85, P = 0.0005) in COPD patients with a CV indication for the use of β-blockers (data not shown).

Furthermore, current use of non-cardioselective β-blockers was significantly associated with an increased risk of COPD exacerbations (HR = 2.91, 95% CI: 1.65-5.13) in patients with only hypertension as CV indication, but the numbers were low (Figure 2).

Discussion

In this prospective cohort study, we found that current use of cardioselective β-blockers was associated with a reduced risk of COPD exacerbations in patients with a CV indication for β-
blocker use. The sensitivity analysis also indicated that the reduced risk associated with the current use of cardioselective β-blockers in COPD patients with a CV indication for β-blockers was almost similar in patients with only hypertension as a CV indication vs. patients with ischemic heart disease, atrial fibrillation or heart failure as a CV indication.

The use of β-blockers is frequently withheld in patients with COPD and concurrent CV disease due to concerns about potential adverse pulmonary effects such as bronchospasm. In fact, the non-selective β-blocker, such as propranolol, may deter the bronchodilator response to β2-agonists in COPD patients.[27] However, clinical trials and meta-analyses have indicated that the use of cardioselective β-blockers did not have a significant effect on FEV1, response to β2-agonists or respiratory symptoms in COPD patients. [14,28,29]. The results of a murine model indicated that chronic use of β-blockers could reduce airway inflammation and reduce mucus production. [30] Furthermore, some selective β-blockers (e.g., nebivolol), might modify nitric oxide production, resulting in vasodilation and cardioprotective activity in hypertensive subjects with COPD. [31,32] Additionally, β-blockers have been reported to reduce the release and synthesis of endothelin-1, a bronchoconstrictor peptide that mediated airway inflammation and may be involved in COPD exacerbations. [33-35] Due to the cardioprotective effects of β-blockers, the use of such drugs may reduce the risk of COPD exacerbations triggered by cardiovascular causes. β-blockers may reduce heart rate, [36] relieve arrhythmias which can lead to cardiac and respiratory decompensation, [37] and moderate the risk of acute coronary syndromes associated with the use of β-agonists. [38]

A previous study by Rutten et.al. reported that the use of β-blockers reduced the risk of exacerbations in patients with COPD. This association remained in patients with COPD but without overt cardiovascular disease (i.e. only hypertension as the main indication for the prescription of β-blockers).[11] Also, Au et.al. assessed the association between the type of antihypertensive medication and all-cause mortality as well as COPD exacerbation among
patients with COPD and concomitant hypertension, in particular receiving single-agent antihypertensive therapy. They found a significant reduction in the risk of mortality associated with the β-blockers use, compared to calcium channel blockers and all other antihypertensive agents, among COPD patients with hypertension and cardiac disease, but not in the category of COPD patients with hypertension and without cardiac disease. However, the association between the use of β-blockers and the risk COPD exacerbation was not statistically significant.[10] In the current study, we add to the literature by investigating the effect of β-blockers on the risk of COPD exacerbations in COPD patients, stratified by the presence of CV conditions (defined as a history of hypertension, coronary heart disease, atrial fibrillation, or heart failure) or absence of any CV conditions at baseline. Furthermore, we also adjusted for CV diseases occurring during follow-up. A meta-analysis of fifteen observational cohort studies confirmed that the use of β-blockers in patients with COPD might decrease the risk of overall mortality and reduce the risk of COPD exacerbations.[13] Furthermore, the results of a large multicenter cohort study (COPDGene) indicated that β-blockers are associated with a significant reduction of the risk of COPD exacerbations regardless of the severity of airflow obstruction.[8] Although observational studies using real-world data play an essential role in providing evidence on the effects of medications, they could be subject to methodological limitations such as residual confounding.[31] Therefore, randomized clinical trials are essential to enhance the knowledge about the potential beneficial effects of the use of β-blocker in COPD patients.

Recently, Dransfield et al., in the BLOCK COPD trial, assigned COPD patients randomly to metoprolol or placebo, with as primary endpoint risk of first COPD exacerbation, however, they excluded COPD patients with an obvious cardiovascular disease, and thus, enrolled only COPD patients without an indication for treatment with a β-blocker. [19] Although the FEV₁ was similar in the two groups, there was a higher risk of severe exacerbation (hospitalization)
and very severe exacerbation (intubation and mechanical ventilation) among the patients who received metoprolol. Furthermore, there was no significant difference in the median time until the first exacerbation in the metoprolol group vs. the placebo group.[19] Our results indicate that in subjects without a CV indication, the use of cardioselective β-blockers did not significantly alter the risk of COPD exacerbations; however, due to the limited sample size of β-blockers users in this category, we might be underpowered to find a significant association. We found that in patients with a CV indication for the use of β-blockers, current use of cardioselective β-blockers was associated with a reduced risk of COPD exacerbations. Our study reconciles the results of previous observational studies [8,12,13] with the results of the BLOCK COPD RCT.[19] Previous observational studies included COPD patients regardless of concomitant CV disease, whereas the BLOCK COPD RCT excluded COPD patients with an established indication for the use of β-blockers. Therefore, the findings of the BLOCK COPD trial are relevant only to COPD patients without an indication for the use of β-blockers.

As for all observational research, our study has strengths and limitations. An important strength of our study is the fact that we used data from the Rotterdam Study which is an ongoing prospective population-based cohort with a prolonged follow-up of more than 20 years. Data was prospectively collected for all participants, independent of research questions or forthcoming diseases, which makes it less prone to information and selection bias. Furthermore, in this study we used a cohort with complete coverage of all filled prescriptions. We also analysed exposures as time-dependent variables in a Cox regression model.[25] A potential limitation of our study is that spirometry data were only available after 2002. Hence it could lead to an underestimation of asymptomatic COPD in the Rotterdam Study before 2002. In addition, the use of pre-bronchodilator spirometry implies the possibility of misclassification of some asthma patients as COPD patients in Rotterdam Study. To control
this limitation, we additionally identified and validated patients with physician-diagnosed asthma and excluded them (figure 1). In the Rotterdam study, COPD exacerbations (moderate and severe) were recorded based on pharmacy-filled prescription data and a national hospitalization register, which prevents recall bias compared to self-reporting of the COPD exacerbation.[22] However, there is the potential of misdiagnosis of COPD exacerbations (especially in patients with heart failure) as differentiating between worsening of heart failure symptoms and COPD exacerbation is not easy in daily life. [39] Also, for prevalent COPD, we did not have information on COPD exacerbations prior to the start of the Rotterdam study and thus could not account for this in the analysis. Besides, lung function data at baseline is not available for all COPD patients; therefore, we are not able to consider the severity of COPD at baseline in the analysis. Moreover, smoking status was assessed at 4-yearly intervals through questionnaires explaining why we categorized smoking into ever and never-smoking. Also, the use of β-blockers was based on pharmacy dispensing data and not on actual intake which might result in an overestimation of actual use. Furthermore, 23% of patients without a CV indication for the use of β-blockers at baseline later developed incident CV disease which was controlled for in the analysis. Moreover, we acknowledge that the limited sample size of β-blockers users in the category without a CV indication is a main limitation of our study. Finally, although we adjusted for potential confounding factors, residual confounding might remain.

In conclusion, we observed that the use of cardioselective β-blockers decreased the risk of exacerbations in COPD patients with a CV indication for β-blocker use. Therefore, the potential benefits of β-blockers might be confined to COPD patients with cardiovascular disease.
Conflict of interest: Dr. Verhamme works for a research group that, in the past, received unconditional research grants from Pfizer, Boehringer Ingelheim, Yamanouchi, Novartis and GSK, none of which are related to the content of this paper. Dr. Lahousse reports grants from AstraZeneca and Chiesi (both awards), and expert consultation for Boehringer Ingelheim GmbH and Novartis, outside the submitted work. Dr. Brusselle reports personal fees from AstraZeneca, Boehringer-Ingelheim, Chiesi, from Novartis, GlaxoSmithKline, Sanofi, and Teva, outside the submitted work.

Support statement: The Rotterdam Study is funded by Erasmus MC and Erasmus University, Rotterdam, the Netherlands; the Netherlands Organization for Scientific Research (NWO); the Netherlands Organization for Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly (RIDE); the Ministry of Education, Culture and Science; the Ministry for Health, Welfare and Sports; the European Commission (DG XII) and the Municipality of Rotterdam. The GWAS datasets are supported by the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Organization of Scientific Research NWO Investments (number 175.010.2005.011, 911–03-012), the Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project number 050-060-810.
Reference

Table 1: Patients characteristics at baseline

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total COPD patients n = 1,312</th>
<th>CV(^1) Indication for β-blockers n = 755</th>
<th>No CV Indication for β-blockers n = 557</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)(^2)</td>
<td>69.7 (9.2)</td>
<td>70.4 (8.8)</td>
<td>68.8 (9.7)</td>
<td>0.002</td>
</tr>
<tr>
<td>Sex (Male), no. (%)</td>
<td>750 (57.2)</td>
<td>438 (58.0)</td>
<td>312 (56.0)</td>
<td>0.470</td>
</tr>
<tr>
<td>Ever smokers, no. (%)</td>
<td>1,104 (84.1)</td>
<td>632 (83.7)</td>
<td>472 (84.7)</td>
<td>0.450</td>
</tr>
<tr>
<td>BMI (kg/m(^2)), median (IQR)</td>
<td>26.0 (23.7-28.9)</td>
<td>26.5 (24.1-29.4)</td>
<td>25.5 (23.0-28.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Heart Failure, no. (%)</td>
<td>94 (7.2)</td>
<td>94 (12.5)</td>
<td>NA(^3)</td>
<td>NA</td>
</tr>
<tr>
<td>Coronary heart diseases, no. (%)</td>
<td>156 (11.9)</td>
<td>156 (20.7)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Atrial fibrillation, no. (%)</td>
<td>31 (2.4)</td>
<td>31 (4.1)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Hypertension(^4), no. (%)</td>
<td>685 (52.2)</td>
<td>685 (90.7)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Diabetes(^5), no. (%)</td>
<td>105 (8.0)</td>
<td>81 (10.7)</td>
<td>24 (4.3)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

\(^1\)CV, Cardiovascular (CV indication for β-blocker use was defined as a history of hypertension, coronary heart disease, atrial fibrillation or heart failure at baseline); \(^2\)SD, Standard deviation; \(^3\)NA, Not applicable; \(^4\)Data were missing on hypertension in 218 subjects; \(^5\)Diabetes mellitus was defined as a fasting serum glucose concentration of ≥7.0 mmol/L or a non-fasting serum glucose concentration of ≥11.1 mmol/L or the use of blood glucose-lowering medications[40].
Table 2: Use of β-blockers and risk of COPD exacerbations

<table>
<thead>
<tr>
<th>β-blockers</th>
<th>No. of Exacerbations</th>
<th>Crude HR<sup>1</sup> (95% CI)</th>
<th>p</th>
<th>Adjusted<sup>2</sup> HR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total COPD (n = 1,312)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No use</td>
<td>Reference</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardioselective β-blockers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current use</td>
<td>161</td>
<td>0.74 (0.62-0.88)</td>
<td>0.001</td>
<td>0.69 (0.58-0.83)</td>
<td>0.00005</td>
</tr>
<tr>
<td>Past use</td>
<td>95</td>
<td>1.02 (0.83-1.27)</td>
<td>0.822</td>
<td>1.01 (0.81-1.26)</td>
<td>0.915</td>
</tr>
<tr>
<td>Non-cardioselective β-blockers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current use</td>
<td>25</td>
<td>1.09 (0.73-1.62)</td>
<td>0.674</td>
<td>1.19 (0.79-1.79)</td>
<td>0.395</td>
</tr>
<tr>
<td>Past use</td>
<td>34</td>
<td>0.91 (0.64-1.28)</td>
<td>0.583</td>
<td>0.76 (0.53-1.08)</td>
<td>0.123</td>
</tr>
<tr>
<td>No CV<sup>3</sup> indication for β-blockers use (n = 557)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No use</td>
<td>400</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardioselective β-blockers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current use</td>
<td>18</td>
<td>1.38 (0.85-2.23)</td>
<td>0.193</td>
<td>0.94 (0.55-1.62)</td>
<td>0.835</td>
</tr>
<tr>
<td>Past use</td>
<td>21</td>
<td>1.02 (0.66-1.58)</td>
<td>0.934</td>
<td>0.98 (0.62-1.53)</td>
<td>0.918</td>
</tr>
<tr>
<td>Non-cardioselective β-blockers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current use</td>
<td>2</td>
<td>NA<sup>4</sup></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Past use</td>
<td>8</td>
<td>1.17 (0.58-2.37)</td>
<td>0.653</td>
<td>1.01 (0.49-2.06)</td>
<td>0.979</td>
</tr>
<tr>
<td>CV indication for β-blockers use (n = 755)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No use</td>
<td>331</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardioselective β-blockers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current use</td>
<td>143</td>
<td>0.71 (0.58-0.86)</td>
<td>0.001</td>
<td>0.69 (0.57-0.85)</td>
<td>0.0004</td>
</tr>
<tr>
<td>Past use</td>
<td>74</td>
<td>1.03 (0.80-1.33)</td>
<td>0.788</td>
<td>1.08 (0.83-1.40)</td>
<td>0.560</td>
</tr>
<tr>
<td>Non-cardioselective β-blockers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current use</td>
<td>23</td>
<td>1.15 (0.75-1.75)</td>
<td>0.528</td>
<td>1.38 (0.89-2.12)</td>
<td>0.147</td>
</tr>
<tr>
<td>Past use</td>
<td>26</td>
<td>0.87 (0.58-1.30)</td>
<td>0.498</td>
<td>0.71 (0.47-1.07)</td>
<td>0.106</td>
</tr>
</tbody>
</table>

¹HR, Hazard Ratio; ²Adjusted for age, sex, smoking, incident cardiovascular diseases (i.e., heart failure, hypertension, atrial fibrillation or coronary heart disease) during follow-up, use of respiratory drugs (R03), and nitrates (C01DA); <sup>3</sup.CV, Cardiovascular; ⁴NA, Not applicable.
Figure Legends

Figure 1: Flowchart of participants

Figure 2: Use of β-blockers and risk of COPD exacerbations (sensitivity analyses)

HR, Hazard Ratio; Strict cardiovascular indication was defined as a history of coronary heart disease, atrial fibrillation, or heart failure (with or without hypertension) at baseline. The analyses were adjusted for age, sex, smoking, incident cardiovascular diseases (i.e., heart failure, hypertension, atrial fibrillation, and coronary heart disease) during follow-up, use of respiratory drugs (R03), and nitrates (C01DA).
The Rotterdam study
n = 14,926

Excluded;
Neither COPD nor Asthma (by 1-1-2011)
n = 12,385

COPD or Asthma (by 1-1-2011)
n = 2,541

Excluded;
Asthma (by 1-1-2011) n = 676
ACO* (by 1-1-2011) n = 194

COPD patients (by 1-1-2011)
n = 1,671

Excluded;
No informed consent n = 12
No information on drug use and/or hospitalization n = 347

COPD patients included
n = 1,312

*ACO, Asthma-COPD overlap
Strict cardiovascular indication for the use of β-blockers (n = 233)

<table>
<thead>
<tr>
<th></th>
<th>No. of Exacerbations</th>
<th>HR* (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>No use</td>
<td>71</td>
<td>Reference</td>
<td>-</td>
</tr>
<tr>
<td>Cardioselective β-blockers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current use</td>
<td>62</td>
<td>0.64 (0.44, 0.91)</td>
<td>0.014</td>
</tr>
<tr>
<td>Past use</td>
<td>31</td>
<td>1.22 (0.79, 1.89)</td>
<td>0.372</td>
</tr>
<tr>
<td>Non-cardioselective β-blockers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current use</td>
<td>8</td>
<td>0.56 (0.26, 1.21)</td>
<td>0.139</td>
</tr>
<tr>
<td>Past use</td>
<td>16</td>
<td>1.13 (0.64, 1.98)</td>
<td>0.676</td>
</tr>
</tbody>
</table>

Only hypertension as indication for the use of β-blockers (n = 522)

<table>
<thead>
<tr>
<th></th>
<th>No. of Exacerbations</th>
<th>HR* (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>No use</td>
<td>260</td>
<td>Reference</td>
<td>-</td>
</tr>
<tr>
<td>Cardioselective β-blockers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current use</td>
<td>81</td>
<td>0.69 (0.54, 0.89)</td>
<td>0.005</td>
</tr>
<tr>
<td>Past use</td>
<td>43</td>
<td>0.99 (0.71, 1.38)</td>
<td>0.969</td>
</tr>
<tr>
<td>Non-cardioselective β-blockers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current use</td>
<td>15</td>
<td>2.91 (1.65, 5.13)</td>
<td>0.002</td>
</tr>
<tr>
<td>Past use</td>
<td>10</td>
<td>0.46 (0.24, 0.89)</td>
<td>0.020</td>
</tr>
</tbody>
</table>