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Summary: 

We studied acutely ill patients wearing a small wireless motion sensor. Using machine 

learning, we developed a method to classify sections of the record and measure and 

record respiratory rate accurately and automatically, to allow automatic charting. 
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ABSTRACT 

Background. Automatic measurement of respiratory rate in general hospital 

patients is difficult. Patient movement degrades the signal, and variation of the 

breathing cycle means that accurate observation for at least 60 seconds is needed for 

adequate precision. 

Methods. We studied acutely ill patients recently admitted to a teaching hospital. 

Breath duration was measured from a tri-axial accelerometer attached to the chest 

wall, and compared with a signal from a nasal cannula. We randomly divided the 

patient records into a training (n=54) and a test set (n=7). We used machine learning 

to train a neural network to select reliable signals, automatically identifying signal 

features associated with accurate measurement of respiratory rate. We used the test 

records to assess the accuracy of the device, indicated by the median absolute 

difference between respiratory rates, provided by the accelerometer and by the nasal 

cannula. 

Results. In the test set of patients, machine classification of the respiratory signal 

reduced the absolute difference from 1.25 (0.56 to 2.18) to 0.48 (0.30 to 0.78) 

breaths/minute (median, interquartile range). 50 % of the recording periods were 

rejected as unreliable, and in one patient, only 10% of the signal time was classified 

as reliable. However, even only 10% of observation time would allow accurate 

measurement for 6 minutes in an hour of recording, giving greater reliability than 

nurse charting, which is based on much less observation time. 

Conclusion. Signals from a body-mounted accelerometer yield accurate measures 

of respiratory rate, which could improve automatic illness scoring in adult hospital 

patients. 

Word count 250 

  



Introduction 

To assess acute illness, scoring systems using measurements such as respiratory rate, 

heart rate, systolic blood pressure, and oxygen saturation are often used in hospital 

settings.[1] Respiratory rate is a key observation in early recognition of acutely ill 

patients in hospital, and is important in illness scoring, such as in COVID 19 

infection [2] where it has prognostic value. [3, 4] Respiratory rate is not commonly 

measured automatically, although clinicians now recognise the need for reliable 

wearable monitoring devices to assist management of outbreaks of infectious 

disease.[5] 

Current measurements of respiratory rate need to be improved. Breaths are counted 

for a limited time,[6] values recorded by different observers often differ,[7] and 

charted values are not trustworthy.[8] 

Accurate measurement of respiratory rate with a wearable device has practical 

difficulties. Artefacts caused by patient movement can cause repeated false alarms. 

In surveillance monitoring, rapid changes in patient condition are likely to be less 

than in critical illness, and management of artefacts may require a different strategy, 

such as signal selection. 

A poorly recognised factor is that the breathing signal itself is not stable, which can 

affect comparisons of methods of measurement. Breath duration varies from breath 

to breath, and measurements of rate made using short periods of counting, such as 

30 or 60 seconds, are imprecise. Repeating observations made over one minute gives 

results with an interquartile range of 3 breaths/minute.[6] When comparing 

methods, exactly the same breaths should be sampled, but previous studies failed to 

do this.[9, 10] Recent studies of automatic measurement of respiratory rate in low 

care and high dependency patients report similar limits of agreement, about ± 4 

breath/minute.[11–13] 

To monitor respiratory rate in a general hospital setting, we need sufficient reliable 

and accurate information to identify acute illness or deterioration.[14, 15] This 

should be possible by signal processing to select trustworthy sections of the signal. 

Although signal quality may sometimes be unreliable, a sample of less frequent but 

more trustworthy observations could provide adequate input values for a nursing 

chart and the illness scoring system, and more accurately identify acute illness or 

deterioration. [16, 17] 

We used a non-invasive monitor (Respeck) to measure respiration by sensing chest 

wall movement, transmitting the data by a Bluetooth low energy connection to a 

bedside receiver. In patients after surgery, we obtained reliable measures of 

respiratory rate,[18] but these patients were “settled” and inactive. We now assessed 



how the device performed when used in acutely ill medical patients. We developed 

an automatic classification process to detect periods when the signal was reliable, by 

identifying features that were present when the signal corresponded with a second, 

reliable, method of measuring breathing. Our comparison method was nasal cannula 

pressure, which measures gas flow at the nose.[19] 

The research question was whether the device could be trained to measure 

respiratory rate accurately and reliably in patients with acute medical illness. An 

accurate process would give values that agreed with a standard measure, within ± 2 

breaths/minute. Measurements would be reliable if they were sufficient for adequate 

input into a hospital early warning chart. Currently, national UK 

recommendations[1] suggest respiratory rate should be measured on admission to 

hospital and then 12 hourly, and increased up to hourly in patients with severe 

illness. 

Methods 

Ethical approval 

We wished to recruit patients who had just been admitted to hospital with acute 

illness. The Scotland A Research Ethics Committee considered the research (ref 

12/SS/0054) met the requirements of section 51 of the Adults with Incapacity 

(Scotland) Act with regard to research subjects who lack capacity to consent. We 

were thus not permitted to record patient data that could allow identification. 

Patient recruitment. 

A trained research nurse worked with nursing staff in the acute medical receiving 

unit of a 570 bed teaching hospital. Patients with medical illnesses are admitted for 

initial assessment in one ward, and moved to a second ward if further investigation 

and treatment is required. Most patients spend about 4-8 hours in the unit and no 

patient is in the unit for more than 24 hours. 

Patients who might be approached by the research nurse were identified by the 

clinical nursing staff, and given an information leaflet. If the patient moved to the 

second ward, the study was explained to them, they were asked if they wished to 

take part, and recruited if they agreed. If possible, signals were to be recorded for 

one hour, or until the patient was prepared to leave the ward. Patients were allowed 

to discontinue wearing the devices if they wished. 

Patient recordings 

The Respeck sensor measures acceleration in three orthogonal axes. The 

accelerometer signals are digitised and transmitted by Bluetooth LE to a receiver 



(iPod) for storage and later retrieval and analysis. The Respeck is enclosed in a 

plastic capsule 45×38×13 mm, and weighs 15.4 g. It is marked to allow a consistent 

orientation when attached to the patient. When attached as described below, a 

positive signal from the X axis indicates a force from right to left, on the Y axis from 

caudal to cranial, and on the Z axis from anterior to posterior. The device is sealed in 

a plastic bag, and the bag is taped to patient’s skin using a conforming, perforated 

polyester fabric tape with acrylic adhesive (Mefix, Mölnlycke Health Care Limited, 

Dunstable, UK) to hold the capsule firmly on the body surface. The device is placed 

just under the rib margin, in the midclavicular line, and usually on the left side of the 

patient. 

A single-use nasal cannula (Sleep Sense 15805-2, Medes Ltd., Radlett, Herts UK) was 

placed below the nostrils to provide a comparison signal. The cannula was 

connected via a bacterial filter to a battery-powered pressure transducer (PTAF2, 

Respironics, www.philips.com/respironics). This was placed beside the patient and 

connected to a base -station which transmitted the pressure signal wirelessly 

(Bluetooth LE) to the iPod receiver. All signals were digitised at 12.5 Hz. 

Details of the reason for admission of the patient to hospital, and the year of birth, 

height, weight and gender of the patient were recorded, but no other patient data 

were kept. Recordings were transferred from the receiver to a secure computer for 

further analysis. 

Signal analysis. 

The nasal flow signal in each patient record was replayed, without displaying the 

motion sensor signals, using proprietary software (Spike2, version 5.19, CED, 

Cambridge, UK). The breathing pattern was inspected by a skilled observer unaware 

of the identity of the patient. Sections of each record that showed clear breathing 

signals were identified. Breath onset was timed when the nasal pressure became less 

than a threshold set to be just below atmospheric, and automatically marked using a 

“decrease through threshold” setting. The entire record was visually checked by the 

observer to avoid any false or missed breaths. After breath onsets had been 

measured, the patient records were randomly divided into two groups. The first 

group was used to develop and train a method to classify the Respeck signal (see 

below), and the second was used to test the classification model performance. 

Respeck signal analysis 

Gravity is the predominant component of acceleration sensed by the device. As the 

chest wall expands and changes shape, the angle of the device relative to gravity 

changes. The angle changes of the axis measurements are smoothed and combined. 

Previous studies showed a close correspondence between the Respeck signal and 



nasal air flow.[18] By setting upper and lower threshold limits for the Respeck, we 

measure the timing of respiratory phases when the signal successively crosses these 

threshold limits. The limits are determined dynamically by the signal amplitude. 

Phases of breathing are identified by measuring successive half-breath cycles, with 

the duration of inspiration taken as the shorter. 

Record synchronisation and comparison 

Nasal cannula and Respeck signal values were time-stamped when stored on the 

iPod. The Respeck signal was shifted in time by 960ms to correct for delay 

introduced by the smoothing function. The respiratory rate measurements from the 

nasal cannula and the Respeck signals were compared in 20-second windows, with 

successive windows overlapping by 10 seconds. These would contain about 5-7 

breaths, and allowed dynamic comparisons of the two signals. The instantaneous 

frequency of each breath, nasal cannula and Respeck, was calculated as 60 *[1/breath 

duration (sec)]. The breathing rate for the window was reported as the mean of the 

instantaneous rates of each complete breath cycle in the 20-second window. The 

accuracy of the Respeck measurement was defined as the modulus of the difference 

between nasal cannula and Respeck rates. 

Features associated with accurate estimates of respiratory rate. 

To allow training of the selection method, and subsequent testing, satisfactory 

records were blinded, randomly numbered, and sorted for length. To ensure that the 

sample used for testing was adequate, the shortest four records were temporarily 

removed. The remainder were then separated into a sample of 50 for training the 

selection method, and a sample of 7 for final testing. The short records were then 

added back to the training group. 

In each window of the Respeck signal, features were identified that could show 

whether the measurements could be trusted. These features were used to classify the 

Respeck signal windows and only windows that gave a close estimate of the 

breathing rate were selected.[20] A trusted period was defined as one in which the 

difference between nasal cannula and Respeck rate was no greater than a specified 

threshold value. There is an inverse relationship between this threshold, and 

agreement of the estimate with the breathing rate, and also the proportion of the 

record that could be selected. The threshold value was initially set to 1.0 

breaths/minute. For different values of threshold less than 1, features of the signals 

in all the windows were compared for each patient record in the training set. We 

inspected the distribution of these features to generate a list of those that would 

possibly classify Respeck signal windows as those with a breathing rate close to the 

nasal cannula breathing rate. (see table 1) 



Table 1 

Initial features considered for testing in the model. These are derived from the waveform of 

the Respeck signal, the accelerometer signals, and the breath timing measurements 

Factors Comment or explanation 
Fourier transform of 
Respeck signal 

Normalised as (Fourier factors in range 9 - 24 breaths/minute)/ 

(sum of all frequency factors) 
Mean, median, and 
Standard deviation (SD) of 
individual breathing rates 

Extreme values are less likely to be reliable. 

A smaller SD reflects more regular breathing 

Maximum – minimum 

rate 

A large range of rates within the sampling window would be less 

trustworthy 

Mean and median of 

differences 

Mean and median of frequency differences between one breath 

and the next, within the window. 
SD of axis acceleration 
values 

A measure of large changes in axis signal, often associated with 

posture changes 
SD, median and skew of 
activity levels 

Activity level is computed as the length of the vector differences, 

using the X Y and Z coordinates 
SD of Respeck signal A large SD indicates probable posture change 
Number of valid breaths A small number of detected breaths suggests the signal is 

unreliable  
SD of Respeck amplitude 
peaks. 

Greater variation in the size of breaths in a window suggests 

unstable breathing. 
Mean and median of peak 
differences 

Large differences between breath amplitudes suggest unstable 

breathing 
Mean/median of peak 
intervals 

Times between successive peaks in the window should be similar 

 

The most effective features were selected and ranked using recursive feature 

elimination and logistic regression. A limited number of features would save on 

computation, allowing implementation to run on the Respeck device itself. A neural 

network with two hidden layers was trained to select acceptable windows using a 

linear rectifier as the activation function.[21, 22] Using leave-one-out cross-validation 

for each patient, the model was trained for the rest of the patients in the set and then 

tested on the chosen patient. This prevents the model learning subject-specific 

patterns before testing. The features, ranked in descending order of effectiveness, 

were: the SD of the breathing rates, the mean difference of the breathing rates, the 

number of rate values in the window, the mean of the peak intervals, the SD of the 

breathing signal and the difference between the maximum and minimum rates. 

Statistical analysis. 

We used the modulus of the difference between nasal cannula and Respeck rates to 

assess agreement. For comparison with other reports, we compared the Respeck and 



nasal cannula measures, before and after selection of reliable signals, using the 

method of Bland and Altman for repeated measures in multiple subjects.[23] 

Results 

Clinical information 

We approached 96 patients for the study. Of these, 78 agreed to participate. In 12 

data sets, the nasal pressure records were absent or of poor quality, and in 5, the 

recording was too short to be useful (less than 10 minutes). Thus 61 records were 

used for analysis. The age of these patients was 61 (18) years (mean, SD), their BMI 

was 28 (7) kg.m-2, and 35 were female. The most frequent presenting illness was 

respiratory disease, either exacerbation of chronic obstructive pulmonary disease or 

asthma (16 patients). Ischaemic heart disease or venous thromboembolism was 

suspected in 14 patients, and 13 had either sepsis or urinary tract infection. The 

remainder had neurological conditions such as stroke (9), gastrointestinal disease (6), 

and other conditions (4). Many patients had comorbid conditions: these were 

cardiovascular in 32, respiratory in 20, diabetes in 11, and renal impairment in 12. 

The total number of 20-second windows analysed was 23,278. Table 2 shows how 

these periods were used in the study. 

Table 2. 

 

The breathing rates of the patients, measured from the nasal pressure records, varied 

considerably. The breathing rate for each patient was summarised as a median 

duration for all the breaths measured in that patient’s record. For all patients, breath 

duration was 2.80 (2.40 to 3.44) seconds (median, interquartile range). These 

represent breathing rates of 21 (17 to 25) breaths/minute. Figure 1 shows a 

representative trace from the study. It shows a period of quiet breathing, transiently 

affected by a change most prominent in one axis, which disturbs the Respeck signal 

and would affect the matching between the Respeck rate and the nasal cannula rate. 

Numbers are sample windows (% total) Sample  

 Used for training Used to test 

Total windows 21055 2223 

No cannula or Respeck rate 603 (3) 29 (1) 

No Respeck rate 618 (3) 67 (3) 

No cannula rate 4844 (23) 363 (16) 

Discarded due to undefined feature 575 (3) 94 (4) 

Used for analysis 14415 (68) 1670 (75) 



Figure 2 shows the results obtained when the selection process was applied to the 

test data. Before selection, the median difference between Respeck and cannula rates 

was 1.25 breaths/minute. After selection, the median difference was reduced to 0.46 

breaths/minute. Although this required removal of a median 58% of the time periods 

recorded, in all but one of the test subjects the remaining time available for analysis 

would have been sufficient to give one minute of respiratory rate measurements in 

every ten minutes of data. Figure 3 shows the change in performance after selection. 

The limits of agreement ranged from -2.01 to 1.9 breaths/minute and the confidence 

intervals of these limits were small. This contrasts with the greater limits found 

before signal selection. 

Figure 4 compares two plots of rate estimates for patients A and G in the test sample 

(see figure 2). The record for patient G includes only 10% of acceptable windows, but 

there remain sufficient estimates to record the respiratory rates in this 15-minute 

period. 

Discussion 

A machine learning-based approach to Respeck data analysis has shown that useful 

respiratory rate information can be extracted from noisy Respeck signals in a 

challenging clinical setting. In the test data set, the respiratory frequency matched 

the reference values closely (median absolute difference of 0.46 breath/min). The 

experimental setup to gather time-synchronised Respeck and reference data ensured 

comparisons over exactly contemporaneous periods. A previous analysis of the nasal 

cannula signals obtained from this study showed that repeated estimates of 

respiratory rate, made from the same record, but at different times, could vary 

substantially.[6] The performance after signal selection is superior to results reported 

in previous studies.[11–13, 24, 25] 

The study has several strengths: a medically appropriate cohort of patients, studied 

in clinical circumstances, using an appropriate and accurate comparison signal. The 

respiratory signal was evaluated before the signal analysis was undertaken, and 

with the other signal records concealed. The nasal cannula signal allows the exact 

timing of the breathing cycle to be identified easily and precisely, making it an 

attractive choice as a “gold standard” in comparison to other devices which give a 

less faithful measure of respiration. 

We had some technical difficulties in this study. We had to set up a new system for 

recording nasal pressure, and this caused some early failures to record. Some of the 

nasal pressure records were of poor quality, probably caused by fluid within the 

cannula tubing. This could not be detected because the signal could not be checked 

as the recording was being made. Some records may have been degraded by 



predominant mouth breathing, and speech, coughing, cannula displacement or 

disconnection to allow ambulation can also interrupt nasal pressure measurements. 

Signal analysis for model development was conducted without reference to the nasal 

pressure waveform, although onset times of breaths were used to measure the 

breath periods. We noted substantial heterogeneity in the breathing of the patients 

whose records were used to provide the training dataset. We considered that this 

would be helpful in training the classification process, because the model 

incorporates these variations when considering the test data and future subjects. 

The final model performed well on the test data. To allow comparison with other 

studies, we present this in a Bland and Altman analysis. (figure 3) This showed a 

median rate difference of only 0.84 breaths/min, 95% limits of agreement from -2.01 

to 1.90, and in 90% of the patients, the rate differences were less than 1.27 

breaths/min. This degree of precision should be clinically acceptable for a scoring 

system. Very few reports assessing respiratory rate measuring devices define 

acceptable agreement explicitly, but one study suggested that a difference less than 2 

breaths/minute indicates equivalence.[26] 

 

Previous work has been done to recognise respiratory signals that are “reliable”. For 

example, some cardiac monitors measure respiration from an impedance signal 

measured using ECG chest leads, and body motion frequently makes this signal 

unreliable. A computer system of decision rules was developed to score reliability of 

this signal, using a database of recordings from trauma victims.[27] Subsequent re-

analysis of data using the selected signals improved prediction of outcome 

events.[28] Our work uses the same approach, but has the strength of incorporating 

a concurrent reference measure, rather than depending on subjective identification 

of “trusted” sections of the original record. 

 

Although vital signs monitoring in general wards appears to improve early 

detection of illness,[29, 30] monitoring using continuous acquisition of data is not 

clearly more effective than when using intermittent chart-based systems.[31] 

Detecting deterioration may be more effective when the time course of values is 

used, rather than using threshold values.[32, 33] If so, regular and accurate 

measurement of respiratory rate may be particularly useful. More precise 

measurements may be more effective for scoring systems with narrow cutoff ranges 

(20, 21-24, 25). 

Ideally, an automatic summary measure, at 10-minute intervals, could display 

features such as a progressive increase in rate in a patient with sepsis, or a decrease 

associated with excess opioid. Machine learning allowed us to select trustworthy 

signals from our monitor to do this, giving results that differ by less than 2 



breath/minute from a reference device. This promising approach would allow 

automatic charting and provide input to illness scoring systems. 
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Figure 1 An example of a section of recording from a single subject Top trace: nasal 

cannula pressure. A downward deflection (pressure decrease) indicates inspiration 

Bottom three traces: accelerometer forces. These are smoothed and combined into 

the Respeck signal. The arrow indicates the start of a patient movement, seen in one 

of the axis measures, that causes a large deflection of the Respeck signal. 

Figure 2 Effects of applying selection process to the test data. The six test patients are 

identified by letters, A – F. The test patients are ordered according to proportion of 

retained measurement windows. Left hand axis: Differences between the rate 

measurement pairs made by nasal cannula and Respeck, in each subject. Open 

columns, before window selection, grey columns after window selection. Values are 

median, error bars are quartiles. Right hand axis, the proportion of retained 

measurement windows for each patient is shown (black filled columns). Patient G 

has a low proportion of windows retained. 

Figure 3 Bland and Altman plots of (nasal – Respeck) differences before and after 

selection of suitable signals, plotted in relation to the mean respiratory rate ([nasal + 

Respeck]/2). The data are from all six validation subjects: each dot indicates one pair 

of compared values, nasal and Respeck measures, for a single observation window, 

in one validation subject’s data. Plots show bias (solid line), and limits of agreement 

(outer dashed lines) surrounded by their 95% confidence ranges (shaded). To allow 

comparable scales to be used in both panels, 31 of the 1670 data points from the 

“before selection” panel are not plotted. 

Figure 4 Plots of rate estimates from two representative patients shown for a 17 

minute time period (Patient records are from A and G from the test sample, see 

figure 2). These are patients with extreme proportions of measurement windows that 

were chosen as accurate, from the whole window dataset for that patient. Even with 

a 10% acceptance rate, in patient G, these samples are sufficient to give a reasonable 

measure of the overall respiratory rate, over the time period shown.  

 

  



 

  



 

  



 

  



 

 


